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A universal algebra OU = <A4; £5>5e3 is a set A together

with a collection of operations {fj} jed such that fj is

a k~ary operation. If each fj is unary, then M is a
multiunary algebra. If |J| =1, then O3 is a unary algébra.
If the f; are partial operations, then Ul is called a partial
universal algebra. 'KLet E_ (&) denote the lattice of all equiv-
alence relations on A A congruence relation of Ol is an
element B e&(4) , such that if <x,,y;>e@Ofor 1<1i< ks,
then <fj(x Xy eeesXy ), fj(yl’yz’“'»yk,)}E 0 . 12 Ol |

is a partial algebra, then @ ¢ & (a) gs called a strong
congruence relation if, whenever <x;,y¥;~€ Q -for 1 _*<_:i < 'ka.
and f;j(xl’x.?”'?,xk.) exists, then fj(yl, Tpseery ¥y) 8lso

. J J
'gxists and <fj(xl,x2,...,xk_) . fj(yl,yg,...,yk')’»‘*e g .

The collection of all congruence relations on an algebra form
a sublattice ®(O) of 'Sl (4); (00 is called the congruence
lattice of OU . ' |




Chapter 1 investigates the problem of which finite lattices
are the congruence lattices of finite algebras. It is shown
that any finite distributive lattice is the congruence lattice
of 1) a finite algebra having only two unary operations 2) a
finite lattice. Also, the algebras in 1 and 2 have additional
virtuoﬁs properties. If is also shown that the class of lattices
isomorphic to strong congruence lattices of finite algebras is
equal to the clasé of lattices isomorphic’to congrueﬁce lattices

of finite algebras.

Chapter 2 is concerned with‘the following problem of
Pierce: Which sublattices of EZ(S) are congruence lattices
for some algebra defined on S . The main theorem of this

chapter is that if X is an abstract class of finite lattices

such that if L.e X and ‘M is a sublattice of I  then

Me 3{ , ‘then the following are equivalent: 1) if L is a
sublattice of & (A) for some finite set A , AxA el ,
and {1<a,a>l acA ¥ €L , then LT (0D for some

algebra on A; 2) every lattice in \YQ is distributive.

n2




It is well known that the study of congruence lattices
on arbitrary algebras can be reduced to the study of congruence
lattices of multiunary algebras. In Chapter 3 (multiunary)
algebras with few opefations are examined. It is shown that
if (O is any finite algebra, then there exists: 1) a finite
élgebra O 1 with two unary operations and 2) a finite
algebra (3(2 with one binary operation such that both ()(Cﬂl)
and GD(CX2) have unique maximal ideals isomorphic to @(C) .

Chapter 4 is entirely concerned with the congruence lattices
of finite unary algebras. Necessary and suffidient cdnditions
aré given for a unary algeﬁra to have a congruence lattide that
is: 1) distributivé 2) upper semimodular 3) lower semimodular

4) modular.
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Chapter O
INTRODUCTION

0.1 Definition: A lattice is a set L, partially ordered

under <, such that if a,b € Ik then a and b, have a
greatest lower bound and a least upper bound, denoted by aANb
and awb respectively. If a <b or b<a then a and b

are said to be comparable;\if not, they are not comparable.

The symbol 1 will denote the largest element in L, and O

will denote the smallest element in L, whenever such elements

exist. [a,b] will denote the interval from a to b in L
where [é,b] ={xeIla<x<b}. The element b is said to
cover a, b»a, if [a,b] ={a,b}y . An atom of L is an

element that covers O. A chain is a set of elements, every
two of which are comparable. If this collection is finite and

has cardinality n + 1, then it is said to have length n.

The length of an interval [a,b]l is the least upper bound of

the Iengths of all chains contained in that interval.

0.2 Definition: Certain specific lattices and types of lattices

will be studied in some detail.. Let D, =;QO,1,X1,...,Xn}
with x5V Xj =1 and X5 A Xj =0 for i+ j. ILet N5 be
the lattice with the diagram (:} . A lattice is said to be

distributive if it has no sublattice isomorphic to D5 or N5.

A lattice is said to be modular if it has no sublattice isomorphic
to NS.' A lattice of finite length is said to be uppersemi-
modular if whenever a>c and brc, a#b,'MmlaVb>a

and aVvDb>b. The notion of lower semimodular is defined dually.
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0.3 Definition: The collection of all equivalence relations on

a set A will be denoted by E(A). If & 4is an equivalence

‘relation, x,y € A, then x = y(8) and <x,y> € & Doth

signify that x 1is equivalent to y modulo & . [x]16 will
denote that equivalence class of B containing x. For (A
and U in € (4) let DAL ={<x,y>I<x,y> ¢ 6 and <x,y> ¢ lll},

and let O v U = {<x,5>| there exist elements ZygeeeyZy € A

5 €6 ...<z_,y> e0J.

Then T (A) becomes a lattice under these operations. The.

such that <x;,z;> €0, <z,,2,> € U, <z,,2

maximal element is U, = A x A, and the minimal element 1s

Iy = &<a,a>la £ A} . Ifr 6 SE(S) and 6 has equivalence

classes 5,,5,,...,5,, where 5, = ai,...,.gngii , then repre-
2 k k
sent © by O = a:][,..ahlal,...,aggl...lal,v.‘..,agk.; 1f

s=4{1,2,...,n} , then € (8) is called the partition lattice

on n elements and is denoted by T,

0.4 Definition: A universal alg'ebra O'( = <Aj;f.> is a set

J~ jed
A ‘together with a collection of operations{fj}ng such that

fj' is a kj-a;.y operation. If J is finite, Ol - may be

written as m = <A3f,,...,f >. If the {fj}jaJ are partial

 operations, then Ol is called a partial universal algebra. A

congruence relation of O\ is an element © SE(A) such that if

i

J
f(y'l’y?"“y‘kj) _(8>' 1t Ol = Q,fj)ng is a partial algebra, an

X3 273 (6) Afor 1 <1<k then f(xl,x2,...xk )

element 8 of (C_ (A) is called a strong congruence relatioh if,
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whenever x, = ¥ (8) for 1<1iK< kj and fj(xl’x2""’xk.)

N J
exists, then fj (yl,yg, cee s Ty ) also exists and
J

fj(xl,x2,...,xkj) = fj(yl’y2""’yk.) (0). The collection of
d

all congruence relations on an algebra form a sublattice (=

of £ (4); @(O\) is called the congruence lattice of O .

Similiarly, the collection of all strong congruence relations

forms a sublattice of E(A), denoted by @S(OD‘ If S <A,

let © (8) denote the smallest congruence relation on Ol con-

taining S in a congruence class; O (8) is called the con-

gruence relation generated by S. If S = {x,y}, then write
B(8) =O(x,y). Such a congruence relation is called minimal.
An equivalence relation O is said to be stable under a k-ary

operation f if whenever <x;,y;> €0, 1 <i <k, then

E(Kyyeeer®y) 3 £, Ty) > eB.

| 0.5 Lemma: For O e@(o), 6= V{8, lx = 7.

proof: Gratzer [ 6] p.55.

0.6 Definition: A congruence relation 8 onOl is proper if

B4+ UA ‘and O # IA’ A congruence class is said to be nontrivial

if it has cardinality great'e'r than one, and trivial otherwise.

0.7 Definition: A unary operation on a set A is a function

from A to A. A unary algebra is an algebra with only one

operation, and this operation is unary.
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A multiunary algebra is a universal algebra in which every

operation is unary. Unary partial algebras and multiunary

algebras are defined similiarly.

0.8 Lemma: Let Ol = <A3F>scg be a (partial) algebra. Then

there exists a multiunary (partial) algebra & = <436 > cx

such that (D) (M Q@ (@), =E,@).

Proof: This proof is standard and is omitted.

0.9 Definition: ILet Ol = <A;fj>ng be a (partial) multiunary

algebra. A polynomial for Ol will be any finite composition of

~ the operations fj;

0.10 Temma: Let Ol = <A;f.>

jed be a (partial) multiunary algebra,

the identity function and all constant functions occuring among
the f,. For a, b e A, let €9(a,b) be a minimal (strong)

congruence relation on({

, and let x and y Dbe arbitrary

elements of A. Then x = y (6(a,b)) if and only if there

exists n <0, a sequence X = 2 ,Z7,+0+,%, = J of elements
of A, and a sequence po;...,pn_l of polynomials of Ol such
that -{pi(a),pi(b)} = {Zi’zi+l}’ for 0 < i < n-1. '

Proof: Gratzer [6] p.54. Note that the lemma is not true

for congruence relations on partial algebras.

0.11 Notation: Iet ¥ (0) denote the lattice of subalgebras of

Ol. Let @ denote the empty set. ILet I|A] = n <(J mean A
‘has finite cardinality. ILet (m,n) denote the greatest common

divisor of m and n.



Chapter 1

REPRESENTATIONS OF FINITE LATTICES

In [6] G. Gratzer defines the following classes:
iqoz the class of finite lattices; L’l: the class of lattices
isomorphic to sublattices of finite partition lattices; L’E:
the class of lattices isomorphic to strong congruence léttices
of finite partial algebras; and JJE: the class of lattices
isomorphic to congruence lattices of finite algebras. Clearly
J"o > J‘l > 5\2 > LB. Gratzer raises the question (problem 13,
p.llG) as to whether equality or proper inclusion holds in each
case. The gquestion of whether i‘o =£‘l is a special case of the
question raised by Birkhoff [L1] in 1935: Is every lattice
isomorphic to a sublattice of.some partition lattice? This
question was answered affirmatively by Whitman [14], but in his
construction evefj finite lattice is embedded in a countably
infinite lattice. By use of Whitmans techniques and those of
Jonsson [11], Hales has recently shown [10] that any finite
sublattice of a free lattice can be embedded in the lattice of

partitions of a finite set. However, the general problem of

“whether every finite lattice is isomorphic with a sublattice of

some finite partition lattice is still unsolved and apparently
quite difficult. For the second inclusion i\l EJLE, it is
also unknown whether or hot equality holds. Note that the
infinite case has been solved by.Gratzer and Schmidt [ 9]:
every algebraic latticé is isomorphic to the congruence lattice
of some algebra; but again their construction does not preserve

finiteness.
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In this chapter (see 1.4 and 1.13%) it will be shown that
e =jl5 for distributive lattices, and the algebras that
occur in the representation will have particularly virtuous
properties. Next, in response to a question of Gratzer and
Schmidt [ 81, an investigation will be made of the relationship
between the length of a finite distributive lattice D and the
length of a lattice L such that (i)(L) =D, (1.15 and 1.16).

Finally in 1.19 it will be shown that & 5 = ‘LB'

1.1 Definition: An element a + O of a lattice L is said to

be join-irreducible when b, ¢ € I and a = bVc implies

a=>» or a=cC.

