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Abstract. Evolution equations that feature both nonlinear and dispersive effects
often possess solitary-wave solutions. [xact theory for such waves has been developed
and applied to single equations of Korteweg-de Vries type, Schridinger-type and
regularized long-wave-type for example. Much less common has been the analysis of
solitary-wave solutions for systems of equations. The present paper is concernaed with
solitary travelling-wave solutions to systems of equations arising in fluid mechanics
and other areas of science and engineering. The aim is to show that appropriate
modification of the methods coming to the fore for single equations may be effectively
applied to systems as well. This conlention is demonstrated explicitly for the Gear-
Grimshaw system modeling the interaction of internal waves and for the Boussinesq
systems that arise in describing the \wo-way propagation of long-crested surface
waler waves.

1. Introduction. Solitary waves play an important and sometimes dominant role
in the propagation of nonlinear, dispersive wave motion. Consequently, the inveg-
tigation of the existence, stability and other properties of such waves by analytical,
numerical and experimental means has been a focus of activity for more than three
decades. Much of the effort concerned with existence theory of solitary waves has
been focused either on model equations for the unidirectional propagation of waves
in nonlinear, dispersive media, or with the full Euler equations for surface and in-
ternal waves, though with some notable exceptions, such as the work of Toland
(1981, 1984) on the system of equations derived by Bona and Smith (1976) for
surface water wave propagation and M. Chen’s work (1998) on more general clagses
of Boussinesq systems.
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The focus of this contribution is to develop general techniques that may be used
to establish existence of travelling-wave solutions of systems of evolution equations.
Two strategies will be proposed. One is to utilize the concentration-compactness
theory of P.-L. Lions (1984) which has been used in the context of solitary waves
by Weinstein (1987), Albert (1996) and Chen and Bona (1998), for example. The
other methodology to be developed here for systems is the positive operator theory
of Krasnosell’skii (1964a, 1964b) which has been applied in the context of nonlinear,
dispersive waves by Benjamin et al. (1990) and Chen and Bona (1998).

The general results will be shown to be effective on two example systems of
equations that are of current inferest. One is the system derived by Gear and
Grimshaw (1984) to describe the interaction of internal waves having different ver-
tical structures, but nearly identical phase speeds, and the other is the Boussinesq
system for two-way propagation of small-amplitude, long-wavelength, long-crested
disturbances on the surface of a lake or ocean or in a channel. These systems are
now described in a little more detail.

In an idealized, incompressible, fluid system consisting of two horizontal layers
of different densities with the heavier fluid below the lighter one, small-amplitude
long waves propagating on the fluid interface, or pyenocline, may be approximately
described by writing the vertical displacement 7 in the form

n(mazvt) =u(x,t)p(z), (11)

where z is the horizontal coordinate in the primary direction of the waves' propa-
gation, z is the vertical coordinate in a standard Cartesian frame and ¢ is elapsed
time. Here, the waves are presumed to be long-crested, so not varying significantly
in the horizontal direction y perpendicular to . In the approximation afforded by
the representation (1.1), the waves’ vertical structure is determined by p which is in
turn the solution of a Sturm-Liouville eigenvalue problem in which the ei genvalue is
related to the primary speed of propagation (the speed of propagation of waves of
extreme length). In certain circumstances, it may happen that waves with different
vertical structure have practically the same speed of propagation, and in this case
interesting interactions can occur between them. If w and v denote the horizontal
variation of o pair of such waves, then their propagation is governed at the level of
modelling displayed in (1.1) by the system

(1.2)

Up + Ulg + Ugzz + 03Vzse T G1VVUs + GZ(UU)m =0,
bive + Vg + VUz + Ve + b203Uzzs + byagutg + baai(uv)y =0

derived by Gear and Grimshaw (1984). Here a1, a2, as, by, ba and 7 are real constants
with by, by positive, determined by the densities of the fluid layers and their vertical
extents. Once u and v are obtained from (1.2), the entire motion is approximately

u(z, t)p1(2) + v(z, t)p2(2),

where py and py are the vertical structure functions corresponding to u and v,
respectively. The initial-value problem for (1.2) is known to comprise a well-posed
problem (sce Bona et al. 1992). Here, attention is given to travelling-wave solutions.

One of the more venerable of the systems arising in fluid mechanics is the original
Boussinesq equations (Boussinesq 1871)

n + Uz + (’U/I]);,, =0,
(1.3)

1
Ug + Ny + UUg + 3t = 0,
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put forward as a description of waves in a channel or long-crested, long-wavelength
water waves propagating on the surface of water. In Boussinesq’s conception, 7
is a scaled version of the small displacement of the free surface whilst u is the
depth-averaged horizontal velocity of the water at the spatial point z. Based on
this original system, but taking a different view of the velocity variable, and using
the lowest-order relationship (the linear wave equation) to systematically alter the
dispersion terms leads to the family of formally equivalent systems

N + ug + (Uﬂ)x + QUgyr — Nzt = 0, (1 4)

Ut + Nz + Uy + gz — Qliger =0, '
where

1 1 1 1

a=>(0%- Pr b=5(0" - 7)1 =),

c=30-0, d=L1-e)(1-p).

The parameter § € [0, 1] specifies which velocity variable is used in the model whilst
A and 4 are modelling parameters, (see Benjamin 1974, Whitham 1974, Bona and
Smith 1976, Bona and Chen 1999, Bona, Chen and Saut 2000). The constants
a,b,c,d are actually a three-parameter family satisfying the constraints

1,, 1 1 ) 1
_ — g = — —_ > = —.
a+b 2(9 3), c+d 2(1 6°)>0, a+b+c+d 3

Whena=b=c=0and d = %, the system reduces to a regularized version of the
original Boussinesq system (1.3), when e =0, b = -é, c=0,d= ;';, the system is the
regularized Bosssinesq system studied by Bona and M. Chen (1998), when a = 0,
b= %, o= —11,-., d = %, the system is the one put forward by Bona and Smith (1976)
and studied by Toland (1981, 1984), whereas, when a = ¢ = % and b = d = 0, there
obtains a coupled KdV-system.

Both the (1.2) and the (1.4) systems may be written in the form

Cj)t ! L<Z>w " (fléﬁﬁ%)z N N<Z>t =0, (1.5)

where the operators L and N are 2 x 2 matrices, each entry of which is a Fourier
multiplier operator associated with the dispersion relation, and J1, f2 are non-linear,
smooth, real-valued functions defined on R* satisfying f,(0,0) = J2(0,0) = 0. (In
the specific systems described above, f; and fy are quadratic polynomials.)

Solitary waves in such systems are the focus of attention here. These waves have
the form u(z,t) = ¢(z — Ct),v(z,t) = Y(z — Ct) where C > 0, say. Substituting
this travelling-wave form into (1.5) and demanding ¢ and 1 vanish suitably at Zco
reduces (1.5) to another system of equations, namely

o-ov-n ()~ (422)

where C — CN — L = CI— CN — L and I is the 2 x 2 identity matrix.

Once it has been appreciated that both the concrete systems just described have
the form depicted in (1.5), it is natural to generalize the discussion to evolution
equations of the form

u; + Lug + f(u), — Nu, =0, (1.7)

where the boldfaced letter u = (uy, -+ ,uy,) stands for an m—dimensional vector
of functions, each component u; of which is a function of z € R and time ¢t €
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[0, 00), and whose transpose is denoted by ut, L and N are m x m matrices whose
entries are Fourier multiplier operators, £ = (f1,--, fm), where for 1 < j,k <
m, each component f; is a real-valued, smooth function defined on R™ satn:.tym;,
f3(0,--+,0) = 0 and 8 f;(0,--,0) = 0. The study of solitary waves u(z, t)
u(z — Ct) = (u(z — Ct), - um(:r: — Ct)) that vanish at +oo reduces the syatem
(1.7) to the form

(C—CN — Lyu =f(u). (1.8)

The system (1.6) is a special case of the system (1.8) where m = 2.

This paper consists of five parts including the Introduction. Section 2 pro-
vides theory applicable to the Gear-Grimshaw system and to certain other two-
dimensional members of the general class depicted in (1.8). These developments
rely upon the concentration-compactness principle. An application of positive-
operator theory to the system (1.6) with particular reference to the system (1.2)
and to the family of systems (1.4) is the focus of Section 3. Sections 4 and 5 ex-
tend the theory to the systems as in (1.8). There is also an Appendix where some
technical issues arising at several points in the development are settled.

It is worth pointing out explicitly that the theory resulting from the use of the
concentration-compactness principle and that related to positive-operator theory
overlap, as we show by using both on the Gear-Grimshaw system, but neither con-
tains the other. Concentration-compactness methods rely on less structure in the
linearized dispersion relation, but require homogeneity of the nonlinearity. Positive-
operator theory only requires a superlinearity presumption on the nonlinearity, but
demands more of the dispersion relation. Positive-operator theory has additional
advantages when it is applicable because the theory rests on topological degree the-
ory. In consequence, perturbation results and existence of periodic travelling-waves
appear as corollaries. These latter points are not developed here, but they will be
enunciated in a separate essay.

2. Solitary-Wave Solutions of the Gear-Grimshaw System and its Gen-
eralizations via the Concentration-Compactness Principle.

2.1. Notation. For p > 1, the Banach space L, = Ly(R) is the class of Lebesgue-
measurable functions on the real line R that are p-th power integrable, with the
usual modification if p = oco. The norm of a function f € Lp is denoted by |f|p.
The Fourier transform of a function f € Ly is defined as f = e~%2 f(z)dz. An
unadorned integral will always connote the integral over the real line [R. For a non-
negative number s, the Sobolev space H® = H*(R) = {f € Lz : (1 + £2)%|f(6)| €
Lo} carries the norm || - ||, defined by ||f||Z = [(1 +&%)° |F(€)[?d€. In particular,
HY = Ly, so ||fllo = |flz- In case f € H*(R) for all k > 0, we write f € H*®(R).
When s = m is a positive integer, ||f||s is equivalent to {|f]3 + |Dmf|2} when s

is not an integer, s = m + §, say, where m is non-negative integer, and 0 < o<1,
I £lls is equivalent to

Dm T pm 2 _;_
{1712 + min{1, m} | D £ + / / | flxl [1+2;r i dydz}’,

where D' f denotes the mth derivative of f with respect to its argument , and
in case m = 0, the zero-th derivative DOf of f stands for f. The product spaces
Lpx Ly ={(f,9): f, g€ Ly} and H" x H* = {(f,9) : f € H", g € H*} are
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Banach spaces with the norms |(f, 9)[pxp, = |fI5+1gl5 and ||(f, 9)lI<s = I fI1Z+gll3,
respectively.

2.2. Solitary-Wave Solutions of the Gear-Grimshaw System. The Gear-
Grimshaw version of the travelling-wave system (1.6) is

1 1
- Co+ §¢2 +¢" +azy” + 5011/)2 + azdy) =0,

1 1
—0CY + 1+ 59 9"+ baagg” + Sb202¢” + brardyp =0,
or
1 1
(C—D3)¢—asDiy = §¢>2 + §a1¢2 + ax¢np,
1

1
—baagD2¢+ (bC —r — D)y = 51/)2 + §bzaz¢2 + baardp.

