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Equational Dependencies

By Joel Berman and W. J. Blok

Abstract: Given a set L of connectives of propositional logic, the class of equational dependencies over
L is defined; it subsumes various notions of dependency for relational databases considered in the
literature. The natural consequence relation for equational dependencies is introduced and is shown
to correspond to the relation of congruence generation on the free algebras in an equational class that
depends on the set of connectives L involved. Using this fact the computational complexity of the
inference problem for equational dependencies is determined for the various possible choices of the
set L of connectives.

1. Introduction

Given a set L of connectives of propositional logic we introduce the class of equational
dependencies over L. If L consists of “conjunction” (A) only, the equational dependencies
over L are just the familiar functional dependencies. Other classes of dependencies that
are subsumed are the classes of Boolean dependencies of Sagiv, Delobel, Parker, and Fagin
([17)), the strong, weak, and dual dependencies of Czédli ({10]) and Demerrovics and Gyepesi
(11D, the positive Boolean dependencies of Berman and Blok ([6]), and the class of
dependencies considered in Thalheim ([19]).

The purpose of the paper is to show that, under some weak assumptions on L, the natural
consequence relation over the set of equational dependencies over L corresponds in a precise
way to the relation of “congruence generation” over a free algebra in a suitable variety deter-
mined by L. This correspondence provides us with a tool to determine the computational
complexity of the inference problem for equational dependencies for various choices of L.

In Section 2 we define equational dependencies over a set of connectives L, and explain
what it means for a relation R to satisfy the equational dependency p(4;,, ..., 4,) ~
qg(A;s, ..., A,) where 44, ..., 4, are the attributes of R and p and g are terms built from
variables 44, ..., 4, and connectives from L. Section 3 contains a number of examples of
equational dependencies. One example discussed is how, for an error-correcting code R,
the property that R has minimum distance d can be expressed as an equational dependency
that holds for R. Section 4 contains results from universal algebra concerning varieties and
quasi-varieties that will be used in the later sections. The consequence relation for equational
dependencies is considered in Section 5 and a characterization of consequence in terms of
congruence generation on free algebras is presented. The inference problem for equational
dependencies and the computational complexity of this problem is the topic of Section 6. The
final Section 7 explores in more detail how the familiar notions in the theory of functional
dependencies for relational databases correspond, via the theory of equational dependencies,
to notions in universal algebra involving free algebras and congruence relations.
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The basic notions that are needed from relational database theory and from universal
algebra are defined in the paper. For background information on relational databases we
refer to Ullman ([21]) or Maier ([14]), and further details on universal algebra may be found
in Burris and Sankappanavar ([9]) or McKenzie, McNulty and Taylor ([15]). Some of the
results of the paper were announced in the survey paper Berman ([S]).

2. Definitions and notation

A relation R over a finite set {A4,, ..., 4,} of attributes is a set of functions with domain
{A,, ..., A,}. Elements of R are called ruples and they are denoted by r, s, or ¢. The value
of r at attribute 4, is written as r(4,). We let # = Z(A,, ..., A,) denote the class of all
relations with attribute set {4,, ..., A,}. For k = 0, #, denotes the subclass of # of all
relations that contain at most k tuples. A valuation is a function v:{4,, ..., A} = {T, F}.
The set of all valuations on {4, ..., 4,} is denoted val(4, ..., 4,). For s, t € R, the valuation
v, is defined by v,(4,) = T if s(4,) = t(4,) and v,(4) = F if s(A4) == t(A4).