1.2 Definition: If X is a partially ordered set then 2%

will denote the set of all isotone functions from x to the two

element 1attice. {O,l}.

1.% Temma: If D is a finite distributive lattice amd X 1is
the partially ordered set of join—irréducible elements of D,
then D is isomorphic to 2x.

Egggi, This is a standard result and can be found in Birkhoff

(2] (p.59).

1.4 Theorem: Let D be a finite distributive lattice. Then

there exists a finite set A and two unary operations f and
g on A such that if Ol = <A;f,g>, then DEEN 2 s@).
Proof: ILet |D| = n and let Y be the partially ordered set

of the join-irreducible elements {ql,q2,...,qm} of D. By
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Y

" lemma 1.3, D=27. Let {pl,pg,...,pm} be a collection of

distinct prime numbers, p; > m for 1 <3i<m. Let
= {Xi,o’xi,l’xi,? co ‘lXi?}pi—l} be a set of p; distinct
elements with C; N G = ¢ for i + k. Let y be a new

element, y ¢ Cy for 1< i _<_.m. Define A = U Cy U{y} Now
i=1

define a unary operation f on A by f(xi j) = X; . Where
2 b

k = J + 1(mod pi) and f(y) = y. Define an operation g on

A Dby

g(Xi,j) = R if j 4# 0, and q; > ay

x5 if 3 + 0, and g, ¥ qy or j > m
and g(y) =

Let Ol = <A;f,g>, and consider @(0). First consider
minimal congruence relations 6 (u,v) where u,v € A. Without
- loss of generality, there are three cases: I) u =7y and
v e C; I1) ueC, and vel; and I11) ueC, and
’vsCJ. for i %+ j.
Case I) Let u=y and Vv = Xy §* Then iteration of £

,

shows that O (Ci u{y} = s (y,x i,j)' Also, if q; > q in
D, then applying g and iterations of f shows that
& (C, U ¥ )= B (v, ;j)' Finally, since f(y) =g(y) =7,
.it follows that [y] @(y, x4 J) -{y} &Xk 9\]o <0< p-l and

qk < q; } and in fact this set is the only nontrivial congruence

class of B (y,xi,j).




.implies that U or @ equals e(Y,xi

Case II) Let u=1x, . and VvV = with Jj # k. Since

i,d = XLk

p; is prime and g(xi,o) =y, it follows that B (Xi’a‘axi’k) =

S| (Ci) =0 ('Ci U{y}). Hence B (x.

l,j,xi,k) =e(y,xi,a.), which

reduces to case I.
Case III) ILet u = ¥. . and V = x where i 4 k. Then
: 1,d k, R - .
iterating f and using the fact that Ps and P, are relatively

prime, implies © (Ci) < e(xi,j’xlg:,Q) and @ (Ck) =g (Xi,,j’xk,ﬁ()'
Hence by case II, B(y,xi J.) and Q(y,xk Sl) are contained in

b 2k ]
BCxs,50%k,q 05 thus B(Fx 5) v OGx o) < O Gy o5 ) BY
transitivity equality holds. Using lemma 0.5 and the three cases
above, it follows that every element of @ (00 is the join of

minimal congruence relations of the form e(y, ). But these

Xi, 3
minimal congruence relations have only one nontrivial congruence
class, always cbntaining Ve Herice, the same thing is true i‘or
any join of minimal congruences. Therefore @O) can be con-
sidered as a sublattice of the lattice of all subsets of A,
under the natural correspondence of B to [y1©. Hence @D

is distributive. Also © (y,xi ) is join-irreducible; for if

»d

'Q(y,xi ) = v g, then either [x. .JU or [x, .1 is non-
; s d 1,d

144

“trivial. Therefore U or @ contains e(y,xi J.), which
. ?

-;j)' Since every element
9

of @) is the join of elements of the form B8 (y,xi ), it

| s J
follows that these elements are the only join-irreducibles.
Hence @(G()E’-ZX where X is the partially ordered set of the.
m distinct congruence relations of the form B (y,xi J.) for

' 9

1<i<m, J arbitrary. But X 1is isomorphic as a partially
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ordered set to Y by the correspondence ay to @ CY,Xi J-).

b
Thus D 22 22X o @(@). Also it is clear that the map p from
@) to -u() defined by p(@) = [y10 is a lattice isomor-

phism with p(IA) = {y}.

1.5 Note: In Chapter 4 it will be shown that many finite dis-
tributive lattices are not the congruence lattices of finite
algebras with a single unary operation. Hence with regard to
minimizing the number of operations on a multiunary algebra,

Theorem 1.4 1s the best possible result.

1.6 Note: If I is a finite lattice, then @(IL) is a finite
distributive lattice [ 5]. Conversely, a theorem of Dilworth
states that every finite distributive léttice D Ais iSomorphic
to a (L) for some finite lattice L. The first published’
proof of this result is in Gratzer and Schmidt [8]. In 1.13

below a different proof of this result will be given, in which

.the lattice L is easily constructed from the lattice D  and

indeed contains an isomorphic copy of D as a dual ideal.
1.7 Temma: If D is a finite distributive lattice, and if

P is a Jjoin-irreducible element and p < V§=1»X.

i .for Xi e D

?
1<icfk, then p < X; for some i. Every element of D
has a strictly unique representation as a join of the Join-
irreducible elements less than or equal to it.

Proof: Birkhoff [2], p.58.

1.8 Lemma: If a,b are elements of a lattice L and a = v(d)

 for some congruence relation © on I, then aVb = aAb(®)
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and x = y(B) for all x,y € [ar,ayd].
Proof: Birkhoff [ 2] p.27.

1.9 Definition: ZILet a,b,c,d be elements of a lattice L.

The elements c¢,d are said to be weakly projective into the
pair of elements a,b' written a,b = c,d 1if for some

21+%Zps+++,2,} S L the following is true:

(...((((an)uzl>nZ2)uza)n...)uzn = cld

i

(...((((anb)uzl)nzg)uza)n...)uzn chd

1.10 Lemma: Let a; > bi for i e I din a lattice L and let
0 = ’Vic-:I B (ai,bi). ‘Then c = d(g) if and ’only if there exists
some finite sequence cUd =Y > ¥; >...> Y, = cnd such that

for each j, 1 < J <k there exists some i, i e I, such

that &by =~ T, T

i*7d =J
Proof: This result was originally proved in Dilworth [ 4]. The
notation and definition used in the above is taken from Gr‘ét‘zer

and Schmidt [ 7 ].

1.11 Lemma: If L is a lattice of finite length, then © @ (L)

is join-irreducible if and only if O = e(a,b) where a covers
b in L.

Proof: For O e@@), O = V{e(a,b)la = b(0) and a>b}.

Hence if © is join-irreducible, then O =@(a,Ab) where atb,
Conversely let a*b in I, and suppose O (a,b) = Viele(ai,bi)
where a; > b, for each i e I. Then since a*b, 1,10 implies

that a,,b; = a,b for some i & I, But then a = bld (ai,bi)],
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so O (a,b) 1is join-irreducible.

1.12 Lemma: If D is a distributive lattice and

c>a>b>d4d, then c

d (8(a,b)) is impossible.
Proof: Gratzer and Schmidt [L7] p.143.

l.lBITheoremi Let D be an arbitrary finite distributive

lattice. Then there exists a finite lattice I such that

D ¥@(L) and

(i) - D is isomorphic to a dual ideal of L;

(ii) The dual of D, D, is isomorphic to an ideal ofi L;

(iii) L has length 25 if D has length n;

(iv) If ID| = m, and D has lemgth n, then |Ll = 2(m+n)-1.
- Proof: Let D be an arbitrary finite distributive lattiée;

let Dl be isomorphic. to D with al € Dl corresponding to

a € D; let DQ be isombrphic to the dual of D under the
correspondence of a € D to a2 é Dg_. Also let Dl and D2
be disjoint except for an element .z such that ot - 02 = Z.

Let D1 U D2 be the distributive lattice obtained by having
1 2

be the join-irreducible elements of D, and adjoin to

at> z>Db° for all a and b in D. Tet P={pl,...,pn}

Dy U D2 the new elements X; and y; for 121 S n, where
p% covers both X; and Y5 and X and Ys both cover pg.

Let L be the partially ordered set IV D, U {xill i< ﬁ}
U{ry;11 <1 <n}. Then L is a lattice with \/ and A de-
fined in the natural fashion. Note that for a,b e L the

following relationships hold:
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alv bt = (avb)ty a°vb? = (aAb)E; alvp® = al;
at abl = (aAb)l; a®nbe = (avb)gg alan? = bg;
X;VE; = XVTs = TovTs = DY ov DY

1779 1793 ivd g i J ?
X N = AT = T4AT: = DIADS

My T RN T 0Ny T PiAPy

1w o 1,1 2. _ .2 2.
aTvx, = avpy and a AX; = a"ADy
alei = x; if Xi<a1' and a;Axi = pf otherwise;
aevxi = X3 if xi>la2. and agvxi = p% otherwise.

Note that Dl U D2 is a distributive sublattice of L.

Example of construction of L from D:

D L
Claim: 4) @ (@) = {at,a®)la e D} ;
B) a.-vQ(a%a2) is an isomorphism from D to &XIL).

Proof of A) Consider O(u,v) where u,v € L. By lemma 1.8,

without loss of generality it can be assumed that u2> v. Also
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ubd

it can be assumed without loss of generality that u,v € D,

For if not, and say u = al, v =x; and at > xi, then

& ATy = XNT3 (G(alA,xi)) - dimplies y. = p2 (platx x;)), and

20

aJAzhs Az.(e(alx )) impiies Z = 2 (S(a X )). Hence
yivz = pi = 2 (S(a )Xy )). DBut by lemma 1.8 and the fact that

X, € [pl,pll it follows that f (a ,xi) =E)(a ,pg). Consider

i
- B(u,v) for wu,veD

1 Uubd
take u > z. So u = al for some a & D. Iet pi be any
1

2y u 2> v. Without loss of generality

element of D; such that p; <u and pl £ v. Then uUAX; =

V AX; B(u,v)) implieé X5 V/\p (8(u,v)), and up\y

tu

Y AY; (B(u,v)) implies vy = V/\p2 O (u, v)) Hence x; =y,

1

(@(u,v)) and pi = pg @a,v)) vy 1.8. ILet r be the join
of all such elements pi. Then it follows that rJ'E r2 .

(0(u,v)). If v >z then o=z (e(rl,rz)) implies u =

vyrt = vvrt = v (e(rl,ra)), and hence 0(u,v) = @(rl,r2) for

some r € D. If v <z then rl‘= u

, and a dual argument

shows that for some s € D, v = s and st = s° (e(u v)).

