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ABSTRACT
The first section of this paper describes
various algebraic properties of th
2-valued logical  systems. Particular
emphasis is placed on the cardinalities of
the free objects. some of these results

were obtained by computer enumeration. The
next section shows how many of the algebraic
properties which hold for 2-element logics,
fail for 3-element ones. The approach here
js to demonstrate these differences without
appealing to the classification of the
2-yalued Llogics as given by E. Post. The
final section is concerned with the

. relationship between the cardinality of the
free objects and the finite basis property
for polynomial identities. The point of
view of the entire paper is that of
‘universal algebra: this motivates many of
the questions and provides most of the tools
for the solutions, and thus accounts for the
notation and terminoloay used.

1f S is a finite set having k elements
and if F is a family of operations on S,
then F can be thought of as a collection of
functions in k-valued logic, or equivalently

as a family .of switching circuits in k-valued

logic. The totality of functions which can be

built up using the projection functions and the
family F under finite composition form what is
called the
generated by F.

and the family F

closed set of k-valued functions
Another way to view the set ¢

js as a universal algebra A
functions
If A is

will denote the variety

= <S,F> having universe S with the

of F as the fundamental operations.

such an alebra, then A

generated by A. Thus, A can be thought of as

all homomorphic images of subalgebras of

products of A, or equivalently, by Birkhoff's

Theorem, as the class of all algebras of the

same type as A that satisfy the same

polynomial identities as A.
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Let FA(n) and
algebra in the

FA(omega) denote the free

variety A on n and on
countably many infinite generators. There is a

natural correspdndence between FA(omega) and
the closed set of k-valued functions generated
by F. FA(n)

collection of n-ary

Likewise, corresponds to the

k-valued switching

circuits

that can be built up from F and the

projection functions.

The free spectrum of the variety A 1is the
[FACOY|, TFACD,

This paper is concerned with how a

sequence of cardinalities

1FAC ), ...

number of properties of A, and hence of the

corresponding k-valued

family of logic

functions, are determined solely'by k and by

the free spectrum of A. The approach taken is

algebraic, and the methods used often involve
recent results from the area of wuniversal
algebra.

The first section is a survey of the known

classification of varieties generated by

2-element algebras. Particular attention is

paid to the free spectra of such varieties. The

second section investigates how some properties

which hold for varieties A -generated by a two
element algebra, fail for varieties generated by

an algebra of Llarger cardinality. The final

section is with the

concerned relationship
between the rate of growth of the free

of A

spectrum
and the finite basis property for A.
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For backaround on universal algebra consult

G. Gratzer's book [91. The definitions of
polynomial, free alaebra, conaruence relation
etc. may &ll be found there. In this paper,
however, a subdirectly irreducible algebra has
at least ? elements. Also, the name of an
algebra and its universe will usually be denoted
by the same symbol, e.g. A = <A,F>. The
binomial coefficient n choose i is denoted
C(n,i). To avoid superscripts on superscripts
the notation **x is  sometimes used for

exponentiation. If  flxq,...,x5) is an n-ary

function on the set {7,1}, then the dual of f

is the function f'(xq',...,x,") where ' is
the usual complementation operator, i.e. (' =1
and 1' =0,

Computing for this paper was done at the
computer center at the University of Tllinois at
Chicaqo Circle. B. wolk aided in some of the
computation. D. Pigozzi and 1. Rosenberg called
my attention to séveral bibliographic items. G.
Gratzer and the members of the University of
Manitoba Algebra seminar provided some helpful
comments on an early version of this paper, as
did P. Kahler and W. Taylor.

Section 1. k=2

ALL the 2-element algebraic systems have
been determined and are explicitly Listed in E.
Post's monograph [26]. There are 56
inequivalent algebras defined using at most
ternary operations, and for each n > 3, there
are 8 inequivalent algebras each including
some fundamental n-ary operation. If V is any
variety, then V  is completely determined by
Fv(omega), the free algebra on a countable
number of generafors. If A is an algebra,
then an element p of FA(omega), the free A
algebra on omega generators, may be considered
as an n-ary operation on A for some n. Thus,
the algebra FA(omega) may be considered as a

family of functions, and as such it 1is closed
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under composition and contains  all the
projection functions. Such a class of functions
is called closed. So there exists a one-to-one
map  from ‘ varieties generated by 2-element
algebras to families of closed functions on a
two element set. By eliminating from Post's
List those algebras containing only constent
functions, and by including only those algebras
in which the projection functions are derivable,
and by including only one from the dual pairs of
classe; one gets the 27 algebras and 4

infinite families listed in Table 1.