2.1)

Introduce the notation
Lo — bz (C = Dg) —bzang
€T\ —bagD? (bC—r)— D2

and

b aszb ard 1
F(p,w) = 58° + 226 + —2o9% + 29
The system (2.1), with the first equation multiplied by b,, may be written in the
tidy form

Lo(¢, )" = grad F(¢,9). (2.2)

Thus existence of solitary-wave solutions of the Gear-Grimshaw system is reduced to
the existence of appropriate solutions of (2.2). Motivated by the ideas of Weinstein
(1987), introduce the functional

Afyg) = — U9

(JF(.g)da)’
where

J(f)g) = /(fag)LC(f)g)t dx

for (f,g) € H! x H!. Elementary calculus shows that any non-zero critical point, in
particular, any non-zero minimizer of A is, up to a rescaling, a non-trivial solution
of (2.2). Furthermore, A is homogeneous of degree zero, which is to say that for
any constant A # 0, A(Af,A\g) = A(f,g). Hence instead of studying directly the
minimization problem for A, we consider instead the variational problem

o(1) = inf {(f,9): f.g € H', [ P(£(e),9(e) do =1}, (2.9)

From its definition, the operator L¢ is self-adjoint on H! x H! and satisfies the
inequalities

AIFIF +lgl}) < I(F 9) < FUFNE + gl (2.4)
where 2y ( . 2)
_ . 1 — 621‘3.3 2 ] - 2{1:}
7y = min {b:C, bC -, = 5 }
and

¥ = max {bgC, hC —r, b2(1 + b2a§)a 2}'
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In particular, Lo is positive definite on H' x H! if 7 > 0. On the other hand,
repeated use of Young’s inequality shows that

|F(¢,9)| < w0l + [¥]%),

where 7o = max {2 4 l2zlbz | laalbe - aalba | Jarlbs 4 13 Gince H1x H' € Lpx Ly
for any p in the range 2 < p < oo with an embedding constant less than or equal to
1, it follows that 0 < ©(1) < co and that every minimizing sequence {(un,vn)}5>,
is bounded in H! x H'. Denote by p, the quantity |un|? + [ul|2 + Jvn|? + v} %,
and let [ pn(z)dz = pn. Then the sequence {yn}52; is bounded and furthermore,

2

3

B _2
= Ny )12 2 [ 9l 2 (207" [ Fim, ) )" = 072
Without loss of generality, suppose u, — p as n — o0, so that p > 'yo_%. The
concentration-compactness principle then yields the following result.

Theorem 2.1. If bya? < 1, then for any wave speed C > ﬁ, every minimizing
sequence for (2.8) is, up to spatial translates, relatively compact. Consequently, the
system (2.1) or (2.2) has a nontrivial solution which lies in H* x H®.

Proof. By Lions’ principle, if the theorem is not valid, then there is a subsequence
{pn 121 of {pn}32, which satisfies either the Vanishing or the Dichotomy criterion.
If Vanishing occurs, then for any R > 0,

lim sup/ Pn(z)dz =0,
k=00 yeR Jig—y|<R
whence

lim sup/ (|tn, (@)[* + |vn, (2)?]) dz = 0.
k—=oo yeR Jiz—y|<R

Since the derivatives u;, and vy, are bounded in L;, Lemma 2.4 of Chen and Bona
(1998) leads to the contradiction

1= / F(ttng Uy d < 70 / (1t @)[2 + [0 (2)°) dz — 0.

If Dichotomy occurs, there is a i € (0, 1) such that for any € > 0, there corresponds
a ko and sequences {p}}%, {02}, C L1, pk, p > 0, such that for k > ko,

[pns. — (P + PRI < €, I/p}cdw—ﬁlie, I/pidm—(#—ﬂ)lse,

supp p Nsupp p2 =@ and klim dist{supp p},supp pi} = oo.
—r00

(2.5)

In fact, the supports of pj and pZ may be assumed to be separated as follows:

supp o1 C (yk — Bo,yk + Eo), supp pp C (—00,yx — 2R) U (yx + 2Rk, 0),

for some fixed Ep > 0, a sequence {yx}7>; C R and a sequence {Ry}72, for which
Ry — oo (see again Chen and Bona 1998, p. 58). To obtain splitting functions

ui, uZ and v}, vZ of up, and vn,, respectively, k = 1,2,---, let {,9 € C§° with
0 < ¢, <1 be such that {(z) + ¥(z) =1 for all z € R, and
1, when |z| < 1,
C(z) = { 0, when |z| > 2,
(2.6)

10, when |z| < 1,
¥le) = { 1, when |z| > 2.
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For z € R, denote by {, and ¥ the functions {(z) = ((’”—Elﬂh) and Yi(z) =

w(’—;t;kyi), where E; > Ey is chosen large enough (in this case, it is required that
Ey > maxger [¢'(z)]) that for k& > ko,

| [ (et 4 1Gevm [ + 1D (Grins )P+ 1Da(Gems ) = o ] < 2

and

| [ (1me P+ a2 + Do ins )P + 1D ) — ] < 2.

To see this is possible, first note that from (2.5), for & > ko,

€ > |pn, — (pk + P3)I1 =/ lon,, — Pkl dz
|z—yk|<Eo

+/ Ipnk —Pild-’E'i'/ Py, dz.
|z—yx|>22Rx Eo<|z—yk|<2Ry

In consequence of this relation, it transpires that for k > ko,

‘ / (ICkUnkP + |Ck:'unk|2 e |Dz(Ckunk)|2 0" |Da:(CkUnk)|2 3 p’1€> dmi
= ‘ /| |<2E (leunkP + 'Ck/unkl2 + |D$(Ckunk)|2 il 'Dz(ck’unk)lz 3 pk) dx|
T—Yr | K20,

<[ o phlde + max{IG @) + G [ Pz
lz—yi| < Eo z€R Eo<|z—yk|<2E;

1
< p —,01 dz + max 1+—|(’(x)|2 On, AT
/|$—'yk|SEo " k| a:e]R{ E} } Eo<|z—yk|<2E: "
S/ Pnk—Pkldw"'z/ P dz < 2€
|z—yx|<Eo Eo<|z—yk|<2R:

and

| [ (11me 2+ Woone P+ D)+ 1Da b2 = o) ]

= | /| >R (Iﬁl)kz’ll:rwe'2 + |¢kvnk|2 + ID:D(wkunk)lz I |Da:(’lpk’vnk)|2 N pz) dz‘
T—Yk |21k

<|/ (Igktine 2 + W,
Ry <|z—yr|<2Rx

+ 1D Wkten, )1 + 1De(kvn, I — o) da| + / pn, — 52| dz
|z—yk|>2Rg
<max{Iw@) + g @)} [ s da
z€R Rk Ri<|e—yr|<2Ry

+ / 1Py ~ 03] da
|z—yi|>2R

§2/ pnkdx+/ |pnk_pi|dx < Z2e
Eo<|z—yx|<2Rk |z—yK|22Rk

Thus if we set u}, = Cktin,, Vi = Ckn,, ui e wkunk,v;‘: = tYxun,, and define wi, w}
by Un, = uj+ui+w} and vp, = v} +vi+w}, then ul, vi,uZ, vZ, wi, wl € H and
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U,V I an U,V I are pounded. oreover, ere are supbsequences
F(u},v})| dz and [ |F(u,v2)| dz are bounded. M th b

of {(u, vk) }e2; and {(uf, v§)}72,, still denoted by {(u, vi)}32, and {(uf, vE)}e2y,
respectively, for which there is a k; > ko and A € R such that for k£ > k;,

‘/F(u,lc(z),vi(z)) dz — )\l <g ’/F(ui(m),vi(z)) dz — (1 - A)) <e

”(w;c"wz)lllxl = “ (1 — (e — wk) (unkavnk)ulxl
(@) W@ 3
<mae {11 - (o) — @)l 1o + S22 ( [ s can, P )
< 2e

and
supp(u,lc,v,lc) C (-2E4,2E), supp(ui,v,ﬁ) C (—o0, —Rg) U (Rg, 00),

where Ry > F; > 0 and limg_,o, R = 0o0. A simple calculation shows that, as
k — oo,

J (U, Uny) = J(u,lc + ui + w}c‘,v,ﬁ + v,% + w};)
= J (ug, vk) +J (i, o) + I (wit,wp) + Y {J(ud,wp) + I (o], wi)}
i=1,2
=J (uk, vi) + 7 (uf, 05) + R,
where the remainder R is bounded by a constant times e. Thus, it is adduced that
O(1) = lim J(up,v,) = li}ﬁn J(Uny, Vn,)
n
= lim J ((u}, 0}) + (ud, v}) + (w}, w}))

> limkinf J(up, i) + limkinf J(uZ,v?) + order(e),

where order(¢) stands for a remainder that is bounded by € times a constant which
is independent of k sufficiently large. If [ F(ut,b,ﬁ) dz — A = 0, then from the
boundedness of J,

limkinf J(up,vp) > limkinf Al (g, vi) 121 = limkinf 7|pkl1 — order(e)

> yji — order(e),

where [i = liminfy |p}|; > 0 (since Vanishing has been ruled out). It follows that
o) >ya+ lirr}cinf J(uf,v?) — order(e).

Choosing € > 0 sufficiently small in the last relation leads to the contradiction

mn>%yruxn>@uy
If, on the other hand, [ F(u},vi)dz — X # 0, then
O(1) > ©(\) + O(1 — A) + order(e),

and letting ¢ — 0 gives
©(1) > 6(\)+6(1 —X).



SOLITARY WAVES IN NONLINEAR DISPERSIVE SYSTEMS 321

But according to the definition of ©, ©()\) = |A|3©(1), so the last inequality implies
o(1) > |NFe() + 1 - Ate(1)

= (ME +11-x%)eq)
>0(1)>0
another contradiction. Thus Dichotomy is seen to be impossible.
Since Vanishing and Dichotomy have been ruled out, it is concluded that there

is a sequence {y,}52; C R so that for any € > 0, there are constants R < oo and
ngy > 0 such that for n > ng,

/ pn(z)de > p—e, / pr(z)dr < ¢
[z—yn|<R lz—ya|2R

and

|/ F(tny v) dz| < / |F (tim, )| dz
lz—yn|>R |za—yn|>R

S'YO”(una'Un)Hlxl/ pn(z) dz

lz—yn|>R
=order(e)

as n — co. It follows that for n large enough,

’/ F(un,vn)dx—1|§e.
|m_yn|SR

Letting @in(7) = un(z — yn), Un(z) = vn{z — yn) for € R, the above property
means that (iin,7,) (or a subsequence) converges weakly in H! x H!, almost ev-
erywhere on R, and strongly in L3 x Lg to some H* x H!-function (,¥), say, and

that
/F(u 'u dr = lim /F un,vn r = 1.

n—oo

Furthermore, it is seen that
e(1) = liminf J(Un, Tn) > J (@, D).

Thus the function (i, 9) solves the variational problem (2.3), and therefore if ¢ and
1 are defined by ¢ = mu Y = %ﬁv, then (¢, ) solves the problem (2.2), which
is to say, there is a non-tr1v1al solitary-wave solution of the Gear-Grimshaw system
propagating at speed C.

Since (¢,%) € H' x H' and H! is an algebra, grad F(¢,1) € H! x H!, whence,

(¢,9) = Lo  grad F(¢,¥) € H® x H3,

Arguing inductively, the advertised regularity result follows. O

Remark: By adapting the theory of Li and Bona (1996), Bona and Li (1997),
it can be shown that the solitary-wave solution (¢,%) whose existence was just
established is in fact the restriction to the real axis of a pair (®, ¥) that is analytic
in a complex strip {2 : |2| < o'} for some ¢ > 0. In particular, (¢, ¥) is real analytic
and given locally by a Taylor series whose radius of convergence is bounded below,
independently of the spatial point about which the expansion is made.
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2.3. More General Dispersion and Nonlinearity. In this subsection, the goal
is to extend the results exposed in the previous Subsection 2.2 to models that
have more complex and possibly competing or non-local dispersion relations. For
convenience, continue to denote the operator C — CN — L in (1.8) by

. _ (An Ara
L=Lc= ( - Azz) . (2.7)

Then equation (1.6) can be rewritten in the form
A A (¢ _ (f(®¥)
(G 42)(0)-(os). 2

where it is now supposed that the operators A;; are Fourier multiplier operators
with symbols a;;, say, so that

Aigu() = 0y (€)8(),
and f, g are smooth functions defined on R2.
The following hypotheses will be in force in the remainder of this subsection.

(H1) For 4,j = 1,2, ai;(§) = aji(§) = 2% ag)lﬂw", where 7, > 0 are not
necessarily integers and the series has only finitely many terms.

(H2) The operator L is elliptic in the sense that there are two positive indices r
and s and positive numbers y and 7 such that, for any (=, ), (#1,91), (z2,92) € R?,

(@) (a(©) (7) 2 2L+ IR0 + 0L+ 1EP)'57)

(21,91 (as5(6)) (zz) AT+ lepyad+ 0+ k)

(H3) There is a homogeneous polynomial F' of order p defined on R? and a
positive number -y such that

(f,9)" = grad F,
where p > 3 is an integer, and
|F(z1,2)| < Y0(2] + 25).
As in Subsection 2.1, we have the following result.