2 2

Il

But then rl\/sl = 2 = rgﬁ\sg(Eé(u,v)). Since u,v & [r°A
rlisl] it follows that B(u,vd =(3((rvs)2, (rvs) ). Hence
every element éa(u,v) of (L) is of the form (B(al,az) for
some a €& D. By 0.5 it will be enough to show that

B (al,ae)y@(bl,bz) =6((‘avb)l, (avb)2) in order to prove clainm
A. But this follows from the fact that ar =z = (B(al a2)

v O(b1,b2)) end b

h

"

2 (BCat,2%)v B(p* b2>>

To prove claim B, let U:D - (L) given by U(a) =
B(al,ag). Clearly U is onto and isotone. - If U is one-to-

one, it would have isotone inverse, and hence be an isomorphism.
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- So it is only necessary to show that ! is one to oné{ This
is equivalent to showing that [z]fa(a;,ag) = [ag,a;] for
arbitrary a € D. Clearly [az,a}] < [z] G(a;,ag). Assume
that equality does not hold, so there exists b e D, b > a
such that [z](}(al,ag) = [bg,bl]. By _l.lO there exists a
finite sequence bl = u, > uy >.,.>uR = b2 of us € L such
2

1 T
that a~,a uj—l’uj

. 2 .1
the intervals [uy,u; ;1, Cu; v 1] ¢ [a“,a7]. Iet Fui’ui-ll

for 1 < j <. For at least one of

- be any such interval. Then there exists a set {Zl’z2""’zk}

such that (...((at U 2) N z5) Uz Uz) = u and

ze i-1

(...((a2 Uz)) 0zp) Uzgleo Uz) = vy, Tet Q=05 UD,U

[a a 3 Then without loss of generality each z; ‘can be

chosen in Q. TFor if not, let -t . be miminal such that zté:Q.
Suppose z, = X and t is even. Comsider ((...(alu Zy)e.s)

U g _ l) n X This expression equals either Xy or
(@l uz)ec) Uz )0 p?. If the latter holds then g
can be replaced by p? without affecting anything. So assume

that the expression equals Xy Then X5 < pg's (...(al U'zl)
o) U Ze s 81nce X5 is both meet and join-irreducible and

. . . 1 2
t is minimal. If D] < oz 1, then Xy < (...(a U zl)...) U

contradicting the fact that LAY + u;. So 1.7 gives

o

t 1?
‘4 1 .
P < (...(a U gl) )N z._o- Thus P} < Zi_py and
1 1 .
j 5_(...(a u zl)...) u 2z But 1f P; < 7t 3 then |
_ . 1
u; = u;_, as before, and it follows that pj < (...(a™ U zl)

eee) N Zy_,, which implies p§'§ zg_y- Continuing in this way
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it follows that p% < zg for 1 < Q<+t and 9 an even integer.

J
Hence p% <z, and pé S.alvzll. But pgéﬁ al, since Xy ¢ Q.
Hence D3 < zq . Therefore, P < (...((a" U zl) n Zl> U ZB"'U
B 2
Zy 1 and Xy = (...(a" U zl) n 22"'Zt-1) n X3, contradicting .

the fact that w, % w;_; . A similiar argument holds for

Zy = T s and a dual argument applies for T odd if X5 is
replaced by p§ . Hence each 2z can be chosen to be in Q .

t
Moreover when considering 0 (at,2®) ¢ @ (o up,), each =z, can
be considered to be in DllJD2 . In fact, if any =z, =x; or
y; for a® <Xy, T4 < al,, then without‘loss of generality X,
or y; can be replaced by an appropriate p% or pg . But
then bt = b2 O(al,a®) in @(DP,UD,), which contradicts 1.12
and hence proves claim B . Claims A and B together imply
that D ¥ @(L) ; i, ii, iii follow from the construction; and
iv follows from the fact that the length of a finite distributive
lattice is equal to the number of its join-irreducible elements

(Birkhoff [ 21, p. 58).

1.14 Remark: Result 1.1% raises the following natural question:

if D is a finite distributive lattice of length n , then what
is the minimal length of a lattice L such that DvQ;C)(L) ?

In 1.1% this length is shown to be at most 2n and in [ 8] Gratzer
and Schmidt show it is at most 2n-1. Theorems 1.15 and 1.16

below show that the minimal length for I depends heavily on the

structure of D .
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1.15 Theorem: Let D be a. chain of length n . Then there

exists a finite lattice L such that D = @(L) and L has
length 5. |

Proof: Let D = {z,pl,...,pn 7 e} where z<pl<p2...<p -1
<e. Let L = {o,l,x,y}u u {ul, 8.y biy Ciy V5 ¥

‘where 0+4x41l, 04y <13 O-<v Sbs<a. -<u %l,v LC. LU,
for lslSn—E; and c"<1+l’v'<bl for _
1<i<n-3%., Then I\O,l,x,y,t},for t e L\
{0, 1, x, ¥} . » is isomorphic to DB;{ui’ Cis 85 bys VLY

and {l Ui U410 B5410

ci} are both isomorphic to l\T5 3
{ci, Vis 835,10 Pig1 } and {vi, Dii1r Vip1o O} are both

isomorphic to 22 . It follows easily that L 4is a lattice,

Below is a covering diagram for L when n = 6 :

A
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Consider © (r,s) e@(L) where s<r. If =1 or
s = O,' then 6 (r,s) = UL, since .'D5 has no proper congruence

relations., - If r = u;, and s = c; 1 <i<n-3, then

19
WV Uy = G4V Uy (8(r,s)) implies 1 = LY (B(r,s)), so
S = C

"h—2’ 'n-2’ Un-2 A].Dn—2 =

eho APy 5 (B(x,8)), so b _,=7v _, (6(r,s)) and O = Vpez

Q(r,S) = U;. In the case r =

(8(r,s)). So again Q(r,s); Up. If r=1Y; and S =a,

then 9 (ui,;ai) has as 1its cohgruence classes the intervals

If r o= a;

i+l’ai+1]' i

and s = by, then e(ai,bi) =8(ui_l,ai_1). Similiarly

[ba.,uj], [Vj’cj] for 1< 3<i and [Db

B (cy,75) =0 (uy,8;). Finally if r =D;, i > 1, and s =7v
then vy _ADb; = v; AV, (B(b;,vy)) dimplies vy, =0

@y ,v40), so B(b,,vy) = Up. Similiarly for s = v;_j.
1» Them s =vy. But DbVU, = v Vvu, (G(bl,vl))

1%2(@(’01,\/’1)), SO e(bl,*-.rl) = U;. Hence, the

If » =D

gives 1

congruence relations on @(L) are {IL, 0 (ay,0y), B(u,aq),
...,0 <un—2-,an—-2)’ U }, and these form a chain of length

n .

1.16 Theorem: Let L be any lattice such that e@) = 2"

where n is finite., Then 1L has length at least n .

Proof: Suppose L has length m <O . Then in L there is

a chain 0 = z_<42,< 224...<zm =1, and by 1.11 each

6 <'Zi"zi+l> for 0<Ligs<m=1 is joineirreducible.
By transitivity 6(0,1) = \/o <i<m-1 e(z‘i’zi+1) .. But also

since (3 (L) = 2%, 8(0,1)- is a unique join of n join=irreducible .
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elements. Hence at least n of the ’@ (Zi’zi+l) are distinct..

~Thus m 2 n .

l.l?,Remark: In connection with 1.16 it should be noted that if

L is a finite lattice that is modular or relatively complemented,

then @(@L)2E™. See Dilworth [4] or Crawley [3] for proofs.

1.18 Theorem: Let (Ol be any finite partial multiunary algebra

“a(x)

and C)S(OT) the lattiée of strong congruence relations on Ol

Then there exists a finite multiunary algebra M such that

@ (00 =® (1) .

Proof: Let Q] = <Aﬁfl""’fn? be any finite partial multiunary
algebra., Without loss of generality, assume that the identity
function and all constant functions occur among the fi . A

polynomial of length k will denote an operation of the form

. £, ...f. where £. £. ...f. (x) = f£. (£, (.. (£ (x))...0)).
it 112k 1 12 s
A polynomial f., f. ...f. is said to anihilate an element xei
i7i, i :
if f. f. ...f. does not exist but f. ...f. (x) does exist.
173, 1k(x) i, iy _

By convention, if fi(x) does not exist, then fi anihilates x .
Let a(x) = {plp is a polynomial and p anihilates x?;. Let
A(x)

it

{yl yeA and a(x) = a(y)} . Let & = {-xlst and

®‘§; Now index the A(x) arbitrarily‘to obtain n subsets
Ajye..,A, that form a partition of A: A=A U AU UA , where
Ain‘Aj =0 for i+ j . In the event that n =Q then Ol  is
itself an algebra and the proof is complete so assume n > 1 .

Under these definitions, it follows that if 9 € C)S(O\) and
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x = y(0), then x and .y must be in the same A; for some

1]

i,0 <41& n . If not, then say there exists a polynomial
i‘i ...fi that anihilates x but does not anihilate Yy . So
1 k
either f. ...f. (y) does exist and f; . £y (x) does not
1 x 11 Tk

exist or else £. ...f (y) does not exist and £y L f. (x)
2 12 %

does exist. However, both cases violate +the hypothesis that

6 is a strong congruence relation. .

Let & = AfApt. . %A, and define a function of @S(O( )
to € (&) by letting B € @S(Cﬂ) correspond to D e £,
where <K yXpse ey Xp” 5 <TgaTpae e Wy () if and only if
X, =73 (8) for O<EI<n . This function is obviously well
defined.

Claim: O - 6 . is a latbtice isomorphism of @S(OY) into 8(.1.1).
To verify this claim let 8 and P be arbitrary elements of

@S((ﬂ), and let X = <x, l,...,xn> and. F = <Y sT1aec 2Ty
be typical elements of A . GR9=6A0 : X

]

F(BAQ) @ = F(O)
and ¥ = y(@) < %3 = yl(Q) and x| = («p) for O_<_i_<__n4—’r

71
x; = yi(0ag¢) for 0<isn ¢ x=5 (Brg) -

Bve =0v @ : Clearly ©v¢ ?_—év@“, so the opposite
inequality must be demonstrated. If X '

X (Bvl?) and hence there exists Z .