The Llist in Table 1 is essentially that of
Lyndon [19]. Post's original notation is used
however, except that the superscript infinity
symbols have been deleted. Also F superM sublJ
is written FM/J. Here M is always greater
than 2.

Post's d oriainal derivation is  somewhat
difficult to read , due in part to the notation
used. C. Platt has redone the classification in
[251. Also [11] contains a proof of Post's
result, but I have not seen this monograph. In
£17] there is a detailed description of each of
the classes. The varieties of monotonic
functions are discussed by C. Benzaken in [5].
The varieties in Post's List which are
congruence permutable are carefully described by
W. Taylor in [313].

The second column of Table 1 contains the
description of the algebras. Wherever possible,
the common name is given. The notation for the
operations is xvy for lattice join, Xy for
Llattice meet (or multiplication), x+y is
addition mod 2, and x-y is the dual of
implication, i.e. x=y ~is 0 except in the
case that x=1 and y=0. The n-median operation
is a function of n variables consisting of the
lattice join of n terms, where each term is
the lattice meet of all but one of the n
variables. Note that the dual of the n-median

operation is the lattice join of C(n,2) terms,

i




where each term is the lattice meet of a pair of
variables.

The next S5 columns are the exact numerical
values of the cardinalities of the free algebras
the
closed form

column
the

free

on 0,1,2,%, and 4 generators, while
headed F(n) is the
cardinalvity of the free
n>0.
well known and follow from easily derived normal
the

congruence

for
algebra on n
generators, Most of these entries are

forms. The closed forms for cardinalities
permutable
varieties are discussed by Taylor in [31]. A
D(n), the cardinality of the

free distributive lattice on n

of free algebras in

closed form for

free generators
is unknown, however see [4], [15], and [16]1 for

_ further information. This class of functions is

often referred to ‘as the class of monotonic
Boolean functions. Likewise, S(n) is the

number of self-dual monotonic Boolean functions,
and a closed form for this quantity is unknown.
are given in [18] and (28],

that

Values for small n
while 2 it
D(n=2) < S(n) < d(n=-1)
of the
P(n) is number - of
n-ary polynomials 1in the
F(n) and P(n)
F(n) = sum over i of
thus

follows
Th=
P(n) sequences for the
the

from
for n > 2, final 5
columns consist
varieties. Here
essentially given
The are
related by the formula
C(n,1)P(i) as i

sum over i of C(n,DC-D"TFG) as i

variety. guantities

goes from 0 to n, and

P(n) =
goes from 0 to n.

Let B(n) denote all of the 2*k (2%%n)
Boolean polynomials. Thus B(n) 1is the free
Boolean algebra on n generators and as such is

The free

any of the

a distributive lattice of length 2".
algebra on n generators in
varieties generated by a two element algebra is
a subset of B(n), and it turns out that many of
these free algebras can be described in terms of

the Llattice order of R(n).
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For example, shows that

FCz(n), the

an easy induction
the

Boolean rings, consists of all polynomials p in
B8(n)

free algebra in variety of

for which p < Xquxpv...vxp.  The dnterval
lattice with
the

Lf, xqvxpv.e..vx,] is a2 Boolean

2xx (2%*n=-1) elements. Likewise, free

n-generated algebra for the variety generated by

C; consists of all elements in the interval

Cxqxoeauxpn,  Xqve..vxpd.  Similarly, the free

n-generated algebra for dual implication
consists of all polynomials p in B(n) for
which P < xj for some i, 1 <i<n.

Denote by G(n) the cardinality of the free dual

implication algebra on n free generators.
Inclusion-exclusion arguments give G(n) = sum
over i of €(n, (-1 T2ux(24x(n=1)) where

€(n,i) is the binomial coefficient n choose i.
However, the P(n) and F(n) sequences for Boolean
such that F(n) - G(n) = P(n), and

F(n) - P(n) as in Table 1.

algebras
thus

are
G(n) =

The variety generated by Fe has a similar

description for its free algebra. It is easily

seen that any polynomial p of the free algebra
the

distributive lattice

on n for

generators this variety has
property that p is a
polynomial and p < x; for some free
x; of B(n).

polynomial which is

generator
Moreover, any distributive lattice
less than or equal to some

such generator 1is in this free algebra. Also

the set of such distributive Lattice polynomials

in  B(n) which are less than or equal to the
meet of m free generators has cardinality 1 +
D(n-m). So applying inclusion-exclusion and
arguing as 1in the case of Fg gives the
cardinality of the free Fg algebra on n free

generators to be F(n) - P(n) of As.