Theorem 2.2. If the conditions (H1)-(H3) are valid and 7,5 > § — %, then there
is a non-trivial solution (¢,v) € H™ x H® of (2.8). Moreover if r,s > % — %, then
(¢,9) € H® x H™.

Following the steps laid out in Subsection 2.1, let
O(1) = inf {J(u,'u) : (u,v) € H" x H®, /F(u,v) dz = 1} , (2.9)

where J is as before the functional

J(u,v) = / (u,v)L (‘J) dz.

The hypotheses (H1) and (H2) guarantee the operator £ is a positive definite
operator defined on H™ x H® and there are two positive constants y and ¥ such
that for any (u,v) € H™ x H®,

le(uvv)llfxs < J(u,v) < '7”(“‘1”)”3xr
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Moreover, since H" x H® C Ly x Ly, the hypothesis (H3) ensures that 0 < O(1) < co
and that any minimizing sequence {(un,v,)}3L, for ©(1) is bounded in H™ x H*.

To prove the theorem, the crucial point is to demonstrate that any minimizing
sequence {(un,vn)}pzy for ©(1) is, up to underlying spatial translates, relatively
compact. For this purpose, a sequence, {p,}52, related to {(tn,vn) }5L, is defined
and the concentration-compactness principle is applied to obtain the desired con-
clusion. To define the sequence {p,}32, cases where one or both of r and s are
integers are handled separately.

Case I: If both r,s > 0 are integers, define
pn() = [un(@)* + | Dgun(@)|® + [va ()| + [Divn (z)|2.

Case II: If one of r, s > 0 is not an integer, say r = m + & with m a non-negative
integer and 0 < d < 1, but s is an integer, then define

| Dt (@) — D;Lun(y)ig
[z — y|i+28

pu(z) =hin(@)[* + min{L, m} DPun () + [

—00

+ [vn(@)]” + [ D3vn ().

Case III: If both r, s are non-integers, say r = my + 6;, s = mq + do with myq,
mgo non-negative integers and 0 < 61,4, < 1, let
| DM un(a) — D)2
fo — g2

pu(#) = fun(o)]® + min{L, my D2 un(a) + [

° |D;n21"ﬂ(3") = f)ymgvn(y)le
|:L' — y[l“‘ﬂﬁg

Hlon(a)f? + min, ma} D2 0n(a) + [ &

-0

In all cases, py > 0 and p, € Ly, n = 1,2--- . Moreover, the L;-norm lonl1 is
equivalent to the H" x H®-norm ||(n,vn)l|2,,. Let pin = [ pn(z)dx = [pa1, so
that g, is bounded and g = liminf, o g, > 0. By extracting a subsequence, it
may be supposed that lim,_,o ftn = p. The stage is now set to effect a proof of
Theorem 2.2.

Proof. The proof is made by contradiction. Suppose there exists a subsequence
{Pn 332, of {pn}S2, for which Vanishing or Dichotomy occurs.
If Vanishing happens to {p,, }£2,, which is to say, for any R > 0,

lim sup /,an (z)dz =0,
k=00 jg—y|<R
then,
klirrolo, su|p<R/ (ufnc (z) +v2, (:1:)) dz =0.
z=y|<
In Case I, {(uy,,,v,, )}?2; is bounded in Ly x Ly, and Lemma 2.4 of Chen and Bona
(1998) implies
S / (g (2)[P + [my (2)[P) dz = 0.
k— oo

In Cases II and III, the modified Lemma 6.3 (Chen and Bona, 1998) implies the
same conclusion. In all events, this contradicts Hypothesis (H3) which implies that

S lun @)P + vn, (@)IP dz > 75 [ F(uny,vp, ) do =157
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If Dichotomy occurs, there is a i € (0, ) such that for any € > 0 there corre-
sponds a positive integer ko and p,lc,p% €L, p,lc,p% > 0, such that for k > kg,

o — (ok +p1)|, <€ ‘/ﬂidw—ﬂ‘ <e Upidﬂ:—(u—ﬁ) <e o
supp pp Nsupp pi = 0 and Rlim dist{supp pi, supp pj} = cc.
sl

Without loss of generality, it may be further supposed that the supports of p} and
p? are separated as follows:

supp pr C (Y — Bo,yk + Eo), supp pf C (—00,yk — 2Rk) U (yk + 2Rk, 00)

for some fixed Ey > 0, a sequence {yx15>; C R and Ry — oo (see P.-L. Lions,
1984). The conditions in (2.10) imply

1
/ |pnk - pkl dz + / Pry dz
|lz—yx|<Eo Eo<|z—yk|<2Rk

+/ |on, — PRl de < e
|z—yk|>2Re

Appropriate splittings of un,, k =1,2,--- , are obtained as follows. Let ¢ and ¢
be as described in (2.6). For z € R and E; > Ejy large enough, define

G@)=¢E=%)  and  i(a) = p(EE)

El Rk
as before, and let
1(:E)= { _C(Z_E?L)'FC(%%&), if yx+ By <3< yp+ 2R,
Tk 0 otherwise,
2(:1:)= { “C(%lu&)+((x_1_zk&)1 if yo — 2Ry <z <y — By,
Tk 0 otherwise.

For any = € R, it follows by construction that

(@) + Pr(@) + ng(@) + () = 1
and
supp ¢k C (yk — 2E1,yk + 2E1), supp¥r C (=00, Yk — Ri) U (yx + Rk, 00),
supp 7t C (Y& — 2Rk, yx — E1) and suppni C (yk + By, yk + 2Rx).

The sequence {(un,,Vn, ) }5e; may be decomposed-in the form
Un, = Crln, + Yrln, + niunk + nlzc“nka
Uny = CkUnye + PkVny + NeVng + Natn, -
Make the definitions
U = Chting,  Up =YkUne, Ve = CkUni, Vi = Ykln,

and

1 2 1 2
w;: = NUng + NUny, wz = NjgVn + MiUny -
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Notice their construction implies that
up,ul, w € H", vk, Vi, wh € HY,
supp uj, supp vi C (y — 2B,y + 2E1),
supp u%v supp ’Ulzc C (—o0,ykx — Rk) U (yk + Rk, 00),
supp w, Suppwy C (Yk — 2Rk, yk — F1) U (yk + E1, yr + 2Ry),

and, from Lemma 6.2 in the Appendix, if E; is chosen large enough, then when
k > ko,

| (wi, wi)llrxs < C'e,

~C"e < (uny, vn)2ws — {1k, v 17xs + 1w, vR) 2k} < €,

where C' and C” are constants which depend only on u. Hence, there exist sub-
sequences of {(u},vi)}2, and {(u?,v?)}2,, still denoted by {(u},vi)}, and
{(u2,v2)}%° ,, respectively, and a number A so that, for any € > 0, there is a
k1 > ko such that when k > k;,

|/F(u,1¢,v,%)dm—)\|$e, |/F(ui,v,2c)dz—(1—)\)|§e
and
I (g s vy ) = J ((uk, vi) + (uf, v}) + (wi, w}))

= T(uk,b) + JCa o) + I wt) +2 [ (uh oD Ll o) do
+2 [ ob) ot up) +2 [ DLt ut)
= I, d) + T D) + 2 [ (uk, ob)£Cud o) do + onder ),

because [[(w¥, w})||lrxs < C'e and (u},vi), (ui,v}) are bounded in H” x H?, inde-

pendently of k. Notice that
{supp u} Usupp v}} N {supp u2 Usupp v} = 0
and
dist{supp u}, U supp v}, supp us Usupp vi} > Ry — 2E; — oo as k — oo.

Lemma 6.1 in the Appendix implies limg—o0 f(u},vE)L(uZ,v2) dz = 0 under these
circumstances. It follows as previously that

o(1) > ©(\) + (1 — A) > 6(1) > 0.

This contradiction rules out Dichotomy.
Since both Vanishing and Dichotomy have been excluded, it is concluded that
there is a sequence {y,}°2; C R such that for any e > 0, there is an R > 0 so that

for n sufficiently large,
[ e@de>u-c
|:f_.")0|<R

or, what is the same,

[ (@ + @) de <
lz—yn|2R
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The last inequality implies that
|/ F (un(z),vn(z)) dz — 1| <€
lc—yn|<R

for n sufficiently large. According to the definition of p,,, this amounts to

/ pn(z)dz < e
lz—yn|2R

Denote by @n () = Un(- —yn), Un(-) = vn(- — yn) the pair (u,,v,) translated by yp.
Then the above estimates mean that the sequence {(&in, Un)}52; converges weakly
in H" x H®, strongly in L, x L, to some (%,7) € H" x H®, and in consequence of
the latter fact,

n—o

/F(ﬁ, 9)dz = lim [ F(Gn,0,)dz = 1.
Furthermore,

o(1) —11m1nf/J(un,vn dz>/J(u ¥) dz.

n—00
Thus the limiting pair (%, ?) solves the variational problem (2.9}, and therefore if
o= (ﬂﬁ)"%ﬂ and ¢ = (gﬂ)"i_2~ then (¢, ) solves the problem (2.8).

To prove the regularity result, if so = min{r,s} > 1 5, then H™ x H? is an alge-
bra, so (¢,%) € H™ x H® implies ( (¢,),9(9, 1/))) € H3° x H%  and consequently
(¢, %) = ‘l(f(qb V), 9(, d))) € H3% x H3%_ It follows by induction that (¢,v) €
H® x H®. If § > s = min{r,s} >  — 1, then (f(¢,%),9(¢,%)) € H* (575 x
H~79), 50 (,9) = L71(F(#,%), 9(6¥)) € H¥* ™73 x go0~(G75). An-
other induction establishes the regularity result since 3s¢ — (— - —) > sg. The proof
of Theorem 2.2 is complete. O

3. Application of Positive Operator Theory to Existence of Solitary-
Wave Solutions.

3.1. Preliminary Review of Positive Operators. In this subsection, a brief
review is provided of ideas in the paper of Benjamin et al (1990).

Recall that a vector space X over R (or C) is a Fréchet space if there is a sequence
{pn}5L of semi-norms defined on it which are increasing (i.e. pp41(z) > pn(z) for
every z € X and every n = 1,2,3,---) and such that the translation invariant
metric

= Y)

-i_PiEZY) 1
d{z,y) = 22 1+PJ(:""_ ), for z,y € X, (3.1)

on X is complete. If the ball of radius 7 > 0 centered at the origin for this metric
is denoted

B, ={z € X :d(z,0) < 1},

then Bl =
A closed subset K of a real topological linear space X is called a cone if

(i) K+K={u+v:u,veK}CK,
(i) MK={M:ueK}cKforal A>0, and
(ili) Kn(-K)={0}.
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Let K be a cone in a Fréchet space X with metric as in (3.1). An operator
A defined on K is said to be a positive operator if AK C K. A is K-compact if
A(K N B;) has a compact closure for each r € [0,1).

Henceforth in this subsection, it is assumed that K is a cone in a Fréchet space
X, {pn}$2, is a generating family of semi-norms for the metric d on X defined
in (3.1), and A : K — K is continuous and K-compact. The symbol i(K, A, Kg)
denotes the fixed-point index of the positive operator A defined on K over the subset
Kr = KN Bgr. When this index is non-zero, there is at least one fixed point of A
in K. If 0 <7 < R < 1, denote the cone segment {x € K : r < d(z,0) < R} by
K2, Here are some basic lemmas from Benjamin et al. (1990).

Lemma 3.1. Suppose that 0 < p < 1 and that either
Az —z ¢ K for allz € KN OB,

or
tAz # z for allz € KN OB, and all t € [0,1].

Then
(K, 4, KNB,) =1.

Lemma 3.2. Suppose that 0 < p < 1 and that either
z— Az ¢ K for allz € KN OB,

or there ezists u* € K with p1(u*) > 0 such that  — Az # au* for allz € KN OB,
and all a > 0. Then

i(K, A, K,) = 0.