3 PERRRE such

that o L @), 2d = 22 (@, 5= 2] (). 7y 02Ty (@)

d
Let § = max {Qa"g and for those J such that Qj < U define
0< j<n
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z}j = z;{‘j +l=_‘...=z& . Now define z * = <zé, zi,..., zi'l>
for 1<1<Q . Then x=21(0), zl=1322(9), z°2= zB(G),

<A
L
]
~
'L
<
)
~

(), and hence X =y

0+ 9 implies B 4@ : If B 49 . then, without loss of

generality, there exists some i and elements X; and y; in
A, such that x; _—_;yi(G) and x; 4y;(P) . Then for arbitrary
z; & &5 , when G L, B yB yeeesBy 19X 985470000y = K20,

Zl""’Zi—l’yi"zi+l""9zn> (©) <Zo’zl""’Zi-l’Xi7Zi+13"”Zn>

2 <2 yZy,c 0B 19750554100 0% (¢ ). Hence the function
g - B is a lattice isomorphism. Denote the image of @ S(OT)
vy @ (o1 .

’

Define the following unary operations on A: for each

xe Ay © A define px(<zo,zl,...,zn>) IR IS JERE N T ELEE

z,>. For each i, 1< <m define hi(fzo,zl,...,zn>) =

<£;(2,),294+-,2,> . For each A4, 1<i<n and each f, such

that i‘J. is defined on A;, define gi;j(<zo’zl""’zn>> =

<Zo""9Zk-717fj(zi)’zk+l""’zn> where fj(Zi)s A, . DNote

that Py is a well defined operation as 1is hi, since z, € A

implies fi(zo)sAo . If Ao=d) then {hi} = ¢ . To show

o)

8 is well defined, let u,ve A;, 1 >0 and let £ ...

i, , ERRRE Y
be any anihilating polynomial for fj(u) . It then follows that

fj_1 ./. . figfj‘ is an anihiléting polynomial for u and hence
for v . So fil... . fiﬁ is an anihilating polynomial for
fj(v) . So a(fj(u)) - a(fj(v)) . Similiarly a(fj(v)) <
a(fj (v)), end thus a(fj (v)) = a(‘fj(u)) . Thus. fj(v) and

fj(u) a?e“ in Ak for some k , sO gi’j is well defined.
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—

" Let Ol = <:1§.,F>, where F ={pxlxs AS u{hillf_if_m}k)

{gi,jf £ exists for xaAi,lgiS_n}.

Claim @(O—:\)= @;—(a‘) ¢+ A direct verification shows that
each @ € @S(G\) is a congruence relation on C'ﬂ_ and hence
) S(Gl)s @(51) . To prove the opposite inclusion, let

y = <yo,yl,...,yn> and z = <zo,z1,...,zn> be arbitrary
eleménts of L and let S, (ST,E) be the minimal congruence .
relation generated by y and z in 6:1 . Let O (yi,zi) for
O S_‘i_<_ n be the minimal strong' congruence relation generated

by y; and z; in Ol .. It is emough to show that O (¥, z) =

e(yo,zo)'V ‘gcylazl)\(;‘" \/@(Yn,zn) .

But <yo,yl,...‘,yn> '=-;<yo,yl,...,yn_l,zn> (B (yn,zn))

E<yo’y1""’zn—l’zn> (e (yn—-l’zn-l>)

=<2y yZy 00 92n 1% > (B (37,5257) »
S0 g (v,2) < e(yo, z,) ¥ @(yl, z,) v...vB(yn,z ) . To prove
the opposite inequality, it will be sufficient to show © (3-;, E.)
9(371, l) for 0<i<n. Let u-= <uo,ul,...,un> and

v > be arbitrary elements of A such that

a=v (6 (yi,zi)) . Note that if uy = vy (G(yl, l)) then
. _ J J J -
by O. 10 there exist elements Us=XeS X g0 a¥g va. and

B ) J
polynomials gJ,...,q3 _;  such that {qf{(y ), qk (2 )3
dJ

i

%{f{, X}Jﬂ_l} for 0L k < Sj -1 . TFor each of these polynomials
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. -

qf: , let ,§3 be the corresponding polynomial in Ol y 1e€.
f, = hy if 1 = 0 and f. =g;,p for i >0 . BSuccessively
applying p t+i to §=2 (0(F,2) gives <y ,Tyse-+,

yt,
TisTaadresooTn” S SToo TpaeersZisTiqnaes¥y> (8 (3,200

Applying the polynomials af; for 0. k<s

SFosTparersXy,ee, 7> (O (7,2))

5-1 gives <yo R

i

yl"“’uj’yj+l""’yn>

<yoay1a"'9xg,°”9yn> (6 (5’, E))

i

-J
FgoT1+%)s AETUEEER e

<yo$yl'uoxgj*l 9 yj+1-. .. yn> = <yo,yl’uf., Vj, yj+l,..,,yn>
(6(57 5’)) . Then by transitivity it follows that <yo,..,.uj,
yj+l?"'7yn>55 <yo""7vj9yj+la"'7yn> (6 (y,2)). The above

holds for all j , 0L j<n . In particular it follows that

9
(1> <y0 ’yl’ LA 7yn_2,yn_l ,un> = <y0 ’yl’ ¢ o 9yn_21yn_l $Vn>
(6 (y,z)) and

(2) <y0’yl"."y -2 un_l,yn>5 <yo’y17'°"yn-2’vn-l’yn>

(6(y,2z)) . Applying 1 to (1) and p, to (2), and
' n-1 , n
using transitivity, gives <yo 5T s Il_2‘)1111__1,11n> = <yo’

FyaeeosTponsVpo1sVn” (B (F,z)). Continuing in this manner,

it follows that & =7v (O(y, z)) , and therefore O (y,2)

> B (75,23) as desired.

1.19 Theorem: The class ’[‘2 of lattices isomorphic to

strong congruence lattices of finite partial algebras is equal
to the class &5 of lattices isomorphic to congruence lattices
of finite algebras.

Proof: This follows directly from 0.8 and 1.18.



Chapter 2

DISTRIBUTIVE LATTICES OF EQUIVALENCE RELATIONS

In [1%3] Pierce poses the problem of characterizing those
sublattices L of EE(A) such that there is a finitary algebra |

o= < A;£>5. 7  such that @(C) = L . This section is

concerned with this problem when A is finite.

2.1 Definition: A sublattice L of ?E(A) is said to be spanning

if the unit element of L exists and is UA and the zero element

of L exists and is IA .

2.2 Remark: If L is a sublattice of Ei(A) such that L is

the congruence lattice for some algebra defined on A , then
clearly L must be a spanning sublattice. In [13, p. 58] Pierce

shows that if |A] = p°

for p an odd prime, then ?i(A) has
a spanning sublattice which is not the congruence lattice of any

algebra on A .

2.3 Example: Let 4 ={1,2,3,4} . ILet L be the sublattice

of € (4) with elements 4 I,, U,, 12|34, 13|24, 14|23}
and let M be the sublattice of EE(A) with elements { I,

U,, 12|34, 13|24, 14[2|3} Then L 2 M ¥ D

It and both L and

. 3 °? _
M are spanning sublattices of © (A). It can be shown that

L 1is the congruence lattice of an algebra defined on A , while
M cannot be the congruence lattice of any algebra defined on
A

. This example illustrates the fact that whéther or not a



24

spanning sublattice L of & (A) is congruence lattice for
some algebra defined on A may depend on the way L 1is embedded
in E(A) . However if I is distributive this is not the case

as the following theorem shows.

2.4 Theorem: Let JA|l = n <) and let D be a distributive

spanning sublattice of E(A) . Then D is the congruence lattice

of some multiunary algebi‘a defined on A .

Proof: Let P = {pl,pz,...,pk'} “be the set of join-irreduc-

ible elements of D . For. pisP define f)i =\/{psP | p}pi}.
If pif_p for all peP , then p; = I, . No’qg thgt pisD .
Also 'ﬁi > 1 is imppssible;z for if p; = pilv ces V pi_m_>_’pi s
then by 1.7 and the hypothesis that D 1is distributive, there
exists some qu such that pjg\ > p; - However, pjSZ }:pl
because of the definition of B, -

For arbitrary D e P and arbitrary <x,y> € Py and

arbitrary ueah define the unary function jf}é’y on A

?
by IeT(v) = x if <u,v> e B, ema JEpI(v) =y if
<u,v> ¢ 53- . ILet OU be the multiunary algebra defined on A

by all of these unary operations.

Claim: @(O1) = D . Let d e D and ’jfﬁ’y be an operation
in OU . 1r <x,y> € d then 4 is stable under jf}é’y since
the image of Jfflc’y is contained in {X,y} . If <x,y> ¢ d

then pj$ d, and qgij . Soif <a,b>e d and
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I£%:7(a) = x , then by definition, <w,e> €D; . But <a,B>&d
implies <a,b> € 53, and by transitivity <u,b> € '133. . Thus

: J.fi’y(b) = x also. So again 4 is stable under jfﬁ’y . It
follows that D= @O . Iet B e @(X) , and suppose
©® ¢ D . Define R={_p8Plpﬁ 9} . R4+ 0 Dbecause

64 UA=_\;/'1Si_<_k..pi . For p,eR note that p; > O .

Otherwise f)i i © , and there would exist <a,b> eB such that _
n i.x '
<a,b> é:pi . Then, for all <x,y> D5 , .f_a,Y(a) = x and

if;cay(b) =Yy, so that <x,y>'€9 . Hence e > p; contradicting
the hypothesis that p; € R . Let = = npieR p; . Then

‘v > ©  and in particular r 4+ I, « Let o =p; v ...ivDy
1 Tk
where {pil,...,pik} < P . DNone of the Pig 1< Q<L k can

since otherwise . 2T > P which is impossible
R . pl — e ? p

be in R ,
as was previously noted. So each piSZ is-less than ® . This
implies that r <O < r , Wwhich is a contradiction. Thus,

B ¢p is impossible and the theorem is proved.

2.5 Remark: An examination of the proof of 2.4 shows that
distributivity was only used to guarantee that 51 i p; -
However it can be shown that for finite lattices this condition

is equivalent to distributivity.

If L is a spanning sublattice ofE(A) the functions

lfﬁ’y defined in the proof of 2.4 will give an algebra G( over
A such that I is a sublattice of ® (O .
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Let Q ={pieL|pi is join-irreducible in I and ﬁiipi} .

Call an element r of L a Q-type element if r can be

written as the join of elements in Q . Note that the join of

Q-type elements is a Q-type element. For any

such that r 1is not a Q-type element define

element rel

q(r) to be the

join of all Q-type elements of L less than 1 ,

2.6 Corollary: If I is a spanning sublattice of &(4) ,

then LI =@(O() for some algebra OU over A

provided q(r) <

e: < r implies Qe I for all reL and B L) .

Proof: Let O be the multiunary algebra constructed in the

proof of 2.4, Then L is a sublattice of @ (O0) . If 8

e (@ (O1) and B &L , then, as in the proof of 2.4, R< 1

where r=ﬂpiaR§i’ R={paPlp£e} .

Lac

If p<r and

p“sR, then P> r>p . Hence, p ¢ Q . Thus g(r) <6< r ,

and by hypothesis O e L , a contradiction.