A language L = {f;:ieI> is a family of finitary operation symbols. For a set X of
variables and a language L, the set of terms of L over X, denoted Term, (X), is the smallest
set S such that X < S and if t,, ..., t,, €S, then fi(ty, ..., t,) € S. A connective is any term
of the language { v, A, —, <>, 71, T, F} over the variables {x1, X2, .-}

An algebra over the language L = {f;:ieI) is a pair B = <{B, {f®:ieI>), where B is
a nonvoid set called the universe of B, and f2:B™ — B an n;-ary operation for f; an n;-ary
operation symbol, i € I. We often write f; for f % if no confusion is likely. If B is an algebra
over L and p € Term,(X), then p induces in a natural way a rerm operation p®:B" — B,
also often denoted by p itself. The set of all such term operations will be denoted by
Termg(X). Typically in this paper we will consider languages consisting of connectives, and
algebras with universe {7, F}; the interpretation of the connectives in the algebra is of
course the standard one. For example, if c(x;, X,, X3) is the connective x; Vv (x» A Xx3), and
L = <c, T>, then in the algebra B = {{T, F}, ¢, T) we have ¢(F, T, F) = F. Observe that
the join operation on {7, F} belongs to Termg({x;, x,}) since p(x;, x;) = c¢(x1, Xa,
T) e Termy({x;, X,}), and pB(xy, X5) = X; V X,.

If p(Xqs .ees X0 G(X1, -ovs X,) € Termy (X), and if B is an algebra over L, then B is said to
satisfy the identity Y%(p ~ ¢q) if p and ¢ are equal as term operations on B, i.e. for all
vi{xg, oo, %) = B, p(xy), ..., v(x,)) = qv(x4)s ---> 5(x,). We write BE= VX(p = q) if B
satisfies the identity VX(p & g). For v: X - B and for p(x;, ..., x,) € Term(X), 7(p) denotes
the element of B corresponding to p(v(x,), -.., v(x,)). Thus B = VX(p ~ ¢g) if and only if for
all v: X — B, o(p) = 0(g) in B.

Let L={v, A, =, <>, —1, T, F} and p, ge Term ({4, ..., 4,}), where A, ..., 4,
are attributes. An equational dependency is an expression of the form p ~ g. If -
p, g€ Termy ({44, ..., 4,}), where L' is a family of connectives, we also say p ~ g is an
equational dependency over L'. If p ~ g is an equational dependency in the attributes
Ay, ..., A, and Re R(A;, -.., 4,), we say R satisfies p ~ g, Written RF= p ~ ¢, if for all s,
te R> 5st(p) = 5st(Q)= ie. p(vst(A1)> Tt vst(An)) = Q(Us:(Aﬂa o Ust'(An))' Again p and q are
evaluated in the two-element Boolean algebra {T, F} in the standard way. If 4 is a finite set of
equational dependenciesin 44, ..., 4,,say 4 = {p;~gqg;jljeJ},and &' = #(Ay, -, A,), we
write Ak=g p ~ g if, for all Re &', R=p; ~ ¢; je€J, imply R=p ~ g. In the case that
4 = &, we write =4 p ~ g and this means that R= p ~ g for all Re #'. For example,
=g A; ~ A; for any 4, in the attribute set.

e,
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3. Examples of equational dependencies

We give some examples of equational dependencies. A relation R satisfies the equational
dependency 4; ~ A,, written Ri= A; ~ A, if for any (s, ) € R?, s and t agree in attribute
A; precisely when s and t agree in attribute A4,. If A and v are in the language, then
RE= A, A Ay ~ A, v A, means that if (s, t) € R? and s(4,) = t(4,) or s(4,) = t(A4,), then
s(A4,) = t(4,) and s(4,) = t(4,). Note that Rl= 4, ~ A, if and only if Ri= 4, A A4,
~ A, v A,. If T is in the language and ‘if p(4,,..., 4,) is a term, then Ri= p(4;,

., A,)) ~ T meansthatforalls,te R?, 0,(p(4y, ..., A,)) = T. The examples given in Berman
and Blok ([6]) can be expressed in this way. That is, if p(4,, ..., 4,) is a term, then Ri=p
in the sense of Berman and Blok ([6]) is the same as Rk= p ~ T as an equational
dependency.

Recall, for X, Y= {4,,...,4,} and for Re Z(4,. ..., 4,), R satisfies the functional
dependency X — Y if whenever two tuples in R agree on every attribute in X, then they
agree on every attribute in Y. In Berman and Blok ([6]) this is expressed as Ri= A\X — A Y.
In terms of equational dependencies in a language involving —, A, and 7, this can be
expressed Ri= (/A\X — /\Y) ~ T. This functional dependency can also be formulated
without use of the connective — since the functional dependency X — Y is equivalent to
the equational dependency AX ~ AX A AY.