3.2. Application of Positive Operator Theory. In this subsection, attention is
first given to the abstract system (1.6) introduced in the beginning of this paper with
regard to the prospect that it possesses solitary travelling waves. Then the Gear-
Grimshaw system (1.2) and the family of Boussinesq systems (1.4) are considered
as examples of our general theory. For simplicity, the nonlinear effects are assumed
to be quadratic, so fi; and f; in (1.6) are taken to be quadratic homogeneous
polynomials defined on R2. As will be clear from the development, the arguments
are easily adapted to any superlinear nonlinearities f; and f, that are positive for
positive values of their arguments, whether or not they are homogeneous. It is
further assumed that C'— CN — L is invertible. Applying (C—CN —L)~! to (1.6),
there obtains the equivalent system of integral equations

(¢> _ 4 <¢) _ kll *¢2+k12 *¢¢+k22*1/)2, (3 2)
VY)W T | mayx 6%+ mig * ¢ + mog +92, .

where f * g(z) connotes the convolution [ f(z — y)g(y) dy as usual. Let C = C(R)
be the class of continuous real-valued functions defined on R, and let X be the
Fréchet space

X=CxC={(f9): fgcC},

with generating family of semi-norms

pi(fi9)=_max {|f@) lg(@) },
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where [ > 0 is to be determined later, 7 = 1,2,---. The cone in X that will occupy
our attention is

K={(f,9) € X : f(z) = f(-z) 2 0, g(z) = g(—z) >0,

f, g are non-increasing on (0, 00)}.
Note that, if (f, g) € K, then the distance of (f, g) to the origin 0 is

B max{f(0),9(0)}
4((£,9),0) = T 7). 9O

or in other words, d((f,g),0) = r implies that max{f(0),9(0)} = %

The following hypotheses will be in force.

(S1) The kernels k;; and my; satisfy kij(z) = kij(—z), my(z) = mi(—2),
kijymij € Ly NC, kij > 0,m;; > 0 are monotone decreasing on (0, 0), there
is & number A > 0 such that k;;(z) and m;;(z) are convex for z > X and either
k12 + mio or both ki1 + mq1 and kg + Moy are strictly convex when z > A.

(S2) There are only finitely many fixed points of A in the cone K which are
constant functions. Furthermore, if (u,v) € K is a fixed point of A, then v = 0
implies that v = 0, and vice versa.

(S83) Not too many of the k;; and m;; vanish. More precisely, k12 + ka2 7 0 and
my1 +myg # 0. For 1 < 4,5 < 2, let k;; = f02 kij(z)dz and p;; = f02 mi;(z) d.
Then for a > 0, the system of inequalities

1

3 1 1
a+f€11/ u?(z) dz + fclg/ u(z)v(z) dz + fczg/ vi(z) dz
0 0 0

< (/01u2(:1:)da:>%

¢
1
a—HAu/ uz(z) da:+u12/
0 0

| < ([ o)

implies that each term on the left-hand side is bounded and these bounds are only
dependent on the quantities x;; and w5, 1 < 4,5 < 2.

Remark: The assumptions k(=€) = ki;(€), mi;j(—€) = my;(€) in (S1) are
virtually universal in dispersive wave equations that arise in practice. The further
hypotheses in (S1) are satisfied by an interesting set of examples as we show later.
The condition (S2) is natural as will appear presently, because of the interaction
between the two dependent variables ¢ and 1. The first part of (S3) implies that
if (ug,v) {or (u,vg)) satisfies (3.2), where ug > 0 (or vg > 0) is a constant function,
then v (or 4) must be also a positive constant function. Otherwise, suppose (ug, v)
satisfies (3.2), where uy = constant > 0 and v > 0 is not constant. Then the
monotonicity of v implies v can be written in form v = vy +wvg, where vg = v(c0) > 0,
and v; > 0 is not identically zero. Substituting (uo,v1 + vo) into the first equation
of (3.2) and simplifying by using the fact that (uo,ve) = A(ug,vp) leads to the
relation 0 = 2ugkiz * v1 + koo * (2uov; + v2). Because of positivity, v; must be
zero, which is to say, v must be identical to some non-negative constant. In a
similar fashion, it can be shown that if v = vy > 0 is a constant function, then
u must be also a non-negative constant function. This excludes the possibility of
trivial solutions in the form of (ug,v) or (u,vg), where ug,vp > 0 are constants and

1 1
u\r)vixr)ax 22 ’UZI X
(2)v(z) d +u/0 (@)d
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u > 0,v > 0 are non-constant functions. The first part of (S3) means that there is
no equation in the system where only one unknown function u or v appears. The
second part of (S3) indicates that the nonlinearity is not dominated just by the
interaction term uv. The full import of Hypothesis (83) will be clearer after we
develop its consequences and apply it to concrete systems.

Theorem 3.3. Under the assumptions (S1) to (S8), the system (8.2) has a non-
trivial solution (¢,9) € K.

The proof of this theorem is broken into three lemmas and one proposition.

Lemma 3.4. The operator A defined in (8.2) is a continuous and K-compact map-
ping of K into itself.

Proof. This result follows exactly as in Lemma 3.1 of Benjamin et al. (1990). O

For convenience, the L;-norms of the functions k;; and m;; are denoted by
K;; = |kij|1 and M;; = |mg;|1, respectively. Since the k;; and m;; are non-negative,
these quantities may also be expressed as K;; = 751-]-(0) and M;; = m;;(0), where
as before, the circumflex surmounting a function connotes that function’s Fourier
transform.

Lemma 3.5. If?"() = max{K11 + K12 + Kzz, M11 + M12 + Mgz}, then
(a) for 0 < r < L=, there is no (u,v) € KN OB, andt € [0,1] such that

L

(b) If rg is as above and iTlrE < R < 1 and R is sufficiently close to 1, then
there is no (u,v) € KNOBR and no constant a > 0 such that

(£) () =)

where 1 is the constant function that maps every point in R to 1.

Proof. Part (a). Arguing by contradiction, suppose that there is a (u,v) € KNoB,
such that (Z) =tA (Z) , which is to say

U= t(k:u * u? + kg x (wv) + ka2 *vz),
v = t(mu *’U,2 + myp * (’U/U) + Mag *’1)2).

Evaluating these latter equations at z = 0 and using positivity of the kernels and
the fact that 0 < u(z) < u(0) and 0 < v(z) < v(0) for all = yields
1

?’U,(O) < Kuu(O)Z + Klzu(O)’U(O) + K22U(0)2,

%U(O) < Miyu(0)? + Migu(0)v(0) + Maau(0)2.

Since (u,v) € KN 9B,, max{u(0),v(0)} = -, so these last inequalities imply

l—p?
1 r T
;U(O) < (K1 + K1z + Kzz)(l __?,)2 < ?”0(1 _?.)21
1 T T
;U(O) < (M + M + Mzz)(1 _?_)2 <ol T)z_
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Using again the relation max{u(0),v(0)} = 1=, it is adduced that

whence,

T2 2 = )
14trg 1+mg

and this contradicts the presumption r < 35— +T0
Part (b). Arguing by contradiction again, suppose that there is (u,v) € KNoBg

T 9=

{u(m) =a+ k1 *u?(@) + kig * (w)(x) + koo * v (z),

(@) = a+may * u?(z) +mag * (uv) () + maz * v* ().

or, what is the same,
(3.3)

Denote k1 * u? + k1p * (uv) + kog * v and mqy * u% + mig * (wv) + mge * v? by
[A(u,v)]1 and [A(u, )]s, respectively and integrate both sides of (3.3) with respect
to z over [0, 1] to reach

a+/01[A(u,v)]1dz=/01u(a:)dmS (/Olu(g;)zda:>%,

a+ /Ol[A(u,v)]gdx e /Olv(:v) dz < (/Olv(x)2dw)%-

Because of the symmetry, positivity and monotonicity of u and v and the kernels
ki; and m;;, 1 <14, 5 < 2, it follows that

(3.4)

| 1At olids = 5 / [A(,0)]: do
/ / [k11(z — (y) + k12(z — Y)u@)v(y) + kaa(z — y)v*(v)] dy da
y+1 .
/ / [ (2)u2(y) + ko (2Ju(w)o(y) + kaa(2)02(9)] dz dy

2

1 1 1 1
Lo [ 0wy + G / wyp @)y + gom [ 0)dy
—1 -1

N =

1 1 1
= &) / W*(y) dy + ka2 / w(y)v(y) dy + K2z / v*(y) dy,
0 0 0

where k;; = fo 1 () dz for 4,7 = 1,2, as mentioned already in (83); similarly,

/Ol[A(u,v)]z dz > pn /01 w? () dz + p1g /01 w(z)v(z) dT + pag /01 v2(z) da,
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where p;; = f02 m;j(x) dz for 4,5 = 1,2. Substituting these two estimates into (3.4),
there appears

1 1
OH'HH./U ug(ﬂl)dﬂ:+mg/o u(m)v(z)dm-}-nm/

1

: v3(z)dz < (/0 u2(m)dm)7,

a+piy ﬁl w?(z) dz + g /01 u(z)v(z) dz + pog /01 vi(z) dr < (/01 Uz(m)da:)
(3.5)

W=

Because of (S1), ki; + my; 5 0 is equivalent to kg + py; > 0 for ¢ = 1,2, and
k12 + mig # 0 is equivalent to ki + M12 > 0. Hence vaot]u sis (S3) guaraniees
that the inequalities (3.5) imply both fo :1:) dz and In v?(x) dz are bounded if
kii+my; # 0fori = 1,2, and in this case, so is fo (z)v(z)dz. In the situation where
one of k11 +m11 and kgg +maqe disappears, say, koo +may = 0, then kyo+mio must
not vanish by (S3), so at least fol u?(z) dz and fol u(z)v(z) dz are gnaranteed to be
bounded, and hence a is bounded. In all events, the bounds are only dependent
on the ki and g5, 1 < 4,5 < 2. Referring this result to the formula (3.3), an
L-bound on u and v is deduced as follows. First, because of (3.3), we know that

0<u(z)=a+ /_oo kui(z — y)u’(y) dy

L[ " hiale —uulyloly) dy + / " oz — () dy

25+1

25+1
e Z/ k(@ — )ul(y) dy + Z/ F1a(z — )u(v)v(y) dy
j=—00 j=-o0 %
e 27+1
vy k(o= i) d.
j=—c0 V2=

On the other hand, we see that

) 2j+1
> [ ke —unlte)dy

Jj=—o00

1 (oo}
=/_1 [ku(x = y)u2(y) == Z (ku(w —y—-2§)+kulz+y+ 2j))u2(y n 2j)] dy

-1

1 00
<[ -9+ (bl -y -2) + kule +y+2) o) dy
Jj=1

=/ Z ki(z — y + 25)u?(y) dy

_1].__00

-—1<z<1{ Z k11 z+23)}/ u®(y) dy
=2—{I§?§1{ Z k11(z + 25) }/ (v) dy.

j=—00
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In a similar fashion, it follows that

) 2j+1
S [ ke -yl d

j=—00 V21

(<) 1
<2 _lféa;)él { Z ki2(z + 2])} /0 u(y)v(y) dy
j=-00
and

25+1
Z L " kan( - o) dy

j=—00

1
SZ_{nSaz,)él{ Z k:22(2+2j)}/0 'uz(y)dy.
Jj=—00

Since k;; € L1NL is monotone decreasing on [0, 00), the periodic function kij(x) =
Z;’i_w k12(z 4 2j) is bounded, monotone decreasing on [0, 1], and lies in L;(0, 1).

Thus, max_1<,<1 kij(2) = Yoo o kij(27) for 4,5 = 1,2, whence,

J=—00

u(z) <a+2 Z ku(zy)/ () dy

+2 Z /C12(2J)/ v(y) dy +2 Z ka2 2])/ (v) dy
and
v(z) <a+2 Z myz( 2])/ (z)dx

23 mu) [ uop@dr+2 3 () [ Vs

J=—c0 Jj==oo
Denote the upper bounds for u and v by « and p, respectively, and choose
2 max{n, i}
1+ 2max{x, p}’
Then it follows that d((u,v),O) < R, which means (u,v) ¢ K N 0Bg; this contra-
diction proves (b). O

R:

The last four Lemmas immediately imply the following potentially helpful result.

