The second boundary value problem for a discrete Monge-Ampère equation

Gerard Awanou

Department of Mathematics, Statistics and Computer Science University of Illinois at Chicago

Outline

- Linear complexity for transport maps
- Aleksandrov solutions
- Asymptotic cones
- 4 Existence, uniqueness, convergence and numerical results

Problems in geometric optics lead to the resolution of Monge-Ampère equations (generated Jacobian equations)

$$\det DT_u(x) = \psi(x, u(x), T_u(x)), \quad T_u(x) = T(x, u(x), Du(x))$$
$$T_u(X) = Y.$$

Several of these problems fall in the framework of optimal transport. Model problem for quadratic cost

$$\det D^2 u(x) = \frac{f(x)}{g(Du(x))}$$
$$Du(X) = Y.$$

It is known that the transport map is given by T(x) = Du(x)

Solving discretized Monge-Ampère equations leads to the computation of transport maps (for absolutely continuous measures)

That is the point of view taken in semi-discrete optimal transport. The latter is usually said to be a generalization of the Oliker-Prussner method

The Oliker-Prussner method is a discretization of the Dirichlet problem based on the notion of Aleksandrov solution.

Natural generalization of the Oliker-Prussner method for the second boundary condition

As with semi-discrete optimal transport, the computational complexity is $O(N^2)$

Finite difference version, which has linear complexity

May be generalized to other cost functions.

Aleksandrov solutions

Find a convex function $u \in C^2([a,b])$ such that

$$g(u'(x))u''(x) = f(x), x \in (a, b)$$
 (1)

$$u'((a,b)) = (\alpha,\beta). \tag{2}$$

 $x \mapsto u'(x)$ is a surjective mapping from (a, b) onto (α, β) . Since u is convex, u' is increasing and hence (2) is equivalent to

$$u'(a) = \alpha$$
 and $u'(b) = \beta$.

Compatibility : change of variable $x \to \gamma(x) = u'(x) = p$ (gradient mapping), provided that u' is one-to-one, i.e. u is strictly convex

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} g(u'(x))u''(x)dx = \int_{\alpha}^{\beta} g(\rho)d\rho.$$

Monge-Ampère measure $M[u](B) = \int_{\gamma(B)} g(p) dp$ Replace $\gamma(x)$ by subgradient mapping for non smooth solutions

$$\partial u(x_0) = \{ p \in \mathbb{R} : u(x) \ge u(x_0) + p(x - x_0), \text{ for all } x \in X \}.$$

Find u convex such that

$$\int_{\partial u(B)} g(p) \, dp = \int_B f(x) \, dx, \text{ for all Borel sets } B \subset (a,b)$$

Method of supporting paraboloids and Semi-discrete optimal transport

The target density g is approximated by a sum of Dirac masses $\sum_{i=1}^{M} r_i \delta_{P_i}$ for $P_i \in Y$ and $r_i > 0$ for all i.

Energy conservation reads $\sum_{i=1}^{M} r_i = \int_X f(x) dx$.

The solution is given by the graph of the convex function

$$u_M(x) = \max_{i=1,\dots,M} x \cdot P_i - b_i,$$

with rays in the region

$$W_i(b) = \{ x \in X, x \cdot P_i - b_i \ge x \cdot P_j - b_j \text{ for all } j = 1, \dots, M \},$$

reflected in the direction P_i . We thus need

$$\int_{W_i(b)} f(x) dx = r_i, i = 1, \ldots, M.$$

Note that $Du_M \subset \{P_1, \dots, P_M\} \subset Y$.

The solution $u_M(x) = \max_{i=1,...,M} x \cdot P_i - b_i$ from the method of supporting paraboloids induces a map $T: X \to Y$ defined by

$$T(x) = P_i \text{ for } x \in W_i(b).$$

This map is optimal in the sense that it minimizes the total cost

$$\int_X c(x,T(x))\,dx,$$

where $c(x, y) = |x - y|^2$ is the cost of moving "mass at x to y", among all "measure preserving maps" from X to Y.

The solution $u_M(x) = \max_{i=1,...,M} x \cdot P_i - b_i$ also induces a mapping $\psi : Y \to \mathbb{R}$, the Legendre transform of u_M , such that $\psi(P_i) = b_i$.

The convex envelope $\hat{\psi}$ of ψ , i.e. the largest convex function below ψ , solves in a weak sense (an equation similar to) a Monge-Ampère equation $f(D\hat{\psi}) \det D^2 \hat{\psi} = g$.