‘In Berman and Blok ([6]) several examples of positive Boolean dependencies are given
that describe combinatorial configurations. Each of these can also be expressed using
equational dependencies.

As another example of equational dependencies we consider Hamming distance. A code
R on an alphabet S is a set of n-tuples of elements of S, i.e. R £ S". Elements r, s € R have
Hamming distance k if r and s differ in exactly k coordinates.

Consider the condition that for a given k any two codewords in R have Hamming
distance at most k. This means that for every & + 1 distinct coordinates 4;,, ..., 4,,,, and
every (r, s)e R?, r and s must agree on at least one of the A, 1= j=k+ 1. Thus,
RiE=A;, v ... vV 4 ~ T.So R has Hamming distance at most kifand onlyif Rl=p ~ T

Ie+1

where p is the term N\ A; VooV A

121 <. .<ig+1=n Hex
A code R is said to have minimum distance k if every pair of distinct codewords have
Hamming distance at least k. The code R has minimum distance k if and only if for every
(s, £) € R2, if 5 and ¢ agree on more than n — k coordinates, then s and t are identical. Let

d =n — k + 1. Then R has minimum distance k if for every iy < ... < i;, RE= 4;, ~ ...
A A, ~A; A ... A A, This can be expressed by the single equational dependency R = p
~ Ay A ... N A, where p = \/ A;, A ... A A;, In Section 5 we consider

1Si1<...<iaZn
examples of Hamming distance in our discussion of the inference problem for equational
dependencies.

4. Varieties and guasi-varieties

Our definition of an equational dependency p ~ g for p, g € Term(4,, ..., 4,) involves
the algebraic structure of the algebra B. In this section we present definitions and results
from universal algebra that are used in our investigation of equational dependencies.
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Let K be a class of algebras over the language (f;:ie I>. The class of all algebras that
are homomorphic images of algebras in K is denoted by H(K). The class of all algebras
isomorphic to subalgebras of members of K is S(K) and the class of algebras isomorphic
to direct products of algebras in K is P(K). By P,(K) we denote the class of all ultraproducts
of algebras in K.

Let B = (B, {f;:i € I>) be an algebra. The variety generated by B is the class of algebras
that are homomorphic images of subalgebras of products of B, i.e., HSP(B). We denote
this class by ¥ (B). By a theorem of Birkhoff, V (B) is the same as the class (called the
equational class) of all algebras over the same language as B that satisfy all the identities
that B satisfies.

Let B be an algebra over a language L. A quasi-identity in the language of B is either
an identity VX(p =~ ¢q) for p, g € Term, (X) or a statement of the form VX[(p; = g4 A ... A P,
=~ q,) —p = gq] With py, g1, ---, Pp» 4> D> g € Termy (X), and £ a list of all x; € X that appear
in these terms. The quasi-variety generated by B, denoted O(B), is the class of all algebras
of the same similarity type as B that satisfy all the quasi-identities that B satisfies. The
quasivariety Q(B) can be described as all algebras isomorphic to subalgebras of products
of ultrapowers of B, i.e, Q(B) = ISPP,(B). Note that always Q(B) = V(B); equality need
not hold, as we will see below. We are especially interested in equational dependencies that
arise from algebras B for which Q(B) = V(B).

A nontrivial algebra A is called subdirectly irreducible if whenever 4 is an isomorphism
of A to a subalgebra of a product of algebras A;, then there exists an i for which =,
the projection onto A; restricted to h[A4] is one-to-one. It is known that for any A,
V(A) = ISP(V(A)s;) where V(A)s; denotes all subdirectly irreducible algebras in V(A).

Theorem 4.1. Let A be a finite algebra. The following are equivalent.
@) V(A) = QA).

i) V(A) = ISP(A).

(i) V(A)sr S IS(A).