Proposition 3.6. If r and R are as in (a) and (b) of Lemma 8.5, respectively,
then i(K, A,K®) = —1, and therefore the operator A has a fized point in the cone
segment ]KR

Proof. First, remark that because the operator A is continuous and K-compact, it
follows that any relatively open set U C KN B, where r < 1 with no fixed points
on its relative boundary has a well-defined fixed-point index i(K, 4, U). Lemma 3.1
and part (a) of Lemma 3.5 imply i(K, A, KN B,) = 1 for any positive r < 1—+170
where 7y is as specified in Lemma 3.5. On the other hand, Lemma 3.2 and part
(b) of Lemma 3.5 imply (K, A, KN Bg) = 0 for any R < 1 large enough. For such
values of r and R, the additivity of the fixed-point index implies that

i(K, A, KE) = i(K, 4,Kg) — i(K, 4,K,) = —1.
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and consequently that A has a fixed point in KX. O

Remark: While suggestive, Proposition 3.6 does not settle the issue raised in
Theorem 3.3 because the cone segment K always includes at least one trivial
solution of (3.2). That is, there is a solution (¢,%) = (do,%0) € KF where ¢
and 1y are nonzero constant functions. The existence and number of such trivial
solutions are an easily established algebraic fact. These constant solutions cannot
be excluded from our considerations by appropriate choices of 7 and R. Indeed,
consideration of the inequalities that are the basis for our choice of these parameters
show that (¢, o) € K2

Again following the approach in Benjamin et al. (1990), introduce two operators
r: C — C;and s; : C; —» C, where C; is comprised of all continuous periodic
functions with period 2{. These operators are defined for u € C by

| u(z) if 0 < |z| <1,
(riu)z) = { w(2jl —|zf) if (2] — 1)1 < Jz] < (25 + 1),

for j=1,2,--, and

_Jou(z) o< |z <
(s1u)(z) = { u(l) if |z ZI L

The operators r; and s; are extended to Cartesian products componentwise; that is,
if (u,v) € CxC, ri(u,v) = (ru, rv) and if (u,v) € Cy x C; then s;(u,v) = (syu, sv).
Define a new cone

PK = {(u,v) € C, x C; : u(z) = u(—x) > 0, v(z) = v(—z) > 0,

and both u and v are non-increasing on [0,]}.

One checks easily that P;K is a closed cone in the Fréchet space X = C x C. The
composite operator rys;, when restricted to P|K, is the identity map. Following
Lemma 3.3 in Benjamin et al. (1990), it is determined that the operator A maps
PK into itself, is continuous, and for any 0 < p < 1, the set A(PKNB,) is a
relatively compact subset of P;K.

For (u,v) € K, the homotopy H; defined for 0 < ¢t < 1 by

H, <Z> =tA (Z) + (1 —t)s; Ary (Z) (3.6)

will play an important role in our theory.

Lemma 3.7. Suppose the only fized points of the operator A in KE are vectors
of constant functions. By Hypothesis (S2), there are only a finite number of such
solutions. Let (uo,vo) € KE be any one of them. Then it follows that i(K, A, K N
BY) = 0 for e > 0 sufficiently small, where B® = Bc(uo,vo) is the metric ball of
radius € about (ug,vo).

The proof of the lemma consists of two steps. Step 1 is to show that for !
sufficiently large, the operator A is homotopic to s;Ar; on a small neighborhood

KNBY =r ' BKNBY, (3.7)

where B is as above and € > 0 is small enough that KNB° ¢ K and that (uo,v0)
is the unique fixed point of A in KN BY,. Step 2 is to show (K, s, Ar;, K NnBY) =0.
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Since K r-dominates ;K (see Benjamin et al. 1990), veracity of Lemma 3.7 is
concluded since

i(4, (uo,v0)) = i(K, 4, KN BY) = i(K, A, [P.K N BY))
i(PK, A, PKNBY) =i(K,siAr;, KN BY)
0.

Remark: The equality (3.7) follows directly from the definitions.

Proof. (Step 1) We claim that A is homotopic to s;Ar; on the set defined in (3.7).
This will be true provided the homotopy H; in (3.6) is admissible. The continuity
and compactness aspects of H; being clear, it remains only to check there is no
element (u,v) € KN 6B which satisfies the equation

(:) =tA (Z) +(1—t)s; Any (’5) (3.8)

for some t € [0,1]. By contradiction, suppose there is (u,v) € KNoB? and ¢ € [0, 1]
such that (3.8) is true. Rearranging the terms and only considering x in the range
0 <z <1, (3.8) becomes

@)@y e

In detail, (3.9) has the form

(3.10)

ki1 * (riu)? + kig * (rou) (rv) + kag * (rv)? — u =ty (),
myy * (7‘m)2 + mag * (ru)(rv) + mag * (nv)2 — v = taho(x),

where
Y1(@) =kq1 * {(rw)? — u?} + k1o * {(rw) (rw) — ww} + koo * {(rv)? — v}

= [ {ku(z—y)+kule+y)H{(rw)? @) - v?(y)} dy

y>1

+ [ thnale =)+ buale + M) 6) - ()6} dy
+ [ Uhaala =)+ kanle + )M W) - v 00}y

and
o (z) =mqy * {(riu)? - uz} +myg * {(ru)(riv) — uv} + mag * {(nv)2 —v?}

= >l{m11(w — ) +mu(z + y) Hrw)*(y) - v?(y)} dy

+ y>l{fmz(w — ) +mua(e + y) H(rw) (rw) (v) — wo(y)} dy

+ [ _ {maal@ = 4) + man(o + ) w) — 020y
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Multiplying (3.10) by cos(%%) and integrating the result over (0,!) gives

¢l .
/ {ku * (rw)? 4 kig * (ru)(rw) + kag * (rw)? — u} cos —= dz,
0
]
e t/ 1 (x) cos? dx
- g (3.11)
2 5 T
/ {mu * (ryu)® 4+ mag * (ru)(rw) + mag * (rv)° — u} cos =~ dz
0
i
= t/ a(x) cos 7—? dzx.
0

The first component on the left-hand side of (3.11) is
/ l {us % (0)?(@) + b1z  (re(w0)) ) + bz » (ri0)(z) - u(a) } cos = do
&) / )eos 22 do + Fral ) /0 G ™ o
+ (T )/ cos—dw—/olu(m)cos“T"”dz
N /0 {FuDr@) + Fua(Pun(e) + Fa(P)A(z) — ule) } cos = da,

while the second is
!
~ T . T - T T
/ {mu(T)u2 (z) + mlz(T)uv(z) -+ mgg(T)v2(:1:) - v(ac)} cos —~ dz.
0
Give the last two integrands a name, viz.

A[Tl(u" ’U) - (u,U)]l . Ell( )U + k12( )UU + kzz( )1)2 —u

l
and

Alry(u,v) — (u,0)]2 = mu(gw + mlz(g)w + 7’7‘122(%)1}2 .
Then (3.11) may be rewritten as
I l N
/ [Ari(w,v) — (u,v)]y cos 2 de = 3/ () cos ? dz,
0

¢ 9 (3.12)

{ / .
/ [Ary(u,v) — (1, )]s cos -ﬁ—:- dr = 1‘./ 1ha (@) cos 7:—1' da,
0 0

We intend to show that (3.12) cannot hold, so that (3.8) is ruled out. If (3.12)
holds, the following two points may be established. First, there are two linearly
independent vectors (01, 52) and (81, 83) of non-negative numbers such that for
! > 0 sufficiently large,

!
/0 {ﬁI[ATl(U,”) = (u,v)]1 + Bao[Ari(u,v) - (U,’U)]z} cos % dz >0

and

!
/0 {ﬂ{[An(u, v) — (u,v)|1 + By[Ari(u,v) — (u,v)]z} cos 1rl_:z: dx > 0,
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and equality holds in both these relations if and only if the quantities in braces

are constant for 0 < z < I. The second point is that if (u,v) € KN oBY, then for
sufficiently large values of [,

l l
/ 1(z) cos % de <0  and / a(x) cos ? dz <0.
0 0
Moreover, if equality holds, so that

!
/ [¥1(z) + ¥2(=)] cos wa dz =0,
0

then v and v are constants for x > . Supposing for the moment these two points
are valid, then for large ! it is adduced that

Bi[Ar(u,v) — (u, )1 + Fo[Ar(u,v) — (u,v)]2 = Ci, (3.13)
IBII[A”(U” ’U) - (ua ’U)]1 + ﬁ;_[fln(u,v) - (’u,U)]2 = Cy, .
for 0 < z <[, where C; and Cy are constants, and thus
I
t[ [,81 Py (z) + ,(121‘1.’13(:.':)] cos % de =0,
2 (3.14)

! ;
f./ (811 (2) + Papa()] cos :—& dr = 0.
0
Since (1, 82) and (81, %) are linearly independent, (3.13) implies that

[Ar(u,v) — (u,v)]1 = Cj,
[Ari(u,v) — (u,v)]2 = C4,

where C] and Cj are constants. It follows that the functions u and v are constant
for 0 < z < l. Appealing again to the linear independence of (01, 82) and (81, 55),
(3.14) entails that

rl T
t/o [¥1(2) + ¥2(x)] cos T dz = 0.
On the other hand, ¢ must not be zero, otherwise, (3.8) implies that u and v are
constant for > [, and it then follows that u and v are constant on the entire real
line R. Thus the pair (u,v) is a fixed point of s;Ar; in KNBY,, and it is also a fixed
point of A since u and v are constant functions and both r; and s; fix all constant
functions. This is not possible since € > 0 was chosen so small that (ug,vg) is the
only fixed point of 4 in KN BY,. Hence, t is non-zero and therefore

! X
/ ["/’1 («’17) + 12 (m)] cos WT dz = 0.
4]

The validity of the second point indicates that v and v are constant for z > I,
which leads to the same contradiction as discussed when ¢ = 0. In summary, it is
concluded that (3.12) and thus (3.8) does not hold.

Attention is now turned to the two points which are outstanding in this discus-
sion. We prove the second point first. Lemma 3.5 of Benjamin et al. (1990) will be
repeatedly used, so it is briefly reviewed. This lemma states that if k¥ € C is even

and convex for £ > A, where A is a non-negative number, then fé [k(:z: —y) +k(z+
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y)] cos IE dz < 0 for any ! > 2X and y > . Moreover, if the convexity is strict, then
the inequality is strict. Write the integrals fol Yi(x) cos ZE dz, i = 1,2, as follows:

!
/ 1 (z) cos E dz

/>l {w*w) - )}/OL {kn(w—y) +ku(x+y>}cos¥dzdy
+f {(nu)(y)(nv)( )} [ thate -

+ k12(z + y)} cos T ® dx dy
!

+ /y>l {(’rw)2(y) - vz(y)}/o {kzz(w —y) + kao(z + y)} cos ﬂ'l_z dz dy,

/lwz(x) cos wTw dz
i !
- /y>t {(T‘lu)2(y) = uz(y)} /0 {mu(x —y)+mu(z+ y)} cos ﬂ—lm- dz dy

+ /y _{ra)wee)e) - o) / {musa -y
+m12(w+y)}cosdedy

+ /y>l {(Tzv)z((‘/) = v2(y)} /Ol {mzz(w —y) + moa(z + y)} cos -7%11' dzx dy.

Since for 4,7 = 1,2, the k;; and m;; are convex functions for z > A, Lemma 3.5 of
Benjamin et al. (1990) indicates that

!
/ {k’m( )+kz;($+y)}cos7;—mdz§0
0

and
!
/ {mij(:v —y) +mi(z + y)} cos EIE dz <0
0
when [ is chosen greater than 2\ and for any ¥ > [. In consequence, it is seen that
l T ! T
/ 1 () cos Tda: <0 and / () cos T dz <0.
0 0

Moreover, if we have that

!
/0 {1 (z) + v2(z)} cos 1r_la:_ dz =0
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then

0= [ {rwre)-ww} | [tk + )@ - )

+ (k11 + ma1)(z + y)} cos 7rl_w dzx dy

# [ {rmme -unw)} | ks 4 mua)(e )

+k12+m12)(a:+y)}cos7r7$dzdy
u /Ol {(”U)Q(y) . UQ(y)} /Ol {(kzz + ma2)(z — y)

7 dz dy.