The free algebra on n free generators for
the variety generated by Fg

the

can be seen to be
B(n) for which
for 1 < i <n. A

type
entries for this row of Table 1.

set of all polynomials in
similar

the

X1X2e==Xn < P < x4
inclusion-exclusion argument gives
Note

values are one-half the corresponding values for

Fg.

these




The situation for F?g, 726, and F25 is
similar, but I know of no closed form for the
cardinalites of their free algebras. The free
FZS algebra on n free generators consists of
all Boolean polynomials p in B(n) such that
p<a where g is any element of the free Dy
algebra, i.e. q is a self-dual monotonic

polynomial in n variables. The entries for 3

and 4 generators were obtained by a computer

enumeration. The free F26 algebra is the same

except that the polynomial p must be monotonic

F2 can be

as well. For s the polynomial p

any Boolean polynomial with x1X2...xn <p<fa

with again q being self-dual monotonic.

Finally, the F"; for m> 3 and j= 5,6,
or 8 are similar: the free algebras on n free
generators consist of Boolean polynomials p of
the appropriate type such that p < g where [¢]
is any polynomial in n variables in Fm7.
PRCBLEM #. Obtain closed forms for the
cardinalities of the free algebras on n free

generators for ij, m> 2 and j= 6 or 8.

The column headed 01 1in Table 1 Llists the

results when the two constant
and 1 the
Note there are only a finite number of
all of the

families reduce to Aq or C1;

algebra which
functions O are adjoined to
algebra.
i.e. infinite

distinct entries,

The next

or not the variety is distributive.
The

g 1]
Jonsson's

congruence
due to

the
these

importance of this property is
[131. For

distributivity of
The column headed PER

Those

Lemma details on

congruence some of
varieties see [11, [21].
deals with congruence permutability.
2-element algebras which generate varieties that
are congruence permutable are precisely the ones
with

[31] (see also Quackenbush [27]).

small fine spectrum as described by Taylor

column, headed DIS, Llists whether
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The S-D
algebras whose closed classes of polynomials are

column headed indicates  those

sel f-dual , i.e. if in the

Note the

Plxq,.caxy) s

class, then so is P(xq',eea,xy™)’.

polynomials themselves need not be self-dual in
this case.
Section 2. 2#3

This section exhibits several properties

which hold for
element set, but fail for algebraic systems on a

algebraic systems on a two
element

of this

larger set. In most cases, a three

The

breakdown from two to three is unclear.

algebra suffices. exact cause

A. The number of closed classes: Post's work

£263 that

infinitely many closed classes of functions on a

shows there are only countably

two element set; that is, only countably many

inequivalent varieties can be generated by a two

element algebra. Moreover, each such closed
class can be generated by a finite set of
functions. It is known that there are

uncountably many closed sets of functions on a
3-element
in [10].
[293.

example,

set. This is given in [12] and later
Also see I. Rosenberg's survey article
103  for

n define an

The examples are similar: In

for each integer n-ary
fn on {0,1,2> by falxq,eea,xy)) =0
if at least two distinct variables
in  {0,1},

Then distinct sets of these

operation
have values

and  f (xq,...,x;) = 1 otherwise.

functions produce
distinct closed classes.

PROBLEM #2. Provide a direct proof that there
exist only countably many inequivalent varieties
generated by a two element set. "direct"

all of the

Here

means avoiding an enumeration of

classes as done by Post.




PROBLEM #3. How pathological is the

k = 22

of

Llarge chunk of the varieties

case
Can some

generated by the 3-element algebras be

classified in some way? I. Rosenberg, in (297,

also mentions this problem.

An algebra A s
S of
polynomial equations such that each equation in
S holds in A, y
which holds in A

B. Finite basis property:
finitely based 1if there is a finite set
and every polynomial equation

is a logical consequence of

the equations S. For details see [9, .25
and 285]. It s known that every Z2-element
algebraic system 1is finitely based. Lyndon

proved this in [19] using Post's classification
[26]. in (33, different
avoiding Post's list. V. L. Murskii [23] has

exhibited a

I gave a proof,

2-element groupoid that is not

finitely based.