Proof: Q(A) = ISPP,(A) and since A is finite, ISPP,(A) = ISP(A). Thus (i) and (ii) are
equivalent. If B € V(A)s; and (ii) holds, then B € IS(A). Finally, if (iii) holds and B € V(A),
then B e SP(V(A)sy) € ISPS(A) = ISP (A), so (iii) = (ii).

Even for 2-element algebras B, there exist examples for which V(B) &= Q(B). For example,
if B, = <{T, F}, m1)> with = T= F, F = T, then V(B,) contains a 3-element subdirectly
irreducible algebra so by Theorem 4.1 V(B;) + QOB,). Taylor ([18]) or Berman ({4]) contains
a discussion of the subdirectly irreducible algebras in varieties generated by 2-element
algebras. If B = {{T, F}, {f;:ie I>) has the property that f;(T; ..., T) = T foralli e I, then
it is known that B is the only subdirectly irreducible algebra in V(B) so V(B) = Q(B) in
this case. Thus if the f; are drawn from the set of connectives {n, v, =, <>}, then the
equivalent conditions of Theorem 4.1 hold.

For an algebra A the set of congruence relations on A is demoted Con A. The set
Con A forms a complete lattice with respect to the partial order of inclusion. For a, b € A4 the
least congruence relation containing (a, b) is denoted 6(a, b). If Q is a quasi-variety containing
A and if 8 e Con A, then 0, is the least congruence on A containing 6 and for which
A/Bg € Q. Since Q is closed under S and P and Con A is complete, 0, exists in Con A. For
an algebra A the free algebra on n free generators in the variety generated by A is denoted
by F, (). Recall that the free algebra has the universal mapping property: if x, ..., X, are
the free generators of F,(n) and if Ce V(A) and c¢;,...,c,€ C, then there exists a
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homomorphism & from F,(n) into C for which h(x;) = ¢;, 1 < i < n. Another property of
F,(n) is that if A is an algebra over the language Z, and p, g€ Termp(xy, ..., X,),
P(X1s --es Xn) = g(Xy, ..., X,) in Fu(n) if and only if A VX(p ~ g). We will denote the
element p(x;, ..., x,) of F,(n) often just by p.

The next theorem is an algebraic result that will be used later in the paper.

Theorem 4.2. Let A be a finite algebra over a language L and let Q denote Q(A). For
arbitrary P, g, Pis ---» Pr> G1» ---» Qx € Termy (n) the following are equivalent.

<i>psq[ \/ 6(pigq 1)} in F,(n).

1=isk
(ii) For all Ce Q,C= Vxl:[ /\_pi%qi] ——>pzq:].
1sigk
(iii)Ai=V>E[[ A\ pi%qi] *qu:l-
15isk

(v) For all v:{xy, ..., x,} = A, if 5(p;) = 0(qy), 1 =i < k, then 5(p) = 9(qg).

Proof: The equivalence of (ii), (iii) and (iv) is easy. Assume (i) and let ¢y, ..., ¢, € Ce QO
with p;(¢15 -5 Cn) = qi(Cy, ..., ) in C, 1 < i < k. Consider a homomorphism h:F,(n) — C
with h(x;) = ¢;. Then h(p,) = h(g), 1 < i < k, so ker(h) = { \VAI¢A qi)] . Thus h(p) =
h(g) and p(cy, ..., ¢,) = g(cy, .-, C)- 1=isk

To complete the proof, assume (ii) and let y denote the congruence [ \/ 6(psgq JJ of

1=igk
FA(”) and let C denote FA(”)/I}) Then pi(xl/y’ ccco X,,/?) = ‘Z£(X1/'Y> AR xn/Y): for 1 é i = k: in
C> and hence by (il) p(xl/'y: "':xn/y) = q(xl/’J)> AR xn/y) Since p(xla ERRE] xn)/y = p(x1/')’= T
x,/y) and g(xy, ..., X)/y = q(x1/y, ..., X,/7), we conclude p = g(y).

Corollary 4.3. Let A be a finite algebra over a language L such that V (A) = Q(A) and
let p, @, P1s -+ Pi» 15 ---» dx € Termy (n). The following are equivalent.
@p=gq 1<\-/<k 6(ps» q;) in Fo(n).