+ (k22 + ma2)(z + y)} cos
Again, according to Lemma 3.5 of Benjamin et al. (1990), the strict convexity
assumption in (S1) allows one to adduce that either

!
/ {(k12 + m12){z — y) + (k12 + my2)(z + y)} cos % dz <0,
0
or both
: . T
/ {(k11 + m11){z — y) + (k11 + m11)(z + y)} cos T dr <0
0

and

!
/0 {(k22 + ma2)(z — y) + (k22 + ma2)(z + y)} cos wa dz < 0

for | > 2\ sufficiently large and any y > [. Hence, v and v must be constant for
x > I. The proof of the second Ansatz is thus complete.

The proof of the other point is addressed now. According to Lemma 3.4 of Ben-
jamin et al. (1990), if f € Cis decreasing on [0, ], then the integral fol f(z)cos Bt dz >
0, and equality holds if and only if f is a constant on [0,]. So it is sufficient to show
that there are two independent pairs (81, 52) and (81, 8%) of non-negative numbers,
such that both

Br[Ary(u,v) = (u, )1 + B2[Ari(u,v) — (u,v)]2
and
BilAri(u,v) = (u,v)]1 + B3[Ari(u, v) — (u,v)]2

are monotone decreasing on [0,1].

In establishing this, it is convenient to introduce some notation. For any € R
and Az > 0, denote the increment of a function f € C at z by Af(z) = f(z +
Az) — f(z). Of course, f is monotone decreasing if and only if Af < 0 for all the
relevant values of z and Az.

Return to considering (u,v) € KN oBY and write (u,v) = (ug + euy, v + €vy),
where ug,v; € C are bounded in absolute value by ﬁ and for £ > 0 and Az > 0,
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Auy(z) < 0, Avy(z) < 0. A calculation reveals that for z, Az > 0,
AlAri(u,v) = (u,v)]1(2)
- e[zﬁu(%uo +ES Dyvo - 1] Ay () + e[km( Do + 2kaa(T )vo] Avi ()
2 [Eu(%(ul(x) +u(z + Az)) + Em(T)ul(x + Aa:)] Aui(z)
+é? [Elg(%)ul(z) + Ezz(% (v1(z) + va(z + Ax))] Av, (z).

Since u,v € K, Auy(z) < 0 and Avi(z) < 0 for z, Az > 0. Note that u; or vy

could be negative, but in any event that are both bounded below by —1%. In

consequence, the last expression may be bounded above as follows: ‘
AlAri(u,v) = (u,v)]1(2)
7r

S 6[279\11(%)(11,0 — ﬁ) + Elg(T)(Uo bt 1;6) — 1] A’U,l(.’E)

+ G[Elz(%(uo - l—ie) % 2Ezz(Tlr)(vo - 1—)}&)1(»’8)

Letting v = max{mﬁ, mllq}, it follows that
AlAr(u,v) — (u,v)]1(z)
1
< el —7e) [%u( Tuo + Fra(Z v - 1_75] Ay (z)

+ €(1 — ve) [k12( —)ug + koo (~ )Uo] Avy(z).

Hypothesis (S1) includes the assumptions ki; € LinNC, so I;; is continuous and
hence K;; = ki;(0) = limy_,qo k”( ). Therefore, for any § with 0 < § < 1, say,
there is an {5 > 0 such that when [ > [s, then k:”( ) > (1 =-06)K;; fori,j =1,2.
For such values of [, the above estimates may be continued thusly:

AlAr(u,v) - (u, )} (@)

1
(L —7e)(1 - 9)
+e(l —ye)(1-9) [K12U0 + 2K22’U0] Avy(z).

< 6(1 — ’)’6)(1 - 5) [2K11U0 + Kiovg — ]AU1 (.’II)

Choose § = «e and € > 0 sufficiently small that (1 — v¢)™2 < 1 + 3ye. In these
circumstances, the above inequality may be continued as

AlAr(u,v) — (u,v)]1{z)
<e(l —ye)? [2K11uo + Ki19vg — (1 + 3’)’6)] Auy(z)

+ €(1 — ve)? [Klgu() + 2K22v0] Avy (z)
Ay ()

=¢(1 —e)? [Kuug + Kyauguo — (1 + 37e)u0] "
0

Au;('r)

+ €(1 — ve)? [KIZUOUO + 2K9ov 0] e
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Similar considerations yield
AlAr(u,v) — (u,v)]2(z)
A'u.l (.’L)
L]

S 6(1 . ’)/E)z |:2M11U3 + M12U0’U()]

A, T
+ e(1 — e)? [ Muguovo + 2Maa0f — (1 + 3ve)vo] Suly),

For any (1,0, > 0, the increment of the linear combination [1[Ar{u,v) —
(u,v)]1 + P2fAr(u,v) — (u,v)]2 is bounded as follows:
Bi1A[Ar(u,v) — (u,v)]1(z) + B2 A[Ar(u,v) — (u,v)]2(z)
<e(l- 76)2{ﬂ1{2K11U(2) + Kiougup — (1 4 3ye)uo}

Ay ()
ik

+ Ba{2M1yud + M12UO'U0}}
+ 6(1 - ’)/6)2{ﬂ1{K12U()’Uo + 2K22vg}
2 Awy ()
+ ,62{M12’U,0’U0 + 2M221)0 - (1 + 3’)’6)‘1}0} }T
0
Hence, if the coefficients of AT:;L and —A%L in the last relation are non-negative, then,

Br1A[Ar (u,v) — (u,v)]1 + B2A[Ari(u,v) — (u,v)]2 <0,

which means that 8 [Ar;(u, v)— (u, v)]1 + B2[Ar (u, v) — (u,v)]2 is decreasing. There-
fore, to prove the second point, it suffices to show that for ¢ > 0 small enough there
are independent pairs (1, 82) and (8%, 05} of non-negative numbers such that

ﬂ1{21f1.1'l£§ + Kiguguo — (1 + 3'?6)“0} + ﬁ2{2M11U3 + Mw“liui'n} >0,

ﬂl{f\’mumro + 2K22’Ug} + ﬁ2{M12U0’Uu + 2}.4(221)5 - (1 -+ S’YG)'IJ;]} >0,
and similarly for (31, 85). Rearranging these inequalities gives the relations
- 1 - 9 -
(14 37€) (o) < u—0{2K11U0 + Klzuovo}(uoﬁl)

1
+;}-0-{2M11ug + M12uovo}(voﬂ2),

1
(14 3ve)(vofz) < u—o{K12u0v0 + 2K221Jg}(u0ﬁ1)

1
+% {Muuovo + 2Mzzvg}(voﬂ2),

where
1 1
—{2K11u(2) + K12'u,0’U0} + —{Klz’um)o + 2K22’Ug} =2
Ug Up
and
1 1
v—{2M11u(2) + M12u0110} + ;—{Mmuovo + 2Mzzv§} =2.
0 0
For € > 0 sufficiently small, the assumption K5 + K2 > 0 and My; + M5 > 0
in Hypothesis (S3), the positivity of up and vo and an application of Corollary 6.4

in the Appendix gives the result that there are two independent pairs (81, 52) and
(81, 03) of non-negative numbers which satisfy the last system of inequalities.
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(Step 2) At this stage, it is asserted that
i(PK, A, P KN BY) =0.
Let (u*,v*) € P,K with both components strictly decreasing on (0,1). If I — A
restricted to PjK N ABY excludes the entire half ray {a(u*,v*) : a > 0}, then the
fixed-point index of (up,vg) is 0 by Lemma 3.2. More precisely, we are trying to

exclude the possibility that for fixed, but small values of ¢ > 0, there is a pair
(u,v) € BK N 8BY such that

(u,v) — A(u,v) = a(u*,v*) (3.15)
for some a > 0. Arguing by contradiction, if there is a (u*,v*) and an a > 0 such

that (3.15) holds, then multiplying by cos(%2), integrating both sides over [0,!] and
simplifying the results gives

o i :
- / [A(u,v) — (w,v)] cos E;E dr = a./ u™(z) cos EIE dx,
70 ' L (8.16)

1 o ¢ -
—f [A(u,v) — (u,v)]2 cos% de = a/ v* (x) cos -7?- dm,
0 d 0

where, the notation is as in Step 1 (see (3.12)). It is known from Step 1 that there
are two non-negative numbers #; and f;, not both zero such that 51[A(u,v) —
(w, v)]1 + B2[A(u,v) — (u,v)]2 is non-increasing on [0,!], and consequently

l
0

—/ (Br[A(w,v) = (u,v)]1 + B2A(u,v) — (u,v)]2) cos 7rl_:v dz < 0.

On the other hand, because both u* and v* are strictly decreasing and since both
51,02 > 0 and at least one of 3; and 3, is positive, we know that

!
/ [B1u* () + Bav*(x)] cos 7rl_x dz > 0.
0

These relations together with (3.16) imply a = 0, whence (3.15) is reduced to
(u,v) = A(u,v).
On the other hand, € has been chosen so that (ug,vg) is the unique fixed point of
A in KN BY,. Thus, (3.15) is proved to be invalid, which is to say,
i(PK, A,PKNBY) =0
for € > 0 small enough. a

The issue of existence of non-trivial solutions expounded in Theorem 3.3 has
been settled by the preceding theory. Attention is next directed to the regularity
of this non-trivial solution.

Proposition 3.8. Suppose (¢,v) € K is a non-trivial solution of (3.2). Then it
must be the case that

lim ¢(z) =0 and lim 9(z)=0.

T—00 T—00
Proof. Since (¢,%) € KE, ¢ = limz—,0 #(z) and 9 = limy_, o, ¥(z) exist and are
both non-negative. Because k;;,m;; € L1 NC, it is deduced that (¢g, o) satisfies

A(do,v%0) = (d0,%0). Arguing by contradiction, suppose (¢o,s) # (0,0). Then
both ug and vg must be strictly greater than zero from our earlier remark concerning
fixed points with one component zero. If ¢ = u + ¢o, % = v + 100, then (u,v) € K
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and neither « nor v is a constant function. Substituting this form of ¢ and % into
(3.2) and simplifying the result yields

ki1 * (u2 -+ EifJnu) + ki * (’U/U + You + ¢r}'U) + koo * (1)2 + 2’1/)011) = u,
mi1 * (u? + 2¢ou) + maz * (v + You + dow) + maz * (V2 + 2hev) = v.
It follows readily that

k11 * (2dou) + k12 * (You + ¢pv) + kaz * (2¢ov) < u, (3.17)
my1 * (2dou) + maz * (ou + dov) + maz * (29ov) < v. '
Since ki;,mi; € L1 NC for 4,7 = 1,2, there is an M > 0 such that
3
/ kij(z)dz > = / kij(z )d:l:—4 oh
(3.18)

/ mgi(z)de > - / mj(x) de = — M,

for 1 < 4,7 < 2. Integrating (3.17) over (—3M,3M) leads to the system of inequal-
ities
/ / [2d0k11(x — y)u(y) + Yokiz(z — y)u(y) + dokiz(z — y)v(y)
3M

+tobna - ()l dyda < [ ua)ds,

M )
/ / [2¢omi1(z — y)u(y) + Yomiz(z — y)u(y) + gomiz(z — y)v(y)

—am J— .
+2¢omaz(z — y)v(y)] dy de < / v(z) dz.
—-3M

Because all the components of the integrand are non-negative, this system may be
extended to

M 4M
/ / [2é0k11(z — ¥)u(y) + Yokia(z — Yuly) +
J_am Joam

3M
doka( — )v(y) + 2okaa(e — y)v(v)] dy do < /  u(@)ds,

aM > (3.19)
/ / Réoma (= — y)uly) + Yomaa(@ — y)uly) +
M
el — 7)00) + Bm =gt s / o(z) da.
—3M /

But, for any non-negative f € C,

/ / kij(z —y) )dyda:—/ f4:+z i (2)f(y) dzdy

3M 3
[ ka3 [ o,

and similarly,
3M

/ / mij(z — y)f(y) dy dz > %Mu fy) dy.