For a direct approximation of a solution of g(Du) det $D^2u=f$, one first solves $f(D\psi)$ det $D^2\psi=g$ for the discrete mapping $\psi:\{P_1,\ldots,P_N\}\to\mathbb{R}$ by rewriting the subdifferential in terms of the so-called Laguerre cells of ψ .

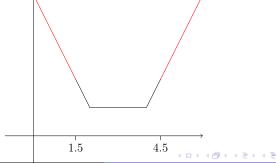
Note the change of point of view : u_M is obtained not by seeking $u_M(x), x \in X$ but by the values b_i at P_i of its Legendre transform.

Second boundary condition in terms of asymptotic cone.

Given $x_0 \in (a, b)$ and $p \in \partial u(x_0)$ the affine function $L(x) = u(x_0) + p(x - x_0)$ is said to be subtangent to u at x_0 . Define

$$\overline{u}(x) = \sup\{ u(y) + p(x-y), y \in (a,b) \text{ and } p \in \partial u(y) \}.$$

It can be shown that \overline{u} is a convex extension of u.



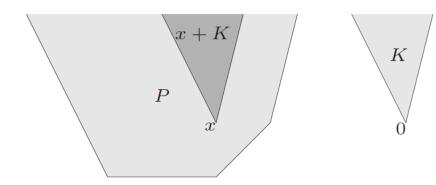
To get the extension \overline{u} , one needs to know $\partial u(y)$ for all $y \in (a, b)$. The extension can also be obtained with just the knowledge of $\partial u(a, b) = (\alpha, \beta)$.

Epigraph of \overline{u} is given by

epi
$$\overline{u} = \{ (x, y) \in \mathbb{R}^2, y \geq \overline{u}(x) \}.$$

K denotes the epigraph of $k(x) = \max\{\alpha x, \beta x\}$. For $(r, s) \in \mathbb{R}^2$, (r, s) + K is the epigraph of the function

$$k_{(r,s)}(x) = \max\{ \alpha(x-r) + s, \beta(x-r) + s \}.$$



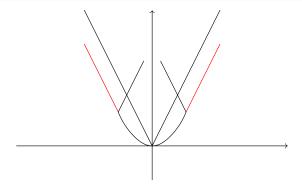


FIGURE – The function $u(x)=x^2$ solves u''=2 on (-1,1) with $\partial u(-1,1)=(-2,2)$. Its extension to $\mathbb R$ is also shown. Here $\alpha=-2$ and $\beta=2$. The graphs of $k_{0,0},\,k_{(-1,1)}$ and $k_{(1,1)}$ are shown. Their epigraphs are completely contained in the epigraph of the extension \overline{u} of u.

For
$$x \notin (a, b)$$

$$\begin{split} \overline{u}(x) &= \inf_{y \in (a,b)} k_{(y,u(y))}(x) \\ &= \inf_{y \in (a,b)} \max \{ \, \alpha(x-y) + u(y), \beta(x-y) + u(y) \, \} \\ \overline{u}(x) &= \min \{ \, k_{(a,\overline{u}(a))}(x), k_{(b,\overline{u}(b))}(x) \, \}. \end{split}$$

 $u \in C(a, b)$ is extended by continuity to [a, b].

Example in 1D of piecewise linear convex function

Assume that
$$X = (-1.5, 1.5)$$
 and $Y = (-2, 2)$.

Consider the piecewise linear convex function on X with vertices at B(-1,0) and C(1,0).

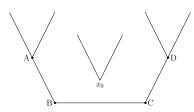
Recall that

$$\partial u(x) = \{ p \in \mathbb{R}, u(y) \ge u(x) + p(y-x), \forall y \in (a,b) \}.$$

For $x \notin \{B, C\}$, u'(x) is constant. At those points $\partial u(x) \in \{-2, 0, 2\}$ with $|\partial u(x)| = 0$. We have $\partial u(B) = [-2, 0]$ and $\partial u(C) = [0, 2]$. Thus $|\partial u(B)| = 2$ and $|\partial u(C)| = 2$. Also, $\partial u(X) = \overline{Y}$.

The epigraph of u is a bounded convex set.

The epigraph of the extension of u is an unbounded convex set.



We have
$$\partial u(\Omega) = \partial u(\mathbb{R}) = \overline{\Omega^*}$$
.

Monge-Ampère equation reformulated in terms of asymptotic cone.

Find u convex on X which solves equation in X and given outside of X by

$$u(x) = \min_{s \in \partial X} u(s) + k_Y(x - s).$$

g-curvature of convex functions

Existence, uniqueness, convergence and numerical results

Let v be a convex function on \mathbb{R}^d .

$$\chi_{\nu}(E) = \cup_{x \in E} \chi_{\nu}(x).$$

g-curvature as the set function

$$\omega(g, v, E) = \int_{\chi_v(E)} g(p) dp.$$

Extend f and g by 0 to \mathbb{R}^d with equation in measures

$$\omega(g, u, E) = \int_{E} f(x) dx$$
 for all Borel sets $E \subset \overline{X}$
 $\chi_{u}(\overline{X}) = \overline{Y}$.