2.7 Example: -As an application of 2.6, note
is not a Q-type element but gq(r) is covered

then L is @@ (Ol) , where Ol is defined

that if rel

bby r in E(A) ’

as in 2.4 and 2.6.

In particular, if L is a spanning sublattice of T.(a) y

L ¢ N5’ and the element correspdnding to aéN5 covers (in

) the element corresponding to be N,
P4

then i: is the

congruence lattice of some algebra defined on A ., However,

if A ={1, 2,...., 9}, and I is the sublattice of € (4)

with elements = {1I,,U,, 1l213l45167189, 123145167189, 15826l

34179 }, then L &

N
Mg
algebra Ol on Ao, F

for if L = (® (00 ,

, but L & (DO for any multiunary

then @ (1,3) =

123|45/67189; and sinee l|213|45|67|89 is a congruence relation,
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it follows that for some polynomial £, £ ({1,3}) = {2,i},
where i =1 or 3% . Examination of the different possibilities

for f shows thié is impossible.

2.8 Theoremnm: Let‘%i be an abstract class of finite lattices

such that if L € X and M ‘is a sublattice of I then N eX.
Then the following are equivalent: | '
(i) if L is a spanning sublattice of ¢ (L) for some finite

set A and L eX , then L =@(O) for some algebra Ol on

A

(ii) every lattice in‘YL is distributive.

Proof: This theorem follows from 2.4, 2.3, 2.7, and the fact
that a lattice L is distributive if and only if I contains

no sublattice isomorphic to NS‘ or D3 .



Chapter 3

MULTIUNARY ALGEBRAS

It was shown in 0.8 that the study of the class of congruence
- lattices of algebras can be reduced to the study of congruence
lattices of multiunary algebrés. Moreover, finite algebras have
only f_initely many unary operations. This section is concerned
with the coﬁgruence lattices of finite multiunary algebras having

few operations.

3.1 Theorem: (McKenzie) Let JA] = n<w, and let Ol = <A;f

1

eesyf, > Dbe a multiunary algebra. If B = ARtE+L , Then there

exist four unary operations gl,gz,ga,gq' on B such that

® (0 = @(&® , where & - <Bigy:82:83:8,>
Proof: See McKenzie [12] p.l2.

3.2 Example: One might hopé to improve McKehzie's result by

obtaining a theorem such as the following: If Ol = <Ajfy,...,f 2>
is a finite multiunary algebra, then there exists a multiunary
algebra & = <Aj8p,-+-58y > with 2 < 9@ < m such that

T ® ) = ™ () . A simple example shows this is impossible.
Let S = {1,2,. ..,2n‘} and define on S the unary operations
fj,b1£3<n-1, by fj(l) =1+2j, fa.(z) = 2+2j , fj(k) =k
for 2 <k <2n . Tet Ol=<8jfy,...,f, ;>. Then if & is
any multiunary algebra defined on $§ such that & (O = (Y,
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) nmust have at least n-1 unary operations. This assertion
is a consequence -of the fact that any polynomial formed from the
fl""’fn-.l applied to {1,2} must have as its image a set
of the form {1+2§, 2+2j} 1< J <n-1 . Hence, ©O(1,2)
has as its congruence classes (1,2} |, {3,4} ooy {Enni,zn} .
However, any O (i,i+l) ¢ @(00D , i = 2k+1, L <k < n-1 ,
has only one non trivial congruence class {i, i+ l} . Therefore,
if g is any unary operation from S, g({i,i+1} ) = {i,i+1}
for i=2k+1, 1 {k<n-1. "Consequently, a multinuary algebra

&) must have n-1 operations in order that 0 (1,2) ¢ E(®).
equalsv B@,2) e @) .

3.% Theorem: Let O = <A;fl,...,fq> be a finite multiunary

algebra with A = {al,...',an} . Then there exists a finite

algebra ®= <B; g,h> such that (&) (Q) has a unigue maximal
ideal isomorphic to @ o . |

Proof: By 3.1 it can be assumed that q=4 although this is

2
not crucial for the i‘bllowing proof. ILet m+1 Dbe a prime,
m>58 . et B= {a;,...,ay U{b,...;b§ Uicy,...,c,

U §dy,..0,8,F  Uleg,eeesef  U{DsBy,eeesBy T
the six sets composing B are pairwise disjoint. Define g

, Where

and h on B as follows:




30

a; by ¢y 4y & P PP PpDpyqc--Ponyic e

& ii(,ai) ié(gi)_i‘z(ai)f4(ai)_po .poalaz...anbl... Tyees

i i i 3 &5 PyPoPzec+PpyPpyoccrPonspcce

Pzrne1***Pun+l s Pen  Pepige-Pp

g dlo.o el. . en P5n+looepm

B P3ne2t * *Pun+2:* “Pon+l Pons2e+Po .

Let@ =<B,g,h>. Consider g € @(@D and x =y(B), x#* 7.
Several cases arise:

Case I: x=p, and ¥ =z, where zs{a,b,c,d,e } . Without
loss of 'generality let g = ey Since m + 1 is primé and

nm+1>5, itera’qions of h will give 842 D= Py=e.. = Pm;(e);

then application of g shows ~9= UB .

Case II: x = p;j

and y = Z5 4,25 @8 in case 1. Applying h
m-Jj+1 times reduces' this to case I . |

Case III: x =p. and §y =DPp; - Enough iterations of h show

d
that Py = Py 2 Pp Zee:= Py (9) and an application of g gives

©=u; .
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Case IV: x = 2z; and y = W where W,z € {a,b,c,d,e } R

Cwt oz '. Without loss of generality let x =a, end y = Db. .

1 J

Three iterations of h give 4, = ej(B) , and then an

application of g reduces this to case 1.

Case V: The final case is when x=2 "and ¥y = Zs “Successive

applications of h show that <a;,8;>,2b;,by>, <c;,c5>,

<di,dj>" and <ei,ej> are all in © . Hence there exists a
natural isomorphism. of & (O into ©® () with e(ai,aa.) €
& (oD corresponding to 6 (al, J) UlIlp in () ()

Moreover, the various cases conadered show that if O € @(83) R

then either 9 lS the image of some element in (3 (Gl) under

 the above map or else 0 = Up . Hence (&) = {UB} u (00,

as desired.

72,4 Theorem: Let(l = <A £ £ > be a finite multiunary

l, *» o8 , q
algebra with A ={al,. . .,an} . Then there exists a finite

algebra @ = <B; ©> where ® is a binary operation on B
such that @(@9 " has a unique maximal ideal isomorphic to

® (00) .

Froof: ILet. B = AU {pl,‘pa, .o .pq_ﬁ where AR {pl,pe,, cey

Pq_l} = 0 . Define ® on B by the following table:



32

aqy fq(al) fq(ag)' . fq(an) a; &y aj.. . ay
a, fq(al)_ fq(aZ) .. fq(an) 8y By 8n e e . a,
an} 'fq(al) fq(ae) . fq.(wan) a, &, a . . . a,
Dy fl(al) fl(ag) . fl(?n) Py 87 83 . . . ay
pp | fplap)  fplap) oo fplay)) Py Py B ... Ry
Pg-1 fq_l(al) fq_l(a2). . . i‘q__l(an) Pgo1® 281 + - Py
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An examination of the table shows that if § e®(OU) then
Bulze @@ . If <pj,a;>€eQe ®(Q) , then left
addition by all of the ays 1<i<n and P; s 1<i<qg-~-1,
shows that all of B 1is congruent to pys SO g = UB . If
<Py 85> € De®(®) ,2 <j<a~1, then left addition

by p. sives <Dy, fj(ai)>8 B , and again @ =Ug .

J
Finally, if <pi,pj>8®8@(@)) , 1<i<j<qg-1, then

3> € B , and hence

© = U, . This exhausts all possibilities for the minimal
» B

right addition by pJ. gives <al,p

congruence relations of & , and shows that

® (& - 1ov IBlés e (07)} U {UB} . The theorem

follows eabsily.




Chapter 4

UNARY ALGEBRAS

This»section will be an invéstigation,of the congruence
lattices of‘finite unary algebras., This will be done by
eiamining certain interval sublattices of the congruence lattice.
It will be shown that various number theoretic pfoperties of
the unary operation determine the congruence lattice of the

algebra.

4,1 Notation: Let Ol = <A, £> be a finite unary algebra.

Let C =,{Cl’ 02,..., Cn} be the set of orbits of £, i.e,

C; = { Xoaxl’---,gﬁa;iA} » where f(x.) = Xmirlv""’

o + DNote that C; N c:j =0 for iZj,

Let (3 ={By,...4B J be such that C; < B, for 1<ign

£(x5) = %7 5 £(x)) = x

and By ={){8A.lfk(x) e C; for some integer k }' . The

set C% forms a partition of A , If f 4is a permutation

then C; = B; forall i, 1<ign . Let Z denote

the cyclic group of n elements; thus Z(Zn) = C)(Zn) =

lattice of positive integral divisors of n . Also let

X

X
o}

{K,» K{yeeer Ky § ,  where K, <K < ... =K ,

6 UGy U...UC, , and K- fxle@) e ¥, }  for

I
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1<3<Q+1. If n is a positive integer let “© (n)
denote the number of positive integral divisors of n and
let © (n) denote the sum of the positive integral divisors

of n .

4,2 Temma: ZLet Ol = <A, f> be as in 4.1. Then
L IA’e,(Ci)] I Y (Zmi) , where .m, = lCiI .

Proof: Since O, € () , define C ; ‘to be the unary
algebra <C,, flCi>. . Then [I,, 6<Ci)] = @(f’_i) . Let

g be a function from Z, ~to Z defined by g(x) = x+1
i i

(mod m;) . Then <Zm‘,g>’="ci , so (0 (ei) ;®(<Zm.a g>).
i

: i
However gk(x) = x+k = k+x , so that @) (Zm , g8) & @(Zm y =
. i i

£(z, ) .
1

4,3 Temma: Let(} = <A, f> be as in 4.1. Then
[IA’_G (Cl)\l cos Ve(Cn)] 4 _Z(Zk) for some integer k .

Proof: Let @ e (I, B(Cl)\’ A 4 e(Cn)] . Then <x, y> € ©

implies '{x,- y} c Ci for some i , ©So
Qe [I,, B(CHIV...VII,,0(c )] . It follows that
[1,, @V ...V B8] %[IA,@(Cl)]x.}...%EIA,@(Cn)l'?.':\Hence by 4.2,

[IA, B(Cl) VeeoV B(Cn)] is isomorphic to Z<Zmi) ... % Z(Zmn).
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€1 _®2 ®t
In general, if P = D" Py eee Py where the p; are

. ey €5 CH

distinct primes, and 1if g = A7 A ... Qg where the

q; are distinct primes, then Z(ZP) =D (Zq) . From this

it follows that = (Z_)%...xZ(Z2_) £5(Zq ) ... T (Zg ),
my m 1 R n

where the X 1<i<n, are all relatively prime. But

i’

if K = Qi.Q‘Z... Q

, then 2(Zq¢ I% ...*% (Zq ) F
n Q]_ Q\n

2 (%) .

