PRACTICE EXAM TWO

Due on Friday, November 1

1) Compute the determinant and find the inverse of the following matrix:

$$
\left(\begin{array}{lll}
1 & 2 & 1 \\
0 & 2 & 2 \\
1 & 1 & 1
\end{array}\right) .
$$

2) Consider the matrices,

$$
A=\left(\begin{array}{ll}
1 & 2 \\
3 & 1
\end{array}\right), B=\left(\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right)
$$

Prove or disprove the following statement: A is conjugate to B .
3) Let A, B and C be 3×3 matrices with real coefficients and assume

$$
\operatorname{Det}(A)=30, \operatorname{Det}(B)=2, \operatorname{Det}(C)=\frac{1}{2} .
$$

(1) Compute $\operatorname{Det}(A B C)$.
(2) Let $\mathcal{C} \subset \mathbb{R}^{3}$ be the unit cube. Consider the regions enclosed by $A(\mathcal{C}), B(\mathcal{C}), C(\mathcal{C}) \subset \mathbb{R}^{3}$. Among them, which has the smallest volume?
(3) Suppose that A is diagonalizable with eigenvalues λ_{1} and λ_{2}. Prove $\lambda_{1} \lambda_{2}=30$.
4) Consider the matrix

$$
A=\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right)
$$

(1) Find all the real eigenvalues and eigenvectors of A.
(2) Diagonalize A.
(3) Compute A^{5} explicitly.

