PRACTICE FINAL EXAM

1) Consider the 3×3 matrix

$$
A=\left(\begin{array}{ccc}
1 & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & 1 & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & 1
\end{array}\right) .
$$

(1) Put A in row reduced echelon form.
(2) For which $b \in \mathbb{R}^{3}$ does there exist $x \in \mathbb{R}^{3}$ such that

$$
A x=b \text {. }
$$

When is this x unique?
(3) What is the rank and nullity of A.
(4) Show that the rows of A are linearly independent. Show that the columns of A are linearly independent.
(5) Show that A is invertible and compute A^{-1}.
(6) Prove without any calculation that the eigenvalues of A are real.
(7) Find all eigenvalues and eigenvectors of A.
(8) Diagonalize A. Use the eigen-decomposition to compute A^{-1}. Compare with your other computation of the inverse.
2) Let $(V,\langle\rangle$,$) be an inner product space and let L: V \rightarrow V$ and $K: V \rightarrow V$ be linear maps.
(1) Prove that $(L \circ K)^{*}=K^{*} \circ L^{*}$.
(2) Prove that if $v, w \in V$ are orthogonal, then

$$
\|v+w\|^{2}=\|v\|^{2}+\|w\|^{2}
$$

(3) Show that $V \simeq \operatorname{ker}(L) \oplus \operatorname{ker}(L)^{\perp}$ where $\operatorname{ker}(L)^{\perp}$ is the orthogonal complement to $\operatorname{ker}(L)$.
(4) Show that $\operatorname{Im}(L)=\operatorname{ker}\left(L^{*}\right)^{\perp}$.
(5) Suppose $v, w \in V$ are orthogonal. Show that v and w are linearly independent.
3) Consider the vector space V of degree 2 polynomials with real coefficients:

$$
V:=\left\{a_{0}+a_{1} t+a_{2} t^{2} \mid a_{0}, a_{1}, a_{2} \in \mathbb{R}\right\} .
$$

(1) Write down two different bases of V. You must verify that what you produce are bases!
(2) Let $\mathcal{B}:=\left\{1,1+t, t^{2}\right\}$ be an ordered basis of V. Define a map

$$
\begin{aligned}
L: V & \rightarrow V \\
a_{0}+a_{1} t+a_{2} t^{2} & \mapsto a_{0}+\left(a_{0}+a_{2}\right) t+a_{1} t^{2}
\end{aligned}
$$

Prove that L is a linear map. Write down the matrix representation of L with respect to the basis \mathcal{B}.
(3) Verify the rank nullity theorem: $\operatorname{Dim}(V)=r k(L)+\operatorname{nullity}(L)$.
4) Prove that if A is a non-square matrix, then either the rows or the columns of A are linearly dependent.
5) Suppose V and W are finite dimensional vector spaces. Prove there exists a surjective (onto) linear transformation $T: V \rightarrow W$ if and only if $\operatorname{dim}(V) \geq \operatorname{dim}(W)$.
6) Let $L: V \rightarrow V$ be a linear operator on a finite dimensional vector space. Prove that exactly one of the following conditions holds:
(1) The equation $L(v)=b$ has a solution for all vectors $b \in V$.
(2) $\operatorname{nullity}(L)>0$.
7) Let A be an $n \times n$ matrix such that all of the entries of A are integers. If $\operatorname{det}(A)=1$, prove that all of the entries of A^{-1} are also integers.
8) Let A be an $n \times n$ matrix which is diagonalizable. Prove that A^{k} is diagonalizable for all integers $k>0$.
9) Let A be an $n \times n$ matrix which is diagonalizable. Prove that the rank of A is equal to the number of non-zero eigenvalues of A.