(@) Forallv:{xy, ...,x,} — A4, if 5(p;) = 0(g), 1 < i < k, then 5(p) = 9(q).

Note that in Corollary 4.3, (i) implies (ii) even without the hypothesis that 7 (A) = Q(A).
If, however, V' (A) & Q(A)thenthereareanintegernandp,q,pys ---s Prog1s ---» dx € Termy(n)
for which (ii) holds and (i) fails. Indeed any quasi-identity that holds in A but fails in V(A)
will yield a counter example.

5. Equational dependencies and eguational logic

‘We now present algebraic conditions equivalent to the equational dependency conditions
of Z=p~qgandof dE=gp ~ q.

Let v: {4, ..., 4,} = {T, F} be an arbitrary valuation. The relation R, € Z(A44, ..., 4,)
is defined to comsist of the tuples <7, ..., T'> and <v(4,), ..., v(4,)>. So R, has at most two
tuples. We omit the easy proof of the following useful lemma.

Lemma 5.1. Let A be an algebra with universe {T, F} over a language L and let p,
g e Termy (A4, ..., A,). Let v be a valuation v:{A,, ..., A,y — {T, F}. Then R,i= p ~ q if and
only if 5(p) = 0(g) and p(T, ..., T) = q(T, ..., T).
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Note that if {7} is the universe of a subalgebra of A, that is, p(Z, ..., T) = T for all
p € Term, (X), then the lemma simplifies to R, = p ~ ¢ if and only if 5(p) = 5(g).
The following generalizes Theorem 4 of Berman and Blok ([6]).

Theorem 5.2. Lét L = {f;:ie I be a family of connectives, B = {{T, F}, {fi:ielI)>)
an algebra over L, and W the equational class generated by B. Let p, g € Term (A4, ..., 4,)
and let B = R(A+, ..., A,). The following are equivalent.

Q) Vx(p = q) is an identity that holds in W.

(i) o(p) = 0(q) for all valuations v of {A4, ..., A,} into B.
(i) Z=p ~ q. ,
(v) Z.E=p ~ g.

Proof: That (i) and (ii) are equivalent is a standard fact of universal algebra mentioned
in Section 3. It is trivial that (i1i) implies (iv). If (ii) fails by virtue of some valuation v, then
(iv) fails as witnessed by the relation R, and Lemma 5.1. If (iii) fails, then for some R and
some (s, t) € R?, 7,(p) + 7,(g). Hence (11) fails.

A semantic condition for Z= p ~ q is given by (i1). A syntactic condition is obtained
by observing that the equation VX(p =~ ¢) holds in Wif and only if VX(p = g) can be derived
from I' g by means Birkhoff’s deduction rules, where I'y is any set of equations axiomatizing
the equational theory of B (see Birkhoff ([7]) or any text on universal algebra). Lyndon
([13]) (see also Berman ([3]) shows that the equational theory of every 2-element algebra
can be axiomatized by a finite number of equations. We use this syntactic condition in the
next section to analyze the computational complexity of the problem d=4p ~ g.

Theorem 5.3. Let L = {f;:iel) be a language of connectives and B = {{T, F},
{firie I>) the corresponding algebra over L. Assume that f(T, ..., T) = T foralliel. Let
{pj ~q;:jeJ} v {p ~ g} be a finite set of equational dependencies over L and let F denote
the free algebra for B with free generating set {Ay, ..., A,}. We write 4 = {p; ~ g;: jeJ}
and R = R(Ay, ..., A,). The following are equivalent.

G dE=ap ~ q.

() d=a,p ~ g
(ill) For all veval(4,, ..., A,), if 0(p;) = 0(q;) for all je J, then O(p) = 5(q).
@) p=4q\ 8(psq)inF.

jed

Proof: (i) implies (ii) is trivial. Conditions (iii) and (iv) are equivalent by Corollary 4.3,
since B is the only subdirectly irreducible algebra in the variety it generates. To show that
(iii) implies (i), let R € # with R = 4. Then for all (s, t) € R?, §,(p;) = 04(g;) for all je J.
So by (i) 7, (p) = 7,(g) and R= p ~ g as desired. To show that (ii) implies (iii), suppose
that for a valuation v, 0(p;) = 0(g;) for all j € J and 0(p) =+ 9(g). Form the relation R, € Z,.
Lemma 5.1 gives R, = 4 but R, &= p ~ q.