PROBLEM #4. What other Z-element groupoids, if

- by a 2-element algebra have definable

any, are not finitely based? % Zfei@k has o§\€

In [241, R.

groupoid and asks whether or not it is

E. Park presents a 3-element

finitely

based (he conjectured it was finitely based).
In ([33] this groupoid was shown to have
definable principal congruences (see D below)

and therefore it 1is finitely based. Another

potential non-finitely based 3-element groupoid
is the groupoid of Grzegorczyk which is a
subgroupoid of a 4-element groupoid that is
The

For

known to - be non-finitely based.

multiplication table is' given below.

details on this see [141.

012
ot & 1
1o 1 1
2lr 2 0

C. Residsual finiteness: Every variety generated
by a 2-element algebra has only a finite number

of subdirectly irreducible algebras, and each of

these subdirectly irreducible algebras is
finite. W. Taylor observed this in [30] by
examining the members of Post's list. In 3] 1
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gave a direct proof; in particular, each such

variety has at most three subdirectly

irreducible members, and any such subdirectly

irreducible has at most three elements. In
£301,Taylor

that generate varieties that contain arbitrarily

mentions some 3-element algebras

Llarge subdirectly irreducible algebras.

D. Definable principal congruence relations: A

variety is said to have definable principal

congruences if there is some first order formula
which determines principal congruence relations
for all algebras in the variety. For details on
this concept see [2].

Llist would show that all the varieties generated

An examination of Post's

principal
the defining
the
the

size of

congruences, although some of

formulas are probably quite large. As with

property of being finitely based and

property of having -a bound on the

subdirectly irreducible algebras, a proof can be

given directly, wusing some results from

universal algebra instead of Post's catalog. To

this end, let A = <{0,1}, F> where F is some
family of operations. If all members of F are
at most essentially unary, then since the
variety A is locally finite, the results of

C23

congruences.

apply to show A has definable principal

Likewise if A is a semilatice
with nullary or unary operations, then again A
definable

By lemma 1 of [31, it follows that

is  known to have principal

congruences.

the only remaining cases are such that A s
congruence distributive or congruence
permutable. If A_fs congruence di§tributive,
then by Jéﬁsson's temma 133, A 1is the only
subdirectly irreducible in A. So all the
subdirectly irreducible members of the variety
A are described by some first order sentence

and have
p. 3951].
generally by the

the congruence extension property [9,
So by a result of A. Day [8], or
pavey [7]1, the

more
work of B.

the congruence
then by ([2]1 A has definable
If on the other hand, A

variety A also has extension
But

principal congruences.

property.

is congruence permutable, then it is known that



is the
Thus,
applies (the

every finite algebra in the variety £

direct product of 2-element algebras.
McKenzie's theorem S in [27M]
overriding restriction of [20] to finite type is

not needed here).

There exist algebras of cardinality greater
than 2 that do not have definable principal

congruences. S. Burris in [6] exhibited a

L-element algebra without definable principal

congruences. In [20] McKenzie showed that any
nondistributive lattice generates a variety that
does not have definable principal congruences.
W. Taylor [22] has constructed a three element
semigroup that does not have definable principle
congruences. 1f, say, its universe is {1,2,3)},

then all products are 1 except for 2%3 which

is equal to 2.
PROBLEM #5. Among the Z-element groupoids, how
prevalent are those with definable principal
congruenées? Do they have any special

characterization?

E. Adjoining constants: If A is any algebra,
and if each element of A is a nullary
constant, then A is said to have a full set of
constants. So, in this case, the free algebra
for ﬂ_with 0 free generators is isomorphic to
A and every algebraic function on A is a
polynomial.

An examination of Post's List shows that
there are only a finite number of algebras which
have a full set of constants. An explicit proof
of this fact, not appealing to Post's catalog,
now follows.