4,4 Lemma: IT D562={CP.“;%A,ID1=Q , ‘then

the interval [V%iaD S (¢;) ’9<L%ieD c;)] is isomorphic to

meoaa BV 0 B (U ep 011 < Impgl -

Proof: Let D< ¢ and |D| =Q . Define a function «

from [V ep BCC) g(k%.gD, €)1 to my such that if
. Vi ‘i

U elVy ¢p Q(Ci)', & (UC.SD Ci)] , <i, j>e a(l) if and
i i

only if U > ©(C; U cj) , It is easily verified that a(l)
is an element of mgq , and that o 1is a lattice isomorphism

The second claim in the lemma follows from the

onto na .
recursion |m. . | = (n) {m |
n+l o<k <n \k/ "%k :
4.5 TLemma: For O, & Cj and lCil = m; and !le = my

the interval [I,, B(C; U Cj)] is distributive if



57

(my mj) =1, If (mi, mj) > 1 , then this interval is
neither upper nor lower semimodular. Also

10T, 800 U DI = T Ty + S ((my, my))

Proof: For (mi, mj) =1, if xeC; and ye Cj | then

6 (x, y) = ©(C; UCy) . So the interval [I,,0(C; U Cy)]
is just [I,, G(CiD\/@(Cj)J wi.th ©(c; U cj), adjoined,

which is . distributive by &4.3.

Let Oi = {xo, Kpseees xm.—-l} and Cj = Ryo,yl,...,
: . i
ymjfl ‘k. If (mi, mj) =r and d\;‘ then the congruence
relation U =0 (x,, %4, Ty y,j+d) for 0< j<a .has

d congruence classes and satisfies U < B, u Cj) and

[y i@((}i) Vv @(Cj) . Moreover, if U is any congruence
‘relation such that U 5_ @(Ci U Cj) _and U _{_@(Ci)\/@(cj),
then U must be of the form O (xo, Xgs V3o yj+d) for
suitable dl(my, mj) and O < j < d . This assertion follows
from the fact that U must be the join of congruences of the

form @(xo, Xd) R Q(yo, yd) and Q(Xo’- yj) . Note that if

(my, mj) =1 then any such U 1is @(Ci U Cj) . By 4.3
10T,, ©(CvOENIN =T my) « Ty . For each d such

that dl(mi, mj) , there exist d congruence relations in
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[Ty, Q(Ci U Cj)] but not in E_IA’ Q(Ci)\/ Q(Cj)] . Hence

there are a total of © ((mi, mj)) congruences of this

type. Therefore,
l[IA_’e(Ci u Cj)]l = ‘_C(mi) T (mj) + & ((my, mj)) .

It remains to show that the interval [I,,0 (Ci' U Cj)]
is neither upper nor lower semimodular when (mi, mJ.) = r>»1.
Let p be any prime such that plr . Let
o = 0 (xgs x5 Tos yp)' . Since p is prime, T2 6(C; U C.).

N b J
Also T A (B(C v 8(CD) X T, since UA (0(C;)v0(Cy)) =

0 (x,, Xp)\/@ (71 7p) « BY 4.49(61)\/9(03)4 Oc; U C5) .
Let 3 = G(XO, xp)\/ Q(Cj) . Then again since p is prime,
TA(B(Cy 9(%))4 328 (Cij \/G(Cj) . Hence the five
congruence relations 9(Ci U CJ.) , T, Q(Ci)v @(Cj) , © and

TA(O(CV B(C))) form a sublattice of [y, ©(c; U c)]

that is isomorphic to Ny . In this sublattice, < can be

replac»ed by = . Hence [T, e(Ci U Cj)] is neither upper

nor lower semimodular when (mi, mj) > 1.,

4,6 Lemma: Let ‘KJ. and K'+l be as in 4.1, with

0<3d<%-1, then [O(K) ,0(,, )] £E(sy) wnere

lsjl = | Kj+l\Kjl + 1 .




59

Proof: . Let Ky, \ Ky = {xseees x, § and let
3

{‘{K x . xl,..., X .} . The correspondence-between
J
[Q(Kj) R 9(1; +l)] and ‘E,(Sj) is then clear,

4,7 Theorem: TLet o\ = <A, £> be a flnlte unary . algebra.

Then there exists a chaln of elements of @(Cﬂ)
I, £ BCv... vBC, ) < O (cy U...U c) = O, <8<

...4@ (Bq) = U,  such that [I,,0(Cv...vO(C)]

PR (Zk) for some k , and all other interval suﬁlattices

2

of this chain are isomorphic to 7y for appropriate integers

t

Proof: 4.3, 4.4 and 4.6,

4,8 Theorem: Let D Dbe adistributive lattice., Then D

is-isemorphic -f-o the congrueénee lattice- of some ‘finit'e unary
algebra it and only if D & % (Zq) for some non negative
integer q or D & (T (Zq) u {u}) %% (Zpﬁ) where u > H
for all H e Z (Zq) , P is any prime, and Sl is a non negative

integer,

Proof: LetO\= <A, £> be a finite unary algebra with @ (Ql)
distributive. Note that T (8) is not distributive for |S|>2.

By 4.4, 1 £ IC] <2 . By 4.6, at most one of the Ci € C
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is such that ©C; # B; , and if such a C, exists, then

Bi\ Ci must be a set {Zl’ Zoyeses zy\.ﬁ where

f(zx) = ZQ _peees f(zz) =z, and f(zl) e C, . Also by
4,5 (ICll, |C2l) =.l ', provided lCll IC2\ £+ 0 . So without
loss of generality, let Cl = {XO', Xiseees X _1.} and -
C, = {yo, Tireeer Jg —l} , . with the possiblility that C2=(D .
Then (r,s)=1 if rsi O, f(Xi)=Xi—i(mod ]’?) f(yi) =
Y5~ 1(mod s) and f(zl) =x, . Let L = [1,, 6(0l U 02)]
and let M = [I,, 8 (Z'Sz s X9 (mod r-)) ] . In the event
that C, = 0 , then L = [I,, gcdI and if { =0,

- - {
then M = {I‘A} . Note that M "{IAXQU Le(zi, X3 (mod 1) )
1<ig ¢% . Plainly, LAM =TI, and LVIM=U, . If
6 e @) , then B=Q AU, =0 A (B(C) UGV ((z, x
(o w))) = (BAB(Cy U C V(A Blzgs xq 0y )l by distri-

butivity. So every element of & (O1) . is the unique join of
elements from L and M , that is @(O() = LxHM , Since
|Cl < 2 and (r, s) = 1, it follows that

L= 11, B(0, 0T = [Ty, 9(cVEC,)T U [8(C;vB(0,),

© (c; UGyl . So either L ¥ x(2) or L ZE(Z)U {u},

where u > H for every H e I (Zk) . Also MZ g% (Zpi) where
p is any prime and ¢ is the length of the chain
[IA’ 8(29\ R -XR(mod ) ] . Therefore, either

e @) = z( Zk )xj(ng) = Z(Z'q) , Where 'q is an appropriate
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integer, or @) ¥ (& (z,) v fu} ) x s (ZPQ) .

Conversely given any non negative integer ¢q one can
easily construct a unary algebra having Z(Zq) as its
congruence lattice, Or given integers k ,Q and any prime
P , one can construct a unary algebra having congruence
lattice (T (Zk)u{u}‘ YR (Zp% ) defined as follows:

' Bl = {XO’ 'Zl,..., Zg} and B2 = C2 = { yo, yl’...‘, yk_}} ]
where f(zi) =2 7 > f(zl) =X, f(xo) = X, and

. £(y5) =93 (mod k) *

4,9 Corollary: The class of lattices isomorphic to congruence

lattices of finite unary.algebras properly contaips the class
. of labttices isomorphic to congruence lattices of finite unary

algebras where the unary operation is a permutation.

Proof: Let L be a distributive lattice that is isomorphic
to the congruenée lattice of a finite unary algebra whose
unary operation is a permutation., Then L 1s either isomorphic

to % (Zq) for some integer q , or to I (Zq) U {u} , Wwhere

u is a new maximal element, Therefore L1 1is self dual, or
~its maximal element is Join-irreducible, However, the -

distributive lattice (T (Zq)U {u} ) X% (ZPQ) , for p a
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prime q not a prime power, and R > 2, 1is the congruence
lattice of some finite unary algebra, but this lattice is

neither self dual, nor is ité maximal element join-irreducible.

;- 4,10 Corollary: Let O = <A, £> be a finite unary algebra
with*@'(oz) distributive. If |[Cql =r > 0, JCsks> 0 ,
=%>0, and B, = '02 , then.the cardinality of®Olis
(‘f(s)‘f(r) +6)(t+1) where & =1 if § >0, & =0 if

s =0, and ‘C(0) is defined to be 1 .

Proof: 4,8 and 4.2.

4,11 TLemma: Let Ol= <4, £>, |A|l finite, f unary with
orbits C = {Cl’ Cosesey Cp } . Then the atoms of (¥ (O

are‘of the following three types:

(i) +the atoms of EIA, 6<Ci)] where lCil > 2

G L 0GP () = £(3) end x ¢y}

(110 {8Gr, P x0;, vy, 1 b3, oyl = logl }

The number of atoms of type i is Ujt...tu, , where uy
is the number of primes dividing |C;| for 1<ig<n .
The number of atoms of type il is greater than or equal to

the number of orbits Ci such that Bi + Ci . The number
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of atoms of type iii is grea‘ter than or equal to (g) where

t is the number of orbits of cardinality one.

Proof: Clearly the elements of each type listed are atoms of
@ (0l) , and the bounds on the number of each type are
obviops. It remains to show that every atom of @ Q1)  is

of the above form. Let a be an atom of ® (O , KX,y EQ,
x+y. If f({x,y3)={x,y3 or - -

£( 4x, %) ={2} then o must be of type ii or iii or else
{x,y% is anvorbit-of cardinality 2 , in which case’ o is

of type i. If r£({x, v3) = {u, v} where u ¢ v, {u, v} £
{x, y} s then o =0 (x,v) = Q (u,v) . Thus x, y, u, Vv

are in the union of all orbits, If x and y are in the same
orbit, theﬁ oo 1is of type 1 . if x and y are in different
orbits, say C; and C, , then ICl| = \CZI , for if mot
I, < (BcpHvBE DA< .