We illustrate this theorem with the Hamming distance example of Section 3. Forn = 4
a relation R has Hamming distance at most 2 if

RiE=(A; v Ay v A) AN (A1 v A, v A A (AL v A3 v A,)
AN(Ay v Az v Ay) ~ T.
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Let A¥ denote A; v ... v A;_; Vv A;uq Vv ... v A, Consider the set of equational depen-
dencies:

A={A;, v Ay v Az v Ay ~ T, A; v A, v Az v A, ~ A%,
Ay VvV Ay v Ay v A, ~ A% AT A AX ~ A%, AT N A% ~ A¥}

The algebra B can be chosen to be <{T, F}, A, v, T). Let F be the free algebra freely
generated by {4;, 4,, A3, A,}. Note that F is a free distributive lattice with a new largest
element adjoined. Let y be the join of the five principal congruences 6(p, g) on F, where
p ~ g€ 4. It is an easy computation to show A¥ A 4% A A% A A% = T(y), and thus by
Theorem 5.3, Adk=g A¥ A A% A A% AN A% ~ T In particular, if R is a relation such that
R E= 4, then R has Hamming distance at most 2.

Similarly if 4F denotes A; A ... A A;_; AN Ajy1 A ... A A, then R has minimum
Hamming distance at least 2 if Ri= AF v A¥ v AF v AF ~ A, A Ay A A A AL I

A={A¥ ~ A, A Ay A A3 A Ay AT ~ A; N Ay N As A Ay,
A¥ v A¥ ~ AF, AF v AT ~ 4F},

then a routine congruence computation and Theorem 5.3 yield di=g AF v AT v
A¥ v A¥ ~ A4, A A, A A3 A A, In particular, if R is a relation such that R 4, then
R has minimum Hamming distance at least 2.

How important is the preservation condition, fi(7; ..., T) = Tfor all ie [, in Theorem
5.3? This hypothesis is used in two places. The first is to guarantee that condition (iii) of
Theorem 4.1 holds. The preservation condition is not crucial here, e.g. the 2-element Boolean
algebra has operations that do not preserve T but still the 2-element Boolean algebra is
the only subdirectly irreducible Boolean algebra. The other use of the preservation condition
is in applying Lemma 5.1. The real requirement is that p(T, ..., T) = g;(T, ..., T) holds for
all j € J. Thus if B is the 2-element Boolean algebra and if, say, 4 = {4, ~ 714; A Al
p= A;,andg = A, v T A4,, then all four conditions of Theorem 5.3 hold but the preserva-
tion hypothesis fails. Ifinstead 4 = {—4; ~ 4A; v —14,},p = 4,,9 = T4, then condition
(ii) holds vacuously since for no R € £2(4,) does R = 4 hold. But (iii) fails for the valuation
v(4,) = F. A more detailed discussion of the problem is found in Berman and Blok ([6]).

6. The inference problem for equational dependencies

Let L = {f;:ieI> be a language of connectives. The inference problem for equational
dependencies over L is to provide an algorithm that decides for an arbitrary finite set
4 U {p ~ g} of equational dependencies over L in 4;, ..., 4, whether or not 4 k= g4,,.., 4,
p~gq.

Condition (iii) in Theorem 5.3 shows that if 4 and p ~ g involve n attributes, then
Ad=4p ~ q can be decided by testing at most 2" valuations. Since each valuation can be
tested in polynomial time the time complexity of the inference problem is in co-NP.

In Theorem 5.3, if 4 = (&, then the equivalence of conditions (i) and (iv) reduces the
inference problem in this case to the word problem for free algebras in the variety generated
by the algebra B. Hence the inference problem for equational dependencies over L is at
least as hard as the word problem for finitely generated free algebras in V(B).

