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Non-imaging optics refers to the optimal transfer of light
radiation between a source and a target. This requires an
accurate control of light for the design of projection displays,
laser weapons, medical illuminators . . .
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Parallel far field reflector problem

FIGURE – Incoming light distribution is reflected onto a set of
directions
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The position and shape u(x) of the (convex) reflector solves the
second boundary value problem for the Monge-Ampère
equation

g(Du(x)) det D2u(x) = f (x), x ∈ X
Du(X ) = Y ,

where f ∈ L1(X ), f ≥ 0 is the incoming light distribution density
and g ∈ L1(Y ),g > 0 is the prescribed irradiance density.

Conservation of energy :
∫

X f (x)dx =
∫

Y g(y)dy .

Solutions are unique up to a constant.
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Review : Computational nonimaging geometric optics, Notices
of the American Mathematical Society 2021.
Differential equation

g(Du(x)) det D2u(x) = f (x), x ∈ X

Boundary condition

Du(X ) = Y

For a smooth strictly convex function u and smooth boundaries
∂X and ∂Y

Du(∂X ) = ∂Y .

Prins, 2014.
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Numerical approaches to the 2nd boundary condition

Iterated projection algorithm Froese 2012.

Defining function of Y Benamou-Froese-Oberman 14

In a (mixed) least squares sense Prins et al 2014

Enforced throughout the source domain Du(X ) = Y Lindsey
and Rubinstein 17, Froese 2019

Other approaches include work by Kawecki, Lakkis, and Pryer
2018, Bonnet and Mirebeau 2022, Brusca and Hamfeldt 2023.
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An approach based on convex extension. Equation is written as
an equation on R2. Benamou and Duval 2018. For X convex

g(Du(x)) det D2u(x) = f (x), x ∈ X

det D2u(x) = 0, x ∈ R2 \ X

min
e∈S1

eT D2u(x)e = 0, x ∈ R2 \ X .

Finally, with σY denoting the support function of Y , i.e. p ∈ Y iff
p · e ≤ σY (e), ∀e ∈ Rd , the condition Du(X ) ⊂ Y is rewritten as

sup
e∈S1

eT Du(x)− σY (e) = 0, x ∈ R2 \ X .

Discretization is done on a bounded domain X ′ such that
X ( U ⊂ X ′ for an open set U.
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Method of supporting paraboloids
The target density g is approximated by a sum of Dirac masses∑M

i=1 riδPi for Pi ∈ Y and ri > 0 for all i .

Energy conservation reads
∑M

i=1 ri =
∫

X f (x) dx .
The solution is given by the graph of the convex function

uM(x) = max
i=1,...,M

x · Pi − bi ,

with rays in the region

Wi(b) = { x ∈ X , x · Pi − bi ≥ x · Pj − bj for all j = 1, . . . ,M },

reflected in the direction Pi . We thus need∫
Wi (b)

f (x) dx = ri , i = 1, . . . ,M.

Note that DuM ⊂ {P1, . . . ,PM } ⊂ Y .
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Semi-discrete optimal transport

The solution uM(x) = maxi=1,...,M x · Pi − bi from the method of
supporting paraboloids induces a map T : X → Y defined by

T (x) = Pi for x ∈Wi(b).

This map is optimal in the sense that it minimizes the total cost∫
X

c(x ,T (x)) dx ,

where c(x , y) = |x − y |2 is the cost of moving ” mass at x to y ”,
among all ”measure preserving maps” from X to Y .
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The solution uM(x) = maxi=1,...,M x · Pi − bi also induces a
mapping ψ : Y → R, the Legendre transform of uM , such that
ψ(Pi) = bi .

The convex envelope ψ̂ of ψ, i.e. the largest convex function
below ψ, solves in a weak sense (an equation similar to ) a
Monge-Ampère equation f (Dψ̂) det D2ψ̂ = g.

For a direct approximation of a solution of g(Du) det D2u = f ,
one first solves f (Dψ) det D2ψ = g for the discrete mapping
ψ : {P1, . . . ,PN } → R by rewriting the subdifferential in terms of
the so-called Laguerre cells of ψ.

Note the change of point of view : uM is obtained not by seeking
uM(x), x ∈ X but by the values bi at Pi of its Legendre
transform.
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Related to the proposed approach for Dirichlet b.c.