THEOREM 2.1. Let A be an algebra having
universe <{0,1} and suppose A contains both O
and 1 as nullary constants. Then A is one of
with ¢ and 1; b)

c) semilattice

the following: a) a set
complementation with 0 and 1;
with 0 and 1; d) distributive lattice with 0
and 1; e) complemented Boolean group; f)

Boolean algebra.
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Proof: If

operations, then case

A has no nonconstant nonprojection
a) holds. Otherwise, let
f(xq,...,x,) be any nonconstant nonprojection
operation of A with n > 1.
is 0 ={0,13"
lattice in the usual manner. Let 0 and 1 be
C's and
First suppose f is monotonic: so

a<b

The domain of f
which may be considered as a
the n-tuples of all 1's respectively.
n >2, and
f(a) < f(b), and f(0) = N and
f(1) = 1. Let a be in D ancd suppose

implies

a s
minimal with the property that f(a) =1, If
two or more coordinates of a have value 1,
say a4 and ajp, then Llet f° be the binary

operation derived from f :by replacing x: by

1

the constant aj, for all i > 2. Then f° is
If there are two
and b for

which f(a) = f(b) = 1, then construct a binary

a meet semilattice operation.
such minimal members of D, say a
polynomial from f in two variables y and =z
which

replace the variable X ; by the

as follows: for those coordinates i for
ai= bi

constant a;; for those i for which the value
of a; is 1 and b; is O,

variable  xj by vy;

replace the
for those i for which
a; = 0 and by = 1, replace x; by z. The

resulting function 1is yvz. Thus for a2 given
monotonic nonconstant function f:

(i) If there is only one minimal a in D

for which f(2) =1, then

meet of k variables, 2 < k < n.

f dis the lattice

(ii) If every minimal a in D for which

f(a) =1 is an atom, then f 1is the lattice
join of k variables, 2 < k < n.
(iii) If there are at least two such minimal
members of D for which f has value 1,
and at least one of these is not an atom,
then both meet and join are derivable from
f; and since f 1is montonic, f can be
generated from the meet and join operations.
Therefore if all fundamental operations of A
are monotonic, then A is either a semilattice
with 0 and 1 or is a lattice with 0 and 1.

1f some operation of A 1is not monotonic,

then there exist elements a and b in D such

that a and b differ only in say the i-th

Ui

R




coordinate, a < b, and f(a) = 1 and f(b) = O,
Freezing all but this coordinate gives
complementation. 1f all the operations of A

are at most unary, then this gives case (b)} if

some other function is monotonic and depends on

more than one variable, then A has a
semilattice operation and A is a Boolean
algebra. So suppose f. is not monotonic and
depends on n variables, n > 2. I1f there
exist elements a and b in D such that

f(ab) # f(avb) (or dually), then

appropriate

f(b) =
the

f(a) =
by making identifications, a
can be obtained.

Likewise, if there exist a and b
f(a) = fCab) = f(avb) # f(b),

or dual implication are polynomials for A.

semilattice operation
that

then implication

such

Any

of these operations together with
algebra.
with b

Without Lloss of

Boolean
a< b,

complementation give @

suppose for some
a, f(a) = f(b) holds.

generality, aq =0, by =1eand a; = b; for all

Finally,

covering

i 2.2. Consider any ¢ and d for which
cp =10 and dq =1 and ¢ = d; for i>oe.
Then there exists a seauence of transpositions
from the pair {a,b} t:z rre pair {Lc,d}.
Moreover, if {r,s} 1is any coverina pair in
this sequence of transpositions, then
f(r) = f(s) since otherwise a semilattice or

dual would be

But since this holds for all such ¢

implication or implication
derivable.
and d, it follows that f
the So if b
f(a) # f(b). So starting

D have

does not depend on

variable  xq. covers a, then

alternate
Thus

from 0,

Levels in alternate values.

f(x1,...,xn) = xqt..otxp or
The replacement of

the

f(x1,...,xn) =
n-2

operations

THxq*teeatxye

of these variables by [ yields

x+y or xty+l. Thus A is a

complemented Boolean aroup.

2-glement

The

What is the situation for
algebras that have a full set of constants?
£122, but not 7103, still
an uncountable family of varieties.

the

example in provides

This again

illustrates change when going from

2-element algebras to Z-element algebras.
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PRPOBLEM f#¢_, An zlgebra r is sait to be

functionally Lgoﬁplete if the algebra A",
ohtained frqﬁ A" by adjoining all constants of
i.e. for

A" to A

A as operations, is primal, all n,

every function f{om is a polynomial

cf A~. If a s finite, is of finite type,
and is functionally complete, is A finitely
besed?

Section . The arowth of free spectra

Let A be any finite algebra of cardinality

FA(M),
free qeneratcrs for the variety
k*x(k**n). 1In this

k. Then the cardinality of the free

Laebra on n

D

A, is at most section it

is shown that if the free spectrum of A, as a

function of n, grows very slowly or if it

arows very rapidly, then A is finitely based.