Approximation by piecewise linear convex functions which have subdifferential a polygon

Sequences of polygons $K^* \subset Y$ $K^* \to Y$. To K^* one associates a cone K which is the epigraph of

$$\max_{j=1,...,N} x \cdot a_j^*,$$

where a_j^* is a vertex of K^* .

Find a piecewise linear convex function u_h with asymptotic cone K such that

$$\omega(\mathbf{g}, \mathbf{u}_h, \mathbf{x}) = \sum_{\mathbf{x} \in \mathbf{X}_h} \mathbf{c}_{\mathbf{x}} \delta_{\mathbf{x}},$$

where $\sum_{\mathbf{x} \in \mathbf{X}_h} \mathbf{c}_{\mathbf{x}} \delta_{\mathbf{x}} \to \mu_{\mathbf{f}}$.

Subdifferential of the extension

$$\chi_u(y) = \{ q \in \mathbb{R}^d : \tilde{u}(z) \ge \tilde{u}(x) + q \cdot (z - x), \text{ for all } z \in \mathbb{R}^d \}.$$

For X, Y bounded convex $\partial u(X) = Y$ implies $\chi_u(\overline{X}) = \chi_u(\mathbb{R}^d) = \overline{Y}$.

Assume first that Y is polygonal with vertices $a_i^*, i = 1, ..., N$. Recall the support function of $Y : p \in \mathbb{R}^d, k_Y(p) = \sup_{y \in Y} p \cdot y$.

Choose a set of vectors V_0 of normals to facets of Y. Then $p \in Y$ iff $p \cdot e \leq k_Y(e)$ for all $e \in V_0$.

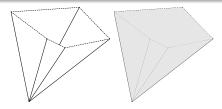


FIGURE – Polyhedral angle in \mathbb{R}^3

FIGURE – Piecewise linear convex function. Reference : wikipedia.

The unknown are the (finite set of) mesh values $\{u_h(x), x \in X_h\}$ and the second boundary condition is enforced implicitly using the discrete extension formula

$$u_h(x) = \min_{y \in \partial X_h} \max_{1 \le j \le N} (x - y) \cdot a_j^* + u_h(y).$$

(for X polygonal)

The min and the max are over a finite number of points.

This is sometimes called Oliker-Prussner method. Here for the second boundary value problem.

Orthogonal lattice with mesh length $h : \mathbb{Z}_h^d = \{ mh, m \in \mathbb{Z}^d \}$. Put $X_h = X \cap \mathbb{Z}_h^d$ and

$$\partial X_h = \{ x \in X_h \text{ such that for some } i = 1, \dots, d, x + hr_i \notin X_h \}$$

or $x - hr_i \notin X_h \}.$

Put
$$\mathcal{N}_h = X_h \cup \{ x + he, e \in V_0, x \in \partial X_h \}.$$

Discrete convexity For a function v_h on \mathbb{Z}_h^d , $e \in \mathbb{Z}^d$ and $x \in X_h$

$$\Delta_{he}v_h(x) = v_h(x + he) - 2v_h(x) + v_h(x - he).$$

The unknown in the numerical scheme is a mesh function v_h on X_h which is extended to \mathbb{Z}^d using the extension formula, and which is discrete convex $(\Delta_{he}v_h(x) \geq 0)$. Stencil

Definition

A stencil V is a set valued mapping from X_h to the set of finite subsets of $\mathbb{Z}^d \setminus \{0\}$.

Existence, uniqueness, convergence and numerical results

Minimal stencil V_{min} is symmetric with respect to the origin, contains the elements of the canonical basis of \mathbb{R}^d and the set of normals V_0 .

Extended mesh $\mathcal{N}_h^2 = X_h \cup \{ x + he, x \in X_h, e \in V_{min} \}.$

Maximal stencil V_{max} such that $e \in V_{max}(x)$ iff $x + he \in \mathcal{N}_h^2$.

$$V_{min} \subset V(x) \subset V_{max}(x)$$
.