Oliker-Prussner method (1988)
Implementation uses implicitly the computation of Laguerre
cells or power diagrams

Mirebeau 2015 : medius between wide stencils and power
diagrams

Neilan and Zhang 2018 : 2D implementation based on edge
flips
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Possible advantages of the method

Semi-discrete optimal transport has a complexity O(N2). The
complexity of a version of this method is O(N).

Convex extensions were used by Benamou and Duval in 2018.
Here existence of a solution, uniqueness results and
convergence of uh and not just for its convex envelope.

Step 1 : Oliker-Prussner discretization for the second boundary
condition
Step 2 : method medius between wide stencils and power
diagrams
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Find a convex function u ∈ C2([a,b]) such that

g(u′(x))u′′(x) = f (x), x ∈ (a,b) (1)
u′((a,b)) = (α, β). (2)

x 7→ u′(x) is a surjective mapping from (a,b) onto (α, β). Since
u is convex, u′ is increasing and hence (2) is equivalent to

u′(a) = α and u′(b) = β.

Similar to Du(X ) = Y discretized by Du(∂X ) = ∂Y .
Compatibility : change of variable x → γ(x) = u′(x) = p
(gradient mapping), provided that u′ is one-to-one, i.e. u is
strictly convex∫ b

a
f (x)dx =

∫ b

a
g(u′(x))u′′(x)dx =

∫ β

α
g(p)dp.
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Aleksandrov solutions

Monge-Ampère measure M[u](B) =
∫
γ(B) g(p) dp

Replace γ(x) by subgradient mapping for non smooth solutions

∂u(x0) = {p ∈ R : u(x) ≥ u(x0) + p(x − x0), for all x ∈ X }.

Find u convex such that

∫
∂u(B)

g(p) dp =

∫
B

f (x) dx , for all Borel sets B ⊂ (a,b)
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Second boundary condition in terms of asymptotic cone.
Given x0 ∈ (a,b) and p ∈ ∂u(x0) the affine function
L(x) = u(x0) + p(x − x0) is said to be subtangent to u at x0.
Define

u(x) = sup{u(y) + p(x − y), y ∈ (a,b) and p ∈ ∂u(y) }.
It can be shown that u is a convex extension of u.

1.5 4.5

FIGURE – Ω = (−2,2),h = 1,u0 = u4 = 5/2,u1 = u2 = u3 = 1
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To get the extension u, one needs to know ∂u(y) for all
y ∈ (a,b). The extension can also be obtained with just the
knowledge of ∂u(a,b) = (α, β).

Epigraph of u is given by

epi u = { (x , y) ∈ R2, y ≥ u(x) }.

K denotes the epigraph of k(x) = max{αx , βx }. For
(r , s) ∈ R2, (r , s) + K is the epigraph of the function

k(r ,s)(x) = max{α(x − r) + s, β(x − r) + s }.
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FIGURE – The function u(x) = x2 solves u′′ = 2 on (-1,1) with
∂u(−1,1) = (−2,2). Its extension to R is also shown. Here α = −2
and β = 2. The graphs of k0,0, k(−1,1) and k(1,1) are shown. Their
epigraphs are completely contained in the epigraph of the extension u
of u.
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For x /∈ (a,b)

u(x) = inf
y∈(a,b)

k(y ,u(y))(x)

= inf
y∈(a,b)

max{α(x − y) + u(y), β(x − y) + u(y) }

u(x) = min{ k(a,u(a))(x), k(b,u(b))(x) }.

u ∈ C(a,b) is extended by continuity to [a,b].
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Example in 1D of piecewise linear convex function

Assume that Ω = (−1.5,1.5) and Ω∗ = (−2,2).

-1.5 1.5B C

Consider the piecewise linear convex function on Ω with
vertices at B(−1,0) and C(1,0).

A (-1.5,1) D (1.5,1)

-1.5 1.5-1 -1

Line with slope 2
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Recall that

∂u(x) = {p ∈ R,u(y) ≥ u(x) + p(y − x),∀y ∈ (a,b) }.