—-3M
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Ifa= f 3Mu(y)dy and 7 = f aar V(¥) dy, then @ > 0 and @ > 0 because u,v > 0
are not identically zero. The system (3 19) implies that

(¢0K11 + 1l’oKu)u + = ( GoK12 + ¢0K22)17 <4,
<¢0M11 + 1/)0M12)ﬁ ( doMia + ¢0M22)17 <0,

or, what is the same,

(¢%K11 + %¢0¢0K12 —¢0) q% ( Povo K12 + ¢ K22) 70 S <0, 520)
(¢8011 + G0v0Mia) o= + (euboMia + WMo = Zo) - <0

Without loss of generality, suppose %‘0- . max{d)io, %}, so the left-hand side of the
second inequality in (3.20) is greater than or equal to the quantity

_ 1 _
<¢3M11 + %(boi/)oMm)l + (§¢O¢OM12 + Y Mo — %1/)0) -

Yo Yo
9 2 2 U
= (¢0M11 + oo M1z + oMoz — —%) Sr
3" /4o
2 ] 1_
= (¢0 = ET/JO)% = g > 0.
This contradiction completes the proof of the theorem. O

Proposition 3.9. Let (¢,9) € K& be any non-trivial solution of (8.2). Then
¢7 7/) €LiN Loo

In fact, it suffices to show that n¢(n) and ny(n) are bounded for n > 0
sufficiently large. It then follows that ¢, € L, for any p > 1, and in par-
ticular, ¢,% € La. As a consequence, ¢2,9% ¢ € L, and then (3.2) implies
¢, € L1 N Ly

Proof. Let n > 0 be given. Integrate the two equations in (3.2) over (0,7n) sum the
outcome and reverse the order of integration to obtain

n
| te) + v@))do
o
~ [ (1ma )8 ®) + 120@00)00) + 120 )W)
0
where
n
Hin) = [ Bhslo = 9) + ki +) + mis(o +) + miglo — v)] do
0

for 1 < 4,5 < 2. By their definition, the ;5 , are increasing with n and limp, e ij,n(¥) =
|kijl1 + |majl1 = Kij + M;; uniformly on compact subsets of [0, 00).

Letting n > p with p to be determined and splitting the intervals [0,n] and
[0,00) into [0,u) U [g,n] and [0, u) U [p, n) U [n, 00) respectively, the last relation
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may be written in the revealing form

( /0#+ A ")6(a) + w(a)) da

=( /0“ u /: + /n°° ) (711,71(?4)452(?!) + Mo (Y)Y (y) + 722,n(y)1/)2(y)) dy.

Rearranging, this becomes

/0 ’ (Y11, ()92 (¥) + T2,0 (W) B W)Y (W) + Yo2,n W) (¥)] — [6(¥) + ¥ (¥)]dy
= [ 160) +90)) ~ 118 0) + 1anW)6V(E) + 128000
m

— / - [M1,n @)% @) + Y120 ¥) W)Y (Y) + V22,0 (W)Y ()] dy.

Let I, be the integral fO“ [--+] in the last equation. Then, independently of n, I, is
bounded above by

u
Lo = [ {111,006 ) + m3c08 G0 0) + 2208 W)] = [805) + $(0)] }
where 11,00 = K11 + M11, 712,00 = K12 + M12 and 722,00 = K2 + Ma2.
From Proposition 3.8, it is known that limg_,co ¢(z} = 0 and limg_,, ¥(z) = 0.
Choose p > 0 large enough that when y > p,

M1,000% (¥) + M2,00W)Y(Y) + V22,0092 (y) < %[qﬁ(y) + ().

On the other hand, since ¢ and 1 are even, non-negative and non-increasing on
[0, oc],

[ (ran )8 @) + 1an@)dw)00) + 7209 @)) dy
<) [ min@)dy+ o) [ mant)du+ 5 m) [ " an(y) dy
<ng?(n) V1,00 + NA(M)Y (M) V12,00 + PP (N) V22,00
=7 (8(m) +9(m))”

where 5 = max{vi1,00, %712,00,722,00}. Therefore, for any n > u with p fixed as
above,

Lo 2 12 5 [ (60 +500) dy =30t + 9()

> (30— £) = 3lp0) + v ) (9(n) + w(m).

Since limy o ¢(z) = 0 and lim,_, ¥(z) = 0, n > 0 can be chosen so large that
(1 — &) — 5[¢(n) + 9(n)] > 3. A consequence of such a choice is that

Iow > gnld(n) + ¥(0)
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whence,
nfp(n) + p(n)] < 4l

is bounded. According to our opening remarks, this suffices to establish the result.
a

Theorem 3.10. Ifk € L1 NC is even, non-negative and decreasing on [0,00), then

|€|k(€) is bounded. Therefore, any non-trivial solution (¢,9) of (3.2) in K lies in

H*™ x H®,

Proof. For £ # 0,

k(€) = k(¢]) = / k(z)e™t dz = 2/ k(z) cos(z€) dz

) cos z dz.
G] / |§l
If £ > 0, then

®
k—cosxdw=/ k(= cosa:dz-l—gf =)coszdz
/0 (6) 4] E 'Jﬂll
T =z r 2n+1
= k(=)cosxdzr + -1 "+1/ k(= + ——)sinzdz.
| @ :;:0()0(5 25)

Since k is non-negative and decreasing on (0, co), the above series is alternating and
the absolute value of each term is decreasing with n, so | [;° k(%) cosz dz| < k(0),

whence |€k(€)| < 2k(0).

Since the kernels k;; and m;; in (3.2) for ¢,j = 1,2 lie in L; NC, are even, non-
negative and decreasing on (0, c0), it follows from the last argument that |£k;;(€)|
and [ém;;(€)| are bounded. From Proposition 3.9, ¢,% € L, for any p > 1. In
particular, ¢2, ¢p, 12 € L4, and so

ki x @2, kiax g, ko xv?, marx¢%, mippxdy, mag* ¢
all lie in H!, whence
¢ = ki1 * ¢ + kra * ¢ + kog x % € HY,
¥ =my1 * §? + myg * b + mag x Y% € H.
In consequence, we have
¢*, ¢, ¥* € HY,
thus
ki x @? ki ¢y, ke k9, marx %, mizx gy, mag *
all lie in H? and therefore,
¢, € H?.
Continuation of this argument establishes the result in view. O
Corollary 3.11. In the Gear-Grimshaw system (1.2), if the constants ai,az,a3
are non-negative numbers constrained by
1 1 as . a; 1 }
el y A2, =, T
VB2 baag baar’ VT 4y bpay
then for any number C' > max {%11-, 0}, there is a solitary-wave solution propagating
at speed C given by shape functions (¢,¢) € KN (H® x H™).

az < min{
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Proof. In the Gear-Grimshaw system (2.1), take the Fourier transform in the spatial
variable and invert the resulting matrix of Fourier multipliers on the left. After then
applying the inverse Fourier transform, there appears the equivalent system

¢ = k11 * @2 + kig * ($) + koo * 92,
Y =myp * ¢ 4+ mag * ($) + mag * Y2,

of integral equations where

ko () = \}_{af — (1 = baagzas)r® N (1- bgagaa)ric_,.”z‘},
4v/A e T+
o) = 2\}_{&2& — (az — baayaz)r? o-r-lal _ aza — (ag — boaras)r? e—r+lm|}‘
r_ T4
P {alu — (ay —ay)r? 2 2 el aya— (ay — n:;)'rff_ e—r+lwl}
22 - ]
4\/— L
mu(.’lt) _ {agc (0.2 = a3)r3 e"'—|$| _ a20 - (az e a3)}"'3_ 6_r+|z|},
r_— T+
mra(z) = b2 {a10 — (a1 — aga3)r: rolal _ a1C — (a1 — agaz)ri e"'+|“”|},
VA T— T+

. 1 C - (1 - bzﬂ.laa)?‘_ - = C - (1 - b2a2a3)r3_ —ry ||
maz(z) = 4\/5{ r— Ty ¢ }’

A=(C-a)+4CaB, a=bC-r, f= boal,
and, ry > 0, 7— > 0 are defined by

. CHa+vA s CHa—VA
r, = — and re = ———
T TA-p) - T TR-P)
Under the stated conditions, the k;; and mj;, 1 < 4,5 < 2, satisfy Hypotheses
(81)-(83), so the corollary is a simple application of Theorem '* 3 r

Corollary 3.12. For any speed C with |C| > 1, the regularized Boussinesq system
of equations

+ ugp + (nu)g — =0,
{m (Nu)z — Moot (3.21)

Ut + Ng + UUz — Ugat = 0,

possesses solitary-wave solutions of the form (n(z — Ct),u(x — Ct)) if C > 1 and
(n(z — Ct), —u(z — Ct)) if C < —1 where (n,u) € KN (H> x H®).

Proof. It suffices to prove this result for C' > 1 since the equations for the shape
functions have the form

C(l _Dg)n_u = nu,
-9+ C(1- Dy = —u?,

and these are invariant under the transformation

C—-C, n—n u——u. (3.22)
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Inverting the linear operator on the left-hand side leads to the system of integral
equations

(1(6) = / (b5 bre ) nwu) dy

) +@ (b e ~i5 —b+e_ﬁ"1—yl>u(y)2dy,

u(§) ZE/ b—e—ﬁ‘_—_ﬂ = b+e_ﬁ”;+u)n(y)U(y) dy

R T
\ +o5 | (067 HbreT Jul)?ay,

/[ C C
b+ = C_-}-l and b_ = m

It is easily verified that these integral kernels satisfy the hypotheses (S1)-(S3), so
an application of Theorem 3.3 concludes the result.

where

Remark: In this example and for the next class of examples, the number of
non-zero trivial solutions is exactly one.

As another application of the theory developed in this section, we inquire which
other of the Bossinesq (1.4)-systems have solitary-wave solutions. For the general
system, the equations for the shape functions 7 and u take the form

Cc(l- ng)n -1+ aDg)u = nu, -
1 .
—(1+cD3)n+C(1 — dDZ)u = §u2

Note that like its specialization (3.21), (3.23) is invariant under the transformation
(3.22). In consequence, we may restrict attention to the case where C > 1 and
u > 0. Elementary considerations show that if b,d > 0 and C > 1 is sufficiently
large that C2bd — ac > 0 and C%(b+ d) + a + ¢ > 0, then the operator

<0(1 —bD}) —(1+ aD§)>
—(1+¢cD?) C(1-dDj)
is invertible, and hence (3.23) may be put in the form

1
n = k2 * (nu) + 51922 * (u?),

1
=Moo * (’U,z),

u=m12*(17u)+2

where the integral kernels k;; and m;; are

Fia(e) = 2(6‘2!)3— ac) <r_1(1”§r d—rz;'z )E_T - %ﬁ_e_”m)’
Faz() = 2(C2bd - ac) (r 1(:2— a_TT emr-lel - 7~+1(?-—g T?E) B_T+|z|)1
miz(z) = Czbd —2) (1 L +(2 r2 e~ T-lzl _ ?'i.tr;; t"j"-gl?-‘:a_)e—mlacl),
maz(z) = 2(025(1 (f _T_Iml - r+tf;}ﬁi ) Falel),
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and r4,7_ > 0 are defined by

C2(b+d) + (a+c) + 1/ (C2(b+d) + (a +0))* — 4(C? — 1)(C?bd — ac)
2(C%bd — ac) :

2 _
TR =

L, CRb+d)+(a+0)—/(C2o+d) + (a+ )’ — 4(C? —1)(C?d — ac)
== 2(C%bd — ac) '
Detailed, but elementary calculation shows that, if b,d > 0, C%bd — ac > 0, C > 1,
and a,c < 0,]al,|c| < rZ?% then kij and m;; for 4,5 = 1,2 satisfy Hypotheses

(S1)-(S3).

Corollary 3.13. Ifb,d > 0, a,c < 0 and |a|,[¢| < Vbd, then for any propagation
velocity C with |C| > 1, the (1.4)-system has non-trivial solitary-wave solutions
(n(z — Ct),u(z — Ct)) if C > 1 and (n(z — Ct),—u(z — Ct)) if C < —1, where
(n,u) € KN (H® x H®).

Remark: A special case where the forgoing hypotheses apply is the Bona-Smith
examplea=0,b=d= %, c= —%. For this situation, our results reproduce aspects
of the earlier theory of Toland (1981, 1984). Our theory applies also to the special
case a = 02 — %, c=0,b=d= %(1 — 6%) where 0 < 6% < % discussed by M. Chen
(2000) using dynamical systems methods as in Toland (1986), Amick and Toland
(1992), Champneys and Spence (1993), Champneys et al. {1996) and Champneys
and Groves (1997).