Since we are interested in algebras B that satisfy the hypotheses of Theorem 5.3 we
restrict ourselves to algebras B in which {T} is a subuniverse. Also, in order to simplify
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the discussion and to reduce the number of algebras to be considered, we assume that the
constant operation Tis either an explicit operation of B or is definable, as in say B = {{T,
F}, = >, with x — x defining T.

Post ([16]) classifies all algebras having two elements with respect to the set of term
operations of the algebra. The classification can be pictured by a countable lattice, partially
ordered by inclusion among sets of term operations. We are concerned with a convex
interval of this lattice drawn in Figure 1. The top element of this interval is the set of all
operations on {7, F} that preserve 7 and the bottom element of this interval is the set of
operations consisting of all the projection operations and the constant operation T A
convenient set of generating operations for some of these sets of term operations is provided
in Figure 1 as a labelling of the algebras. Every set Termg(X,, X,,...) for an algebra
B = {T, F}, {f;:ieI>> in which {T} is a subuniverse and T is a constant operation
appears as a vertex in the diagram.

Theorem 6.1. For the collection of algebras in Figure 1, the word problem for firee algebras
is co-NP complete for the varieties generated by an algebra above the dotted line, and is

AN, —

(ZAYIV(zAZ)V(yAz),—

(zAyY)V(zAZ)V(yAz),
< zV(yAz),T

[

co-NP complete-

zV{(yAznT

Polynomial

Fig. 1
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polynomial for every variety generated by an algebra below the dotted line. In particular the
free algebras in the varieties generated by each of {{T, F}, T >, AT, F}, <>, (T, F}, v,
T >, and {{T, F}, ~, T > have a word problem of polynomial time complexity.

Proof: That the algebras below the dotted line have polynomial time word problems
for free algebras is fairly well known. For example if p(4,, ..., 4,) and g(4;, ..., 4,) are
two terms in the operation <, then p and ¢ are equal in the free algebra if and only if the
number of occurrences of A4; in p has the same parity as the number of occurrences of 4;
ing, i=12,...,n

For those above the line, S. Tschantz ([20]) and Bloniarz, Hunt and Rosenkrantz ([8])
have shown that the variety generated by <{T, F}, A, v, T > has a co-NP complete word
problem for free algebras. (One way to do this is to reduce the problem of p=% g to
ONE-IN-THREE 3SAT of Garey and Johnson ([12]), p. 259.) So it suffices to consider
B, = <{T, F}, x n (y Vv 2), T>. Let F, be the free algebra for V(B,) with free generators
Ao, A4, ..., A, and let F, be the free distributive with free generators 4, A, ..., 4,. Define
a function g from F, to F; inductively by :

g(A) = Ao v (4 A A4,
g(py A p2)= Ao Vv (g(p1) ~ g(p2)
g(py v p2) = g(py) v (g(p2) A T).

Then it is easily verified that g(p) and 4, v p are the same as functions from {7, F}"*! — {T;
F}. Hence g is a 1-1 function from F, into F;. If p has length k then g(p) has length at
most 7k. The transformation p to g(p) is Turing computable so an algorithm for the word
problem for free algebras in ¥ (B,;) could be used for distributive lattices. So V(B,) has a
co-NP complete word problem for free algebras.

Corollary 6.2. The inference problem for equational dependencies is co-NP complete for
those based on algebras above the dotted line in Figure 1, and is polynomial for those based
on algebras below.

Proof: Since the inference problem is at least as hard as the word problem for free
algebras, the co-NP complete result follows from Theorem 5.3 and Theorem 6.1. :

For algebras below the line, first consider B = ({7, F}, T >. A typical instance of the
inference problem is, by Theorem 5.3, equivalent to deciding if 4; = 4; N 04 A

1=k=Em
This is equivalent to the question of whether (i, /) is in the transitive closure of the symmetric
reflexive closure of the relation {(i;, jx) | 1 < k =< m}. Standard transitive closure algorithms
give efficient polynomial time algorithms for this.