LEMMA 2.1, Let V be any variety of algebras.
The following are eauivalent for an integer s:

1)
by a polynomial in n
(i) The

The cardinality of Fv(n) is bounded above
of degree s.

number of essentially n-ary
polynomials for Vv, P(n), hQs value 0N for all

n > s.

Proof: Note that Fv(q) has cardinality equal

to the sum of the products C(n,i)P(i) where i

So if P(i) =0 for all
is bounded by the sum of
This
sum, in turn, is bounded by the cuantity p (s+1)
C(n,s) :

tﬁe

ranges from ¢ to n.
i > s, then |FVv(nm|

C(n,i)P(i) as i ranges from (0 to s.

for. sufficiently Large
the PC(i),

n, where p s

maximum of But

0<i<s.

C(n,s), as a function of n, is an s-th dearee

P(i) # N
the cardinality of
C(n,1), thus

is agreater than n'.

polynomial. Conversely, if for
arbitrarily Large
FV(n) is

€n, NP

i, then

greater than and

Theorem 7.2. Let V be any variety of finite

type such that the free spectrum of V s

bounded by some polynomial function of n. Then

V has a finite basis for its identities.

No, Mclkenzie
ha¢ g}rwpo}&,
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Proof: If m is an arbitrary integer, then let
C={c;11 < i < |FV(m |} be a fixed enumeration
of some representation of FV(m). Let E(m) be
a listing of all the operation tables of FV(m),
i.e. E(m) consists of all equations of the
form f(dq,...,dy) = d, where f is a
fundamental n-ary operation of vV and
dqse..,dn,d are all_in C. A standard induction
shows E(m) is a basis for all identities of V
which involve at most m wvariables. Let t be
the maximal number of arguments of any
fundamental operation of the variety V. By
lemma 2.1 there is some integer s such that
P(n) =0 for all n > s. Claim E(st) is a
basis for V. It suffices to show that if p =g
holds in° V then p = a is derivable from
E(st). Let c3(xq,...,xg) be a List of all
elements of FV(s), 1< i< |FVI. 1t
suffices to show that if p(xq,...,x,) is any
polynomial in the type of V, then there exists
some i such that plkq,ec.,xy) = Ci(Yqrecsaryg)
is derivable from E(st), where {yq,...,yg} is
some subset of the set {xq,...,xp}. Note that
since st > 2s, ‘the equations E(st) and
transitivity may be used to show two such c;
with possibly different sets of variables are
equal. So suppose p(x1,...,xn)
= f(p1,eee,Pp) (Xq,-0.,xy) where each pj is
derivably equal to some cj+ using E(st). Each

such ¢ involves at most s variables and

il
m<t, so flcqi,..-,c1) involves at most st
variables and thus using E(st), the polynomial

p(x1,...,xn) can be shown to be equal to some

Ck.

Note that if V has only unary operations,
then P(n) =0 for all n >1. Thus, the
following known result is a consequence of Lemma

2.1 and theorem 3.2.

Corollary 2.3. Let V be any variety of unary
algebras of finite similarity type. Then V is

finitely based.

Let A be a finite algebra of cardinality
k. As previously mentioned, the cardinality of
FA(n) is at most kx*(kx*n). The next result
shows that if this cardinality is O(k#*(k**n)),
then A is finitely based. This confirms a

conjecture of G. McNulty.

Theorem 3.4. Let A be an algebra of
cardinality k for which there is some positive
element ¢ such that the cardinality of FA(n)
is > c(kxx(k**n)) for all n. Then A s

equivalent to some finitely based algebra.

Proof: let - A ={1,2,...,k}. A function
PXq,000,xp) in FA(n) is called
auasi sheffer if there exists some subset § of
{1,2,...,k> such that any m-ary function f on
A for which f(x,...,x) = x for all x in §,
can be built from p under composition. By
Murski [23],. it suffices to show that for some
n, there exists a quasi-Sheffer function in
FA(n). But by lLemmma 10 of that paper, if a(n)
denotes the number of quasi-Sheffer functions
with n variables on a set with k elements,
then the Llimit as n goes to infinity of the
quantity aq(n)/(kxx(k**n)) is 1. So for some
n La}ge enough, it must be that a(n)
> c(kxx(k**n)), and so FA(n) must contain some

quasi-Sheffer function.

PROBLEM #7. Can the bounds in Theorems 3.2 and

3.4 be sharpened?
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