For x /∈ {B,C}, u′(x) is constant. At those points
∂u(x) ∈ {−2,0,2 } with |∂u(x)| = 0. We have ∂u(B) = [−2,0]
and ∂u(C) = [0,2]. Thus |∂u(B)| = 2 and |∂u(C)| = 2. Also,
∂u(Ω) = Ω∗.
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The epigraph of u is a bounded convex set.

A D

The epigraph of the extension of u is an unbounded convex set.

A D

B C

x0

We have ∂u(Ω) = ∂u(R) = Ω∗.
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Monge-Ampère equation reformulated in terms of asymptotic
cone.
Find u convex on Ω which solves equation in Ω and given
outside of Ω by

u(x) = min
s∈∂X

u(s) + kY (x − s).
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g-curvature of convex functions

Let v be a convex function on Rd .

χv (E) = ∪x∈Eχv (x).

g-curvature as the set function

ω(g, v ,E) =

∫
χv (E)

g(p)dp.

Extend f and g by 0 to Rd with equation in measures

ω(g,u,E) =

∫
E

f (x)dx for all Borel sets E ⊂ X

χu(X ) = Y .
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Approximation by piecewise linear convex functions which have
subdifferential a polygon
Sequences of polygons K ∗ ⊂ Y K ∗ → Y . To K ∗ one associates
a cone K which is the epigraph of

max
j=1,...,N

x · a∗j ,

where a∗j is a vertex of K ∗.

Find a piecewise linear convex function uh with asymptotic cone
K such that

ω(g,uh, x) =
∑
x∈Xh

cxδx ,

where
∑

x∈Xh
cxδx → µf .

Gerard Awanou
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Subdifferential of the extension

χu(y) = {q ∈ Rd : ũ(z) ≥ ũ(x) + q · (z − x), for all z ∈ Rd }.

For X ,Y bounded convex ∂u(X ) = Y implies
χu(X ) = χu(Rd ) = Y .

Assume first that Y is polygonal with vertices a∗i , i = 1, . . . ,N.
Recall the support function of Y : p ∈ Rd , kY (p) = supy∈Y p · y .

Choose a set of vectors V0 of normals to facets of Y . Then
p ∈ Y iff p · e ≤ kY (e) for all e ∈ V0.

Gerard Awanou
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FIGURE – Polyhedral angle in R3

FIGURE – Piecewise linear convex function. Reference : wikipedia.
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Observation 1 If χu(∂X ) ⊂ Y then χu(X ) ⊂ Y .

Observation 2 By a theorem of Aleksandrov, the set of normals
to the facets of a polygon cannot all lie in a half space.

For a point x ∈ ∂X , points outside of X are needed to evaluate
χu(x).

Orthogonal lattice with mesh length h : Zd
h = {mh,m ∈ Zd }.

Put Xh = X ∩ Zd
h and

∂Xh = { x ∈ Xh such that for some i = 1, . . . ,d , x + hri /∈ Xh

or x − hri /∈ Xh }.

Put Nh = Xh ∪ { x + he,e ∈ V0, x ∈ ∂Xh }.
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Assume now that u is piecewise linear convex with vertices at
x ∈ Xh, i.e. the epigraph of u is an unbounded polygon with
vertices at x ∈ Xh.

For x in the interior of X , χu(x) depends only on u|X .

However, for x ∈ ∂X , we need all the points x + he,e ∈ V0.

Let z ∈ ∂Xh and put r = z + he for some e ∈ V0, we must have
for q ∈ χu(z)

q · (r − z) ≤ u(r)− u(z).

Sufficient condition to ensure that χu(∂X h) ⊂ Y :
u(r)− u(z) ≤ kY (r − z) for all z ∈ ∂Xh.

Extension formula : u(r) = minz∈∂Xh u(z) + kY (r − z).
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The unknown are the (finite set of) mesh values
{uh(x), x ∈ Xh } and the second boundary condition is enforced
implicitly using the discrete extension formula

uh(x) = min
y∈∂Xh

max
1≤j≤N

(x − y) · a∗j + uh(y).

(for X polygonal)

The min and the max are over a finite number of points.

This is sometimes called Oliker-Prussner method. Here for the
second boundary value problem.