For B = {{T; F}, +») the algebra B is polynomially equivalent to the two element group
G = {0, 1}, +, 0. In this group, p = g(#) if and only if 0 = p + g(6). So a typical instance
of the inference problem is equivalent to deciding if ¢ = 4;, + ... + 4, is in the normal
subgroup generated by a set of terms, say, py, ---, P Lhis in turn is equivalent to solving
the linear equation ¢ = ¢;py + ... + CnDm With ¢; € {0, 1} over the 2-element field. Standard
polynomial time algorithms exist for this problem.

Finally, for the two semilattice types, we have already seen how the inference problem
here is the same as the inference problem for functional dependencies. Beeri and Bernstein
([2]) contains an O(n) algorithm for this problem.
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7. Functional dependencies as equational dependencies

For B = ({7, F}, A ) the equational dependencies using terms from B correspond in a
very precise way to the familiar functional dependencies. For two sets X, ¥ ={4,, ..., 4,},
Ri= /\X ~ /\Ymeansthatforalls,te R,s(4) = t(4)forall 4 € X ifand only if s(4) = £(A4)
for all A € Y. In the usual notation of functional dependencies this is the sameas Ri= X — Y
and R Y— X. The functional dependency X — Y is equivalent to the equational
dependency AX ~ (AX A /\Y). This equivalence can be made more formal: Let
S = {A4,...,A,} be aset of attributesand I' = {X;, —» Y;, ..., X, — Y} be an arbitrary set
of functional dependencies over S. Let I'" denote the family of all functional dependencies
that are consequences of I". Many algorithms have been given for deriving I'* from I'. The
original rules of Armstrong ([1]) are that I is the smallest class of functional dependencies
containing I and such that the following four rules are satisfied:

() X >Xel" forall X < {4,,...,4,}.

() X >Y,Y—>Zel* then X —» ZeTI*.

(i) X = X, Y < Yand X - Yel'",then X' - Y eI'".
vy X > Y X' Y el then XU X —-Yu Y eI".

Let F denote the free algebra for the variety generated by <{7, F}, A >, with free generators
Ay, ..., A,, and let y be the relation on F given by (AX, A\Y)eyifandonlyif X - X U Y
and Y— X U Yarein I'". The rules (i), (ii), (iii), and (iv) suffice to show that y is a congruence
relation on F generated by the k pairs (A\X,;, AX; A AY), 1 < i = k. Conversely, let § be
an arbitrary congruence relation on F. Define a binary relation — on the powerset of S by
X — Yif (A\X, AX A /\Y)e 6. Using the fact that 8 is a congruence relation it is easy to
show that rules (i), (ii), (iii) and (iv) hold for —.

Theorem 5.3 establishes a correspondence between equational dependencies over the
language of B and congruence relations on a free algebra in V(B). If B = <{{T, F}, A ), then
the equational dependencies are essentially the functional dependencies. In this case, familiar
concepts involving functional dependencies translate to standard lattice-theoretic notions
involving congruence relations. In Table 1 we provide a lexicon for this translation. Note
that the congruence relation concepts make sense for any algebra, not just the algebra ({T;
F}, n>. Inthistable, X, Y, € {4, ..., 4, }forl £ j kD ={X, > Y,...,X,— Yl}isa
set of functional dependencies, 4 = {p; ~ ¢;, ..., P ~ g} is the corresponding set of equa-
tional dependencies over B = ({T, F}, AD, and 8(4) = \/ 6(p;q,) in fa(4,, ..., 4,)
Page numbers refer to Maier ([14]). t=j=k

Table 1

Functional Dependency Condition  Equational Dependency Condition

D derives X — Y (p. 51) » = qgl4)

D, and D, are equivalent (p. 71) - 8(4) = 6(42)

D& D, (p72) 0(d,) = 6(4,)

D is nonredundant (p. 72) 0(4) is a nonredundant join of the 6(p;, g,

D is canonical (p. 75) 0(4) is an irredundant join of maximal join
irreducibles 0(p;, q;)

D is a minimum (p. 79) 6(4)isthejoin 8(pi, gq1) VvV ... v O(pw qy), kmini-

mal
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