For convergence, and $f \in C(\overline{X})$, choose V(x) to be in addition symmetric with respect to the origin and with vectors with co-prime coordinates.

$$\partial_V v_h(x) = \{ p \in \mathbb{R}^d, p \cdot (he) \ge v_h(y) - v_h(y - he) \, \forall e \in V(x) \}.$$

$$\omega_V(g, v_h, x) = \int_{\partial_V v_h(x)} g(p) dp, x \in X_h.$$

find $u_h \in C_h$ with asymptotic cone K such that

$$\omega_{V}(g, u_{h}, \{x\}) = \int_{C_{x}} \tilde{f}(t)dt, x \in X_{h},$$

where C_x with $C_x \cap X_h = \{x\}$ form a partition of X.

Recall the extension formula

$$u_h(r) = \min_{z \in \partial X_h} u_h(z) + k_Y(r-z).$$

In the case $V = V_{max}$, u_h coincides with its convex envelope and was essentially studied by Bakelman. Existence, uniqueness and convergence of the discretization follows for $f \in L^1(X)$.

$$V_{min} \subset V(x) \subsetneq V_{max}(x)$$

Existence, uniqueness, convergence and numerical results

Existence of solutions follows from the convergence of a damped Newton's method.

Discrete convex mesh functions with asymptotic cone K are Lipschitz continuous with a uniform Lipschitz bound, i.e.

$$|v_h(x) - v_h(y)| \le C||x - y||_1.$$

If X is a rectangle, which does not require a loss of generality, a subsequence converges to a convex function which is shown to be a viscosity solution for $f \in C(\overline{X})$.

Uniqueness holds under various assumptions for V not necessarily equal to V_{max}

Possibility of having $X_h = X_h^1 \cup X_h^2$ with discrete Monge-Ampère equations on either which do not "interact".

convergence of Monge-Ampère measures

Existence, uniqueness, convergence and numerical results

Convergence of the discretization follows from weak

Theorem

Let K_m^* be bounded convex polygonal domains increasing to \overline{Y} . Then the convex solution u_m of

$$\omega(g,u,E)=\int_E f_{K_m^*}(x) dx$$
 for all Borel sets $E\subset \overline{X}$
$$\chi_u(\overline{X})=K_m^*$$

$$u(x^0)=\alpha,$$

for $x^0 \in X$ and $\alpha \in \mathbb{R}$ converges uniformly on compact subsets of X to the solution u with $u(x^0) = \alpha$.

A numerical experiment

Existence, uniqueness, convergence and numerical results

Exact solution $u(x, y) = x^2/2 + xy + y^2$ with $X = (0, 1)^2$ and Y is the polygon of area 1 with vertices (0, 0), (1, 1), (1, 2) and (1, 3).

Take g(x, y) = x + y with corresponding right hand side f(x, y).

Initial guess $\partial v_h(X) \subset Y$

Stencil V was taken as $V = -V_1 \cup V_1$ where V_1 consists of the vectors (1,0), (0,1), (1,1), (1,-1), (2,1), (-1,2), (1,2) and (-2,1).

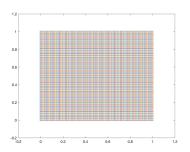
$$g(Du) \det D^2 u = f + u(h, h)$$

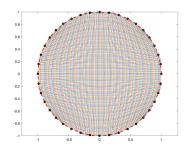
Quadrature rules and a damped Newton's method

h					
Error for u	1/2 ⁵ 2.72 10 ⁻⁴	1/2 ⁶ 8.01 10 ⁻⁵	$1/2^{7}$ 2.31 10^{-5}	1/2 ⁸ 6.52 10 ⁻⁶	1/2 ⁹ 1.82 10 ⁻⁶
Rate		1.76	1.79	1.82	1.84
Error for <i>Du</i>	6.27 10 ⁻³	$3.30 \ 10^{-3}$	$1.56 \ 10^{-3}$	$8.23 \ 10^{-4}$	$3.92 \ 10^{-4}$
Rate		0.93	1.07	0.93	1.07

TABLE – Maximum errors for a smooth solution.

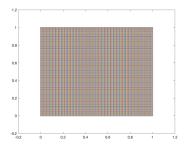
Constant density on a square mapped to constant density on the unit disc $h = 1/2^7$

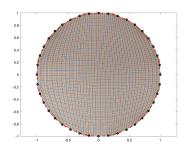




Existence, uniqueness, convergence and numerical results

Constant density on a square mapped to Gaussian $e^{-0.5(x^2+y^2)}$ on the unit disc $h=1/2^8$





Some references

Awanou, Gerard, On the weak convergence of Monge-Ampère measures for discrete convex mesh functions. Acta Appl. Math. 172 (2021), Paper No. 6, 31 pp.

Awanou, Gerard, The second boundary value problem for a discrete Monge-Ampère equation. Journal of Scientific Computing, volume 97, article 22. (2023)