PRELIMINARY EXAM : APPLICATIONS ORIENTED MATH

1. Find the leading term in the asymptotic expansion of the following integral, in the indicated limits

$$
I(\lambda)=\int_{0}^{\pi / 2} \sqrt{t} \exp [\lambda(\sin t+\cos t)] d t
$$

(a) $\quad \lambda \rightarrow+\infty \quad$ (b) $\quad \lambda \rightarrow-\infty$.
2. Consider the following integral as $\lambda \rightarrow+\infty$

$$
\int_{C} \exp \left[\lambda\left(\frac{z^{2}}{2}-\frac{z^{4}}{4}\right)\right] d z
$$

(a) Find all saddle points in the complex z plane.
(b) At each saddle, find the local steepest descent (SD) and steepest ascent (SA) directions.
(c) Find the (global) steepest descent contour though each saddle.
(d) If C is the real axis, where z goes from $-\infty$ to $+\infty$, which saddle(s) determine the asymptotic behavior of the integral ? What if C is the imaginary axis, where z goes from $-i \infty$ to $+i \infty$?
3. Consider the ODE

$$
y^{\prime \prime}(x)=\left(x^{2}+\frac{1}{x^{2}}\right) y(x) .
$$

(a) Classify the points $x=0$ and $x=\infty$ as ordinary, regular singular or irregular singular.
(b) Find the asymptotic behaviors of all solutions, in the limit $x \rightarrow 0$.
(c) Find the asymptotic behaviors of all solutions, in the limit $x \rightarrow \infty$.
4. Consider the boundary value problem

$$
\begin{array}{ll}
y^{\prime \prime}(x)+\lambda^{2}(1+x) y(x)=0, & 0<x<1 \\
y(0)=0, & y^{\prime}(1)-\lambda \sqrt{6} y(1)=0 .
\end{array}
$$

Find the asymptotic behavior of the large eigenvalues and the corresponding eigenfunctions.
5. Consider the equation

$$
x^{2} \exp \left(-x^{2}\right)=\varepsilon .
$$

(a) Assume that ε is positive and sufficiently small. How many solutions does this equation have in the range $x>0$?
(b) Find two terms in the asymptotic expansions of all solutions, in the limit $\varepsilon \rightarrow 0^{+}$.
6. Consider the following oscillator with non-linear damping :

$$
\begin{gathered}
y^{\prime \prime}(t)+y(t)+\frac{\varepsilon}{3}\left[y^{\prime}(t)\right]^{3}=0 \\
y(0)=1, \quad y^{\prime}(0)=0
\end{gathered}
$$

Use the two-time method to find an approximation to $y(t)$, valid up to times $t=O\left(\varepsilon^{-1}\right)$.
7. Consider the following singularly perturbed boundary value problem :

$$
\begin{gathered}
\varepsilon y^{\prime \prime}(x)+x^{2 / 3} y^{\prime}(x)+y(x)=1, \\
y(0)=0, \quad y(1)=2 .
\end{gathered}
$$

Construct an outer solution, locate any boundary layers and give their thickness, and then obtain a one term composite approximation.
8. Consider the following singularly perturbed boundary value problem, defined in the upper semicircle $\mathcal{D}=\left\{(x, y): x^{2}+y^{2}<1, y>0\right\}$

$$
\begin{gathered}
\varepsilon \Delta u+u_{x}=\varepsilon\left[u_{x x}+u_{y y}\right]+u_{x}=0, \quad(x, y) \in \mathcal{D} \\
u(x, 0)=f(x), \quad-1<x<1 \\
u=g(\theta), \quad r=\sqrt{x^{2}+y^{2}}=1, \quad 0<\theta<\pi .
\end{gathered}
$$

Construct an outer solution, locate any boundary layers and give their thickness. Give the ODE/PDE that applies in each layer, but you need not solve it.