4,12 Remark: It is well known that a universal algebra

is subdirectly irreducible if and only if @(OU has exactly
one atom, Using this characterization of subdirect irreduci-
bility and the previous lemma it possible to prove the following‘

theorem due to McKenzie [12] p.18.

4,1% Theorem (McKenzie) ILet Ol= <A, £> be a finite unary

algebra. Then Ol is subdirectly irreducible if and only if

Ol is one the following algebras:
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(a) A

]

Q ' .
Cl,lCll =p >0, p a prime,

(b) A

]

R ' .
G, UCy, |Cll=p_§_>_-0 » P a prime, IC,l =1 .

]

(¢c) A =23 = {XQ, X o1reees Xy X 1 where £(xg)
Xg _greeer f(xg) = Xy i‘(xl) = X and f(xo) =X .

Moreover, (% (O is a chain in all cases. '

Proof: For each of the types a, b and ¢ of unary algebras

Ol, & (O is a chain and hence OU is subdirectly -

irreducible by 4.12., To obtain the converse let =<4, £>

be subdireotly irreducible, By 4.12 it must have a single atom

o . If o is of type i in 4.11, and « 1is an atom of Cl say,

then |C | = pQ for { > 1. Moreover [C,| =1 for

i > 1 since there is no other atom of type i. Because there

are no atoms of type iii or ii, it follows that either@= {0175

and Bl=Ci , oT @ = {Cl, Cg}and B, = C; and B, =G, .

Hence O is of type a or b . If the atom « 1is of type

ii, then there exists a unique B; such that By % Cy . Since

there are no atoms of type i lCJ.l = l. for all Cj € C .

If |Cl> 1, then there would be an atom of type iii ., Thus O

is an algebra of the kind described in ¢ . Finally if the

atom o 1is of type iii, then all orbits must have cardinality

1 and A = C; UC; is an algebra of type b with Q -o0.
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e

4,14 Theorem: Let (Ol = <A, £> be a finite unary algebra.

Then ® (O1) is upper semimodular if and only if

(lCi\,lel) = } for all orbits C, and Cj .

Proof: By 4.5 the orbits of O must have relatively prime

cardinalities if @ (O is to be upper semimodular. To
proﬁe the converse suppose that U , @ and € in @ (OU
are such that UYC @ +'C . It must be shown that U v ¢

covers both - U and £ . Let O X /e . Let C; be

the image of the orbit C,; in U, Then C, is an orbit of
Cﬁ . Moreover every orbit of Ol is of this form since
(lcil,lcjl) =1 for all 1<1i, j<n. Also IC IIIC,I

for each i, 1< i <n . Hence the orbits of (Ol  also have

relatively prime cardinalities.

It is well known that the interval [T, U} in @ (AU
is isomorphic to (:)(CX) (Gratzer [6], p. 61). Let ¢ and

—

Qﬁ be the images of U and ,ﬁ under this isomorphism, then
@ and )%' are atoms in © (O . since (iaihlaj‘) -1

any atoms in C)((ﬂ) which are of type iii described in 4.11
will have only one non trivial congruence class and this class

will have cardinality 2.

It will therefore be sufficient to show éVﬁ *é’ and
QV@ r & in & (éﬁ) . Note that if B and ,8 are such
that their non trivial congruence classes are disjoint, then
indeed &v‘@)né' and 8V M}—@ . Since % and ﬁ are

atoms, and by 4.11 there are only three different types of
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atoms, there are only six differént cases to consider, If

U and o are both of type i, then @\/& e[I,, B <6i>ve<63.>1;
by 4.3 +this interval is distributive, and therefore upper
semimodular., If .d] is of type 1 and 5} is of type ii
then, by the above .observation concerning disjoint non trivial
congruence classes, it can be assumed that é = 9(;, ;7)

where f(}—c) = f(;r) € Ei , }-cé: Ei and ;rz-: ai . Then -Q:(Vﬁ
has as its congruence classes those of M with )-c adjoined
to one of them, Clearly é\/fll- >’é’ , and also iJ-Vé’ b .llj ,
since ,5’ is an atom, The remaining four cases can be handled

similiarly, using the note on disjoint congruence classes and

the restriction on the atoms of type iiiin ® (6]) .

4,15 Corollary: ILet al = <A, £> Dbe a finite unary algebra

and let C = {C, Cyseeny €  be the orbits of £ . Denote
by S(b, k) the number of members of thé.pértition lattice on
k elements in which each equivalence class has cardinality
at least b, and let S(b, k) =0 for b>k>0, S(b, 0)
=1, Then ((Ol) is upper semimodular if and only if

I1T,, B (Cu... vl = b 5(2, m-1))- [N Cicyh.
TE{1,2,...,n3 J&

Proof: Let (@(OL) be upper semimodular, By 4.14,

(ICil,leI) =1 for 1< i,j<n . Henceif <x,y>eBe¢ @(Cl),
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xeC; , and yely , it j, then G(Ciucj)g:_ B . so
6 generates an equivalence relation é on {l, 23400 n}
by <i, j>sé ifand.onlyif G(Giucj)_c_ B or i=73.
Let Tg =={j.s {1, 2y..., n¥ | 1 i} is a congruence class
of ©31. TLet G’T ={e€[IA,9(C1U...UCn)]| T9=T}.
Then the interval [IA,(B(CIU.,,\JCH)] is the disjoint union
of all of the <§ o as T ranges dver the subsets of

{1,;7‘2,..., n} . Denote by ni’ T

the collection of
partitions of the set {l, Coeses n} ~T in which each
block has cardinality at most two. Then there exists a one
| 2, T
to one correspondence between o] p and T, X\/J'ST 8 (Cj)
obtained by letting B e ST correspond to (B A UTC ’
c
eA\IJ.STG(CJ.)) , where T~ = {l, 2y eeey n} \.T . Hence

; 2,T : .
18 g81= 1 "% Vyen BCel = 82, n =1 ® 1) ThypeCiogD.
Summing over all T < {1, 2yeeey n} the conclusion follows,

Conversely, note that in any unary algebra, the cardin-
ality of the interval [I,, B(C‘lu ...V C )] 1is at least
ZTE{l, 2yeeey 0y s (2, n- !Tl)QTYjeT L(!le) . It will be
greater than this sum i1f there exists Ci and Cj such that

(lCil R lel) > 1 . Applying 4.14, the corollary is proved.

4,16 Lemma: Let T be a finite lattice, L = [0, A] and

M = [0, ul be two principal ideals of T and suppose that



B = (OAA)V (BAp) for-every © € T, and if © =9Yvi
for Y<A and Y, then_\P=6/\7\ and U =BAj .
Then T £ LxM , '

Proof: The function taking O = (6s\)v (Bap) into -
(e,\}\,em) e LXM is easily shown to be the desired lattice
isomorpkiis_m.

4,17 Temma: If L and M are iower or upper semimodular

lattices then L *II is also lower or upper semimodular,
Proof: Birkhoff [21 p. 83,

4,18 Theorem: Let Ol = <A, £f> be a finite unary algebra

with C , B;, and C; defined as in 4,1, Then &(Oo1)  is
lower semimodular if and 6nly if all of the following ~co.nditions

hold:

(i) ‘lCI <3

(11) eyl chr) =1 for i % j

(iii) By + C, for at most one of the Ci

(iv) If B, * C; ’cheﬁ B;- has one of the following forms:

a) Bi = {»XO’ Wl,..., Ws, ul,o.o, up, Vl,oco, Vq}

p) By = ‘{Xo’ Kyoeees Xp 3y Wioeees qus or
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C) Bi = {XO, Xl,oao) X __l) wl”", WS’ u’ V} Where

£(x;) = X4 (moq r) T(Wi) = Wi_po £Quy) = x, £(vy) = V5

f(u) = f(v) = w

1

f(ui) = u’_l ’ f(ul> = f(vl) s

Proof: Let @&(T)  be lower semimoduiar. Then condition
ii must hold by virtue of 4.5, Condition i follows from _
4,4 and the fact that Te is notvlower semimodular for k> 3,
Birkhoff [2 j, p. 16, If iii did not hold, there would be

xeB;NCy s £(x) e Cy and ysBj\Cj , (¥ scj', i+J .

Then @(CiUCj Uix3 U {y} ) covers both v =9(CiU {x})V
8o Uy and @ =0(0;UC)V Blx,5) . However |

bA Q/,;@(Qj_)\l %'(cj) which is nojﬁ covered by & , contradic-
ting lower semiﬁlodularity. So iii holds. If B, 0y

C; = {Xo’ Kyseee Xr—l} ,r2 1, with £(x;) = Xi-—l(modr)"
and.if, contrary to_ . iv ,' ‘there exist y and =z in'.

BN C, such that f£(z) = £(x) = x, and £(3) = £(x,) =

% , where k + 0, then O (7, Zy Xy Xk+l) covers both

& =8¢y, z) and U = B (z, x_l)ve(y? Xk+1) . Howeyer,

gnb = I, which is covered by neither & mnor ¥ . This
violation of lower semimodularity shows that k = O . Now
assume, contrary to 1iv, that there exist two pairs, not

containing x_ , {x s ;y} and {u, v}, such that f(x) = £(y)
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and f£(u) = £(v) . By 4.6, IKJ.+1\ K, £2 forall §2 0.
Without loss of generality, assume that |KJ.+1\ KJ.I =1
for 3 < g , K VK = {v, v}, ix, y} < K.,, » where

t>8 ', and fq(x) = f%jr) =v, =t -8 ., DNote that
fj(x)}: u for all integers j . Then B (x, y, £f(x), u )
covers both ¥ = O (u, y)V B(x, £(x)) and

=0, yvBu, £(x), £2G)) , but @a b =B (£(x), £°(x)

is not covered by & , violating lower semimodularity. Hence

if Oy ={x,} then iv-a holds. If C; ={x,5 X15..05 X, 1}

for - r> 1, and |K \Kjl-_<_l for some J > O then

J+l
iv - b holds. If [C;l > 1, and I|K,SK, 51 =2 for
some integer J , then X. = K for all t > 1 . In fact,

J J+t
assume not., Let f(u) = f(v) , u vy, u, v § C, , and

suppose 2z 1is such that £(z) = v . Also, ) = x_ = fa(xt)

where t = § (mod r) . Let C = O, v, z) , U =0, =),
and £ =0B(u, xt)V e(z, Xt+l)VX, whereX*@(Ci) . Then
C7ry , since U has exactly two congruence classes, and
*"C has only one, Also ‘C 7~ g , Since every congruence class
in & contains some element of Ci , and hence the fusion
of a.ny two classes would give a congruence containing G(Ci)
and therefore O(u, z, v) . But @AU has u and 2z as
singleton classes and v and Xy in a congfuence class of

cardinality 2 . Thus & > 6 (z, )VX>9(V, xt)v\é, SO

Xt+l
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lower semimodularity is violated. ©So if lCiI > 1, and

‘Kj-t-l\ Kj} - 2 for some j., then 1iv - ¢ holds.