Gerard Awanou



Illumination design and Monge-Ampère equation
Numerical methods for the second boundary condition

Aleksandrov solutions and asymptotic cones in 1D
The d-dimensional case

Existence, uniqueness, convergence and numerical results

Discrete convexity For a function vh on Zd
h , e ∈ Zd and x ∈ Xh

∆hevh(x) = vh(x + he)− 2vh(x) + vh(x − he).

The unknown in the numerical scheme is a mesh function vh on
Xh which is extended to Zd using the extension formula, and
which is discrete convex (∆hevh(x) ≥ 0).
Stencil

Definition
A stencil V is a set valued mapping from Xh to the set of finite
subsets of Zd \ {0}.
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Minimal stencil Vmin is symmetric with respect to the origin,
contains the elements of the canonical basis of Rd and the set
of normals V0.

Extended mesh N 2
h = Xh ∪ { x + he, x ∈ Xh,e ∈ Vmin }.

Maximal stencil Vmax such that e ∈ Vmax (x) iff x + he ∈ N 2
h .

Vmin ⊂ V (x) ⊂ Vmax (x).

For convergence, and f ∈ C(X ), choose V (x) to be in addition
symmetric with respect to the origin and with vectors with
co-prime coordinates.

∂V vh(x) = {p ∈ Rd ,p · (he) ≥ vh(y)− vh(y − he) ∀e ∈ V (x) }.

ωV (g, vh, x) =

∫
∂V vh(x)

g(p)dp, x ∈ Xh.
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find uh ∈ Ch with asymptotic cone K such that

ωV (g,uh, { x }) =

∫
Cx

f̃ (t)dt , x ∈ Xh,

where Cx with Cx ∩ Xh = { x } form a partition of X .

Recall the extension formula

uh(r) = min
z∈∂Xh

uh(z) + kY (r − z).

In the case V = Vmax , uh coincides with its convex envelope
and was essentially studied by Bakelman. Existence,
uniqueness and convergence of the discretization follows for
f ∈ L1(X ).
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Vmin ⊂ V (x) ( Vmax (x)
Existence of solutions follows from the convergence of a
damped Newton’s method.

Discrete convex mesh functions with asymptotic cone K are
Lipschitz continuous with a uniform Lipschitz bound, i.e.

|vh(x)− vh(y)| ≤ C||x − y ||1.

If X is a rectangle, which does not require a loss of generality, a
subsequence converges to a convex function which is shown to
be a viscosity solution for f ∈ C(X ).

Uniqueness holds under various assumptions for V not
necessarily equal to Vmax

Possibility of having Xh = X 1
h ∪ X 2

h with discrete Monge-Ampère
equations on either which do not ”interact”.
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Convergence of the discretization follows from weak
convergence of Monge-Ampère measures

Theorem

Let K∗
m be bounded convex polygonal domains increasing to Y . Then the convex

solution um of

ω(g, u,E) =

∫
E

fK∗
m
(x)dx for all Borel sets E ⊂ X

χu(X) = K∗
m

u(x0) = α,

for x0 ∈ X and α ∈ R converges uniformly on compact subsets of X to the solution u
with u(x0) = α.
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A numerical experiment

Exact solution u(x , y) = x2/2 + xy + y2 with X = (0,1)2 and Y
is the polygon of area 1 with vertices (0,0), (1,1), (1,2) and
(1,3).

Take g(x , y) = x + y with corresponding right hand side f (x , y).

Initial guess ∂vh(X ) ⊂ Y

Stencil V was taken as V = −V1 ∪ V1 where V1 consists of the
vectors (1,0), (0,1), (1,1), (1,−1), (2,1), (−1,2), (1,2) and
(−2,1).

g(Du) det D2u = f + u(h,h)

Quadrature rules and a damped Newton’s method
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h
1/25 1/26 1/27 1/28 1/29

Error for u 2.72 10−4 8.01 10−5 2.31 10−5 6.52 10−6 1.82 10−6

Rate 1.76 1.79 1.82 1.84

Error for Du 6.27 10−3 3.30 10−3 1.56 10−3 8.23 10−4 3.92 10−4

Rate 0.93 1.07 0.93 1.07

TABLE – Maximum errors for a smooth solution.
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Constant density on a square mapped to constant
density on the unit disc h = 1/27
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Constant density on a square mapped to Gaussian
e−0.5(x2+y2) on the unit disc h = 1/28
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