Conversely, assume that Q1= <A, £> satisfies conditions .
i - iv . For convenience, let Xy denote Xﬁb(mod r)?
U, =V, = Wg, Wy o= X and choose notation so that Bi‘l-;:Ci
imp}ies i -1 . Let L =1[TI,, 8 (C_l__UCZU 05)]_ and .
M =[I,, Bl where B = B8(B,) in'case iv-a , B =0(wg, )
in case iv-b , and B =0 (u, v, XS+1) in case iv-c .
'ﬂence L NM-= {IA} . The remainder of the proof will consist
of showipg fipst that I and | M are ideals satisfying the
hypothesis of 4,16 (and thus @) = LX) , and then

proving that I and M are both lower semimodular.,

For anj AelL -and well , every non trivial congruenée
class of A is contained 1in C1UC2UC5 , and each class
of ‘u' contains at most one element of c ucC,U C3 . IT
B=Avp and T is a congruence class of B , then

Tn(ClUC2UCB) is a class of A , 809/\6(01UC2U05)=>\ .

Moreover if © = Ay Vpy = Ap Vs r;eL , p;eM, then

>‘l = X2 , since the congruence classes of © determine
those of A, and A, . If O - AVu , AeL, pel, and Ol
safisfies condition iv-a, then u must equal 6:\9@31) .

1f Ol satisfies condition iv-b , - and if © A B has w,
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in a non trivial congruence class, ﬁith t maximal, fhen

w =0AB e M ; otherwise w, would not oceur with t maximal,
A similiar argument for the.case that Ol satisfies iv-c

also shows =BAp . Hence whenever 6 e @(Ql) is such
that B =Avp, AeL,pelM, then A =9/\9(clu C,UCz) and
w=0AB.

Tt will now be shown that for every O e ®(01) ,
5 v

and M are ideals, and the previous paragraph, it will be

(OAB(CLUC,UC)) v (9AB) . By 0.5, the fact that L

sufficient to show this for minimal congruence relations

®=06(, b) , a, beh . Note that § > (BrB(CUC,UCHIV
(6AB) . If a, beCUC,UC; then 6 (a, )€ (C;UC, U
05) » s0 B(a, )= (8 (a,0INB(C UCUCIV (B, D) AB) .

Suppose that as:CQUC5 s, say aeC2 s, DbE Bl\ Cl , anda

uc

£5(b) = x, , so that b =z x (). Since the cardinalities
of C, and O, are relatively prine, 6 (a,b)2 B (L Ucy)
énd it follows that O (a, b)AB =B(b, % ) and

B (a, ) = (B (a, b)AB(C, U C, U 05))\, e(b,_ xk) . If a=x,e0;
and beB~C , b=x (B), then £%(a) = fk(b')(e (a, b))

implies X; 3 = Xo(e (a,b) , sO fr“k(xi_k) =X, = fr'k(xo) =

X (0 (a, b)) . Therefore, =a =X, =X (Q(Cayb) , and

b
i
8 (a, b)> 6 (a, Xk)ve(b, Xk> _>_ GI(a, b) . So again
B(a,» = (B (a, b)A@(Cl uc, u 05))\/ (‘6 (a, b)AB) . Finally,

suppose that a,be By~ Cl , a X5 (g .

n
I

X5 (B) and b
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If r=1, or i=3 , then O(a,b)< B . Therefore,
assume t.ﬂat r>1 and J> i . It follows that f‘j_i(a) = b,
£2(b) = x, (0 (a, b)) ,
so that by the previous case, 8 (a, b)z-e(fi(a), XO) =

Then a = b (O (a,b) implies £(a)

W

6 (fi(a), X )V Q(x , X 1) . Note that a =D = fj"l(a)
I ° d= S (x+1) (§=1)
(6(a, b)) , and therefore a = £ (a) ~ ((a,p)) [ for all k.

Choose k so that 0 < i - k(j-1)'< j.-.i . Applyins.
f (j-i)- (1 - k(j-1)) +times to the congruence

i, 5 _ (k+1) (§-i) o
f~(a) = Xi_i (U(a, b)) gives a = £ (a) = Xi-k(3=1)

(0(a,b) . But x (O (a, b)) and therefore

o = ¥35-i

XO = X-k(;]-'(i) (Q (a, b)) and Xi—k(j—i) = Xi = Xj (Q(a, b)) o

Consequently O (a,b)> B (x4, Xj)ve(a, X,/j) > 8 (a, b)), so

0 (x4, xj)=e(a,b)1\9(ClUC2U05) and B (a,xj)= B(a, INB.

" Therefore by 4.17, @ (0l) = Lx N ,

By 4,18 it remains only to show that L and M aré
both lower semimodular, In L = [IA, Q(Cl uc,u CB)] , tThe
subinterval [I,, G)(Cl)\IG(CZ)VG(CB)] is distributive by &.3.
Hence this interval is lower semimodular. Therefore it is only
necessary to consider pairs of elements covered by an element
¢ =0 (cyuc

uc or by an element C =0 (Cl uc, )V ¥ where

2 5) ’
¥ < 9(05) . In the first case, C covers only the elements
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B (0, UCxVE(C,), B0 UC)vB(Cy) , and B(C,UC5)WB(C)) .

‘ Since each pair of these elements intersects in
6(01)\/9(02)\/9(05> , lower semimodularity holds in this

case, In the second case, the elements covered by T are -
Q(Clucz)" 6 wflere ¥ covers & and QCCl)Ve(C2)V7§ .

An examination of the possible intersections shows lower
semimodularity holds in this case. Hence L 1is lower semimodu-
lar, - No&§ consider M , If (Ol satisfies condition iv=-b,

then M is a chain, and therefore lower semimodular., If

V; ! ’
s L 9eessS

satisfies condition iv-c, then M ¥ {O, lyms, O
Xy Vo z} , where O0<1<...4s 4x, s<Yy, i—<i‘l for
1£igs, O<O’<l.'—<...—<s'l,x<z, y<z and s'<z .

In this case M is actually modular, and therefore lower
semimodular. Finally consider the case when OZ satisfies
condition iv-a . Let T < B . If the congruence class of
containing x, 1is just {XO} , thent-= 9(ui, vi) for some

i > O . The interval [I,, Tl dis then a chain., Therefore
cr¢@g,<rl, and $ £ U cannot occur. If‘[‘=9(xo,wt) s
or “C = 9 (x,, vy), or T = G(Xo, ut) , ‘then again .[I;,CI]
is a chain and the lower semimodular condition agéin holds

vacuously for elements covered by T. Finally consider the

case in which C =4 \/‘C2 s, Where ARy is of the form
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of the form B, V‘Cg or j:l.v 5 » where % i-< Tfi for
i=1 or 2, or, when ‘C has only one non trivial congruence
class TC =(5(ui, V., xo) , in which case ‘C covers the

J .
elements of the form O (uy, Vj) v B (ug_qs %)

o) Cui_l, V3 XO) , or 0O (ui, Vi1 XO) . A check of the
intersections of these elements covered by € shows that lower

semimodularity is satisfied.

4,19 Corollary: LetvCﬂ = <A, £> be a finite unary algebra.

The following are equivalent:

(1) .QE(CR) is lower semimodular

(ii) C}(CX) is modular

(iii)"Conditions i, ii, iii, ahd iv of 4,18 hold for ol .

Proof: By 4.18, 1 is equivalent to iii, It is well known
that 1ii dimplies i (Birkhoff [ 2] , p. 14). It follows
from 4,14 and 4.18 that lower semimodularity implies upper
semimodularity. Since ®& (Ol) 4is finite, both semimodular

conditions together give modularity, so 1 implies ii .

4,20 Corollary: Let (ﬂ = <A, £f> be a finite uhary algebra

such that (X))  is modular. Then (O ¥ L x M where
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L and M are the ideals defined in the proof of 4,18.

Proof: This follows from 4.19 and the proof of 4,18,

4,21 Definition: If O is an algebra and ¢ and ¢ are
elements of &) (O0) , then ¥ and ¢ are said to permute
if Vo =¢o U, where Uo ¢ =‘{<a,b> | for some x ,

<a,x>e U and <X,b>sﬂ'} , and @o I is similiarly

il

defined. In this case Ue¢ @ = Uvg . It is known that if

all the congruence relations of Ol permute with each other,
then (» (00 is nodular. Also, the congruence relations of
any group are permutable, Much work has been done to determine
which algebras have permutable congruence relations, The

following theoren characterizeé the finite unary algebras with

permuting congruence relations.

4.22 Theorem: Let Ol= <A, £> be a finite unary algebra.

Then the congruences of Ol are permutable if and only if 4

satisfies one of the following conditions:

(i) A=0C UG, where C; and C, are orbits of relatively

prime cardinality
(ii) A = Cl where Cl is an orbit

(iii) A = -{XO, Wiy Woyeoes wS} with f(wi) = Wi 1

f(wl) = X, s f(xo) =X, .
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Proof: If C 02 , and C5 are three distinct orbits

1
with beCy,aeC; , and if b =0(c uc,) and

Q’=6(02U03) , then <a, b>e Bol , but <a,b> & Uogd .
So if the congruences of Ol are permutable, then f can have
at most two orbits, .These must have relatively prime cardinal-
ities, since &) (O0) is mbdular. Suppose that u *+ v

and f(u) = £(v) = x , where x ¢ {u, vi . Let U =0u,v)
‘and @ =8(u,x) . Plainly <x,v>e fol , but <x,v¢ log,

Therefore, if ICil > 1 +then B, = C and if ICiI =1,

i 2

then  |B; N (K \Kj)l <1, forall j > O . Pinally, if

j+1
¢, =-{XO}~, a i'xo » f(a) =x,, and beC, , then let

jog =9('xo ,a) and U = (C2U{xo} ) . Plainly, <a,b>ecdoli,
but <a,b>¢ Ueg ., Therefore, if |U Cy | > 1, then
A=U Ci -» Hence, must satisfy one of the conditions i,

ii, or iii.

_ Conversely, suppose that A = C;UC, wh‘ere lCll = p

and lC2T = q with (p, @) =1 . Then EI,, S(Cl)v 9(02)]

is essentially identical with C](pr Zq) . Since the
congruences of a group are permutable, it follows that any

two congruence relations in this interval permute., By the
proof of 4,5, @00 = [IA, e(Cl)vG(Cz)] U {UA‘S . Therefore

Ol has permutable congruence relations, If A = C then

1 %
- a similiar argument shows (X has permutable congruence relations,
Finally, if 4 = {x_, wi,..., w 5, ©(CD 1is a chain, and in

this case, congruences obviously permute.
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