4. More General Systems.

4.1. Notation. The Banach space L, = Lp(R) with p > 1 and the Sobolev space
H?® = H*(R) with s > 0 are connoted as before. The class

L =LMR) =Ly x -+ x Ly ={u=(u1,-+ ,Um) 1 us € Ly for 1 < j <m}
kS
is a Banach space with the norm |u|, = (E;';l lu;[B)*. For s1,82," ,8m 2> 0, the
collection

Her X220 Xm = g = (g, ,Um) : u; € H% for 1 < j <m}

Py
is a Banach space with the norm ||ul|s, x s, x--xsm = { 2j1 l[45]|3,)*- The Fourier
transform of u € L is defined componentwise to be

= (alaaza - ,’Em)

The transpose of a vector of functions u is denoted by u’.
If s € R is not an integer, the related integers

ls] =max{n €Z:n < s}

and
[s] =min{n € Z:n > s}

will appear in our analysis.
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4.2. Application of Concentration-Compactness Theory to (1.8). This sec-
tion comprises an extension of the theory developed in Subsection 2.3 from 2-
equation systems to m-equation systems. Instead of introducing new notation, we
continue to use the symbol L = Lo = C — CN — L, so the abstract m-equation
system (1.8) may be rewritten in same form

Lut = f(u), (4.1)

as was the 2-equation system, where £ = (A;j)mxm IS an m x m matrix whose
components A;; are Fourier multiplier operators with symbols a;;(£), 1 <4,5 <m.
Hypotheses similar to those appearing in Subsection 2.3 will be in force.
(A1) The matrix (a;;(€)) = (ai;(€)),,,, is symmetric, and each ag; is an even
function on R, which is to say that fori,7 =1,2,--- ,m,

ai5(€) = a;3i(€) = as;(€])-
Moreover, each a;;(£) is a sum of finitely many terms of the form a|¢ |2, where

the ay’s and ry’s are real numbers, with r, > 0 for all k.

(A2) The operator L is elliptic in the sense that there are two positive con-
stants 7, 7, and positive numbers s; for j = 1,---,m such that for any x =

(.’1}1,11}2,--- ):L"m)’ y = (ylay2v"' aym) GRm,

x(ai; (€))x* 2 7Y (1+€%)%ad,

=1

and
m 1 m 1
2

x(ass(©)y!] < 7( D +€vad)" (T +eHusd)”.
j=1 j=1
(A3) There is a homogeneous polynomial F of degree p > 3 defined on R™ such
that
f =grad F,

and moreover, there is a positive number ~y > 0 such that

[F@1,yzm)l € 0l @m)B =70 ) lasIP.
j=1
Regarding the problem (4.1), we follow the lines laid out in Section 2.3 by defining
a homogeneous functional A on X = Hf1*%2%X9m ag follows:

[ ulutdz
(f F(u)d)*

Remark: For clarity, we omit the superscript ¢ indicating the transpose u® of u
throughout this chapter. We believe no confusion results and some formulas are
thereby made much easier to read.

Elementary calculations reveal that the Fréchet derivative A’ evaluated at u and
applied to h € X is

Alu) = (4.2)

2fulhdz 2 [grad F-hdz [uludy

(JP@d) P (fF(u)dz)"
_(J F(w)dz) [ulhdz —2 [ f(u) - hdz [uludz

p( [ F(u) dz)%3

AN(u)h =

(4.3)
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If u is any critical point of A, in particular, if u is a minimizer of A, then A’(u)h =0
for all h € X, which is the same as

_ Juludz W) hde
/uﬁhdz—p———fF(u)dm/f( ) hdz.

It follows that
_ fuluds

o= p [ F(u)de

f(u).

1

Ifg= {;%%}m, then by homogeneity, Su satisfies the problem (4.1):

L(Bu) = £(Bu).

Therefore, the problem (4.1) can be solved by finding a minimizer ® of the varia-
tional problem

A(®) = min{A(u) :u e X}. (4.4)

Since the functional A is homogeneous of degree zero, we may study instead the
constrained minimization problem

O(\) =inf {J(u):ue X,/F(u) dz = A}, (4.5)
where A = 1, say, and J is defined on X by

J(u) = /uﬁu dz.
The main result in this section is stated in the next theorem.

Theorem 4.1. Suppose the hypotheses (A1)-(A3) are valid and that s = min{s; :

1<j<m}> % — %. Then every minimizing sequence {u(”)}fle of the problem

(4.5) is, up to translations in the underlying domain, relatively compact in X =
Hev<xsm - In consequence, there exists at least one non-trivial solution ® € X to
the problem (4.1). Moreover, if s > % — L then®c H® x H® x ... H*®,

P
The elliptic Hypothesis (A2) implies that if u € X, then J satisfies
ulk < J(u) < Alullk,

and the Sobolev imbedding theorem indicates that there is a positive number ~, ,
only dependent on s and p such that

2
(15" [ P)da)” <l < v plull (46)
Hence, for any A > 0, it follows that 0 < ©(X) < oo and so any minimizing sequence

{u®™ = @, W, W}, c X
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of (4.5) is bounded. To apply the concentration-compactness principle, the sequence
{pn}; associated with {u(™}%2; is constructed as follows:

on(@) = 3 (|7 @) + D2l @)*)
;€N
+ Z (|u§-n)(ac)|2 + min{1, |_st}|D£stu§.")(m)|2
S]'¢N
DY @) ~ DY P )|
- / |": = y!HE("’J"l”-“'f) dy).

Then, pp, > 0, {pn}32,; C L; is bounded and the L;-norm of p, is equivalent to
the X-norm of u™. Let pn = [ pn(z) dz be the Li-norm of py, so that u, > 0 is
bounded and x4 = liminf, o ptn, > 0. Without loss of generality, suppose p, — u
as n — o0o. The proof of the theorem consists of ruling out the possibility of
Vanishing or Dichotomy occurring within the sequence {p,}52 ;.

Proof. If the conclusion of the theorem is not true, then there is a subsequence
{pn. 172, of {pn}32, which satisfies either Vanishing or Dichotomy.
If Vanishing occurs, then, for any R > 0,

lim sup f Pn, dz =0,
k—oo,y€R J|e—y|<R

which implies that

lim sup / lu™)|? dz = 0.
k—o0y€R J|z—y|<R

Depending on whether or not the set {s; : 1 < j < m} C N, Lemmas 2.4 or 6.3 in
Chen and Bona (1998) following Lions (1984) imply that

lim /|u("’°)|p dz = 0.
k— o0
The inequality (4.6) then leads to the contradiction
1= /F(u(nk)) dz < ,Yolu(nk)lz =0 / Iu(nk)lp dz — 0,

as k — oo.

If Dichotomy occurs, then there is a fi € (0, u} such that for any ¢ > 0, there are
two sequences {pi}22,, {p2}%2, C L1, p},pt > 0, and a positive number kg such
that for k > ko,

110’"4: - (plli-? +pi)‘1 <e

1 = 2 =
J/pkdw—ulSe, ’/pkdw—(u—u) <e 4.7)

supp py C (yk — Bo,yk + Bo) ~ and

| Supp pi c (_Ooyyk - 2Rk) U (yk e 2Rk1 OO),

where Fy > 0 is fixed and {yx}72,, {Rr}32; C R are two sequences with Ry > Ej
for all k and limg_, Ry = co. Let {,9 € Cp° again denote the functions introduced
in (2.6) in the proof of Theorem 2.2 of Section 2.3. For Ey > Ej and = € R, define

Q@) =CF ") (o) = v (),

T
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and let
771(:1;) — { —C(I—EI—") + C(-z}_{ky—k)’ lf yk + El S xT S yk + sz,
‘ 0 otherwise,
nZ(x)z{ —C(FF) + C(F72), if g — 2Ry, < z <y, — B,
‘ otherwise.

Then for any z € R, (x(z), ¥i(z), ni(z) and ni(zx) are related by
Ck(@) + e(a) + mia(@) + ni(z) = 1,

and
supp Ck C (yx — 2E1,yx + 2E1), supp¥r C (—00,yx — Ri) U (Y& + Ry, 00).
supp 7y C (yk — 2Rk, yx — E1), suppni C (yk + E1, 9k + 2Rk).

Hence,
ul™) = ¢u™) 4+ ypul™) 4 nku("k) + n,%u(nk)’
and, for each j € [1,m], the supports of Ckug-nk), wkug-""), n,ﬁug-"’“) and n,zcug-n") are
contained in the supports of (x, ¥k, ni and n,%, respectively.
From Lemma 6.2 in the Appendix, if F; is sufficiently large, then

Imkuf*lls; < Ce  and  [lnguj*|ls; < Ce
as k — oo, where C is a constant independent of k. And from Lemma 6.1 in the
Appendix, for any 7 =1,2,--- ,m,
Ickul™ + prul™ o, = 1Geud™ 112, + lel™ |12, + R,

as k — 00, where the remainder R is bounded by a constant which is independent
of k times (R — F1)72%. In consequence, for all j, we have

™13, = NGku§™ 13, + lkul™ 1, + R + Ce.
So, define
a®l = u™) u®2 = gu)  and w® = (g 4 p2)ul),
or, in components,
ug.k)’l = Ckuz*, ugk)’z = Yru;*  and w;-“ = n,ﬁuﬁ-"k) + n,%u;““
for j =1,2,--+ ,m. With this notation, it is seen that
suppul®! = U; supp ug.k)’l C (yx — 2E1,yk + 2E1),
suppu®? = U; supp u{™? C (00, yx — Ri) U (yk + R, ),
suppw*) = U; supp w¥ C (yx — 2Rk, yx — E1) U (yx + E1, yx + 2Rx),
and, for & sufficiently large,
[w®x < Ce,
™))% = u® % + [u®2|% + O(e)
as € — 0. Hence, there exist subsequences of {u(®)1}2  and {u(®2}g | still

denoted by {u(k)'1}2°=1, {u(k)’z}, respectively, and a number A such that, for any
€ > 0, there is a k1 > kg so that k > k; implies

‘ /F(u(k)’l) dz— A <e and ‘ /F(u(k)’2) dr — (1-X)|<e
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It follows that
J(u(nk)) = J(u(k),l +ul®2 4 w(k))

= J(u(k)’l) + J(u(k)’z) + J(w(k)) + 2/u(’°)’1£u(k)’2 dz (4.8)

+ 2/u(k)’1£w(k) dx + 2/u(’°)’2£w(k) dz
Notice that

J(w®) < 5|lw®|% < Ce,

| [ w9 Lw® da] <y w®x < Ce

| / u®2Lw® de| < 9lu® 2| x]lw®|x < Ce.

Also, it is asserted that
’/u(k) 1cu<’°>2dx = ’ Z /am LB ge| < ce.

If all the sy are integers, there is no pseudo—dlfferentlal operator involved, so ( is a

local operator and hence [u(®:!1Lu(%):2 dz = 0 since the supports of u(!) and u(®

are disjoint. Otherwise, as the supports of u(k) ! and ugk) 2 are Ry —2F; apart and

limg—,00(Rk — E1) = 0o, the desired estimate follows from the relation
/u(k)’lﬁu(k)’z oE = O((Rk _ Eo)—27'0)

as Ry — Eg — +oo, where r¢ = min{|r1], -, |rn]} and the 7;’s run over the
non-integer values of the s;’s (see Lemma 6.1 in the Appendix). Therefore, letting
k — oo in (4.8) leads to

0(1) = lim{J(u'™)} = lién{.](u("k))}
n
=h’£n{ J®) 4 7u®2) 4 J(wy) + 2 / NORYNOE:

+2/u<k)’1£wk + 2/u(k)’2£wk}
> limkinf J(u®hly 4 limkinf J(u®»2) 4 O(e)

as € — 0. If [ F(u®*»!(z))dzx — X\ =0, then by (4.6),
limkinf J(ulk)1y > limkinf1||u(k)'1||§( > limkinf1|p,1€|1 > vi,
whence,
0(1) > yp+ limkinf J(u®12),
or
e(1) 2y + 6(1) > 6(1),
a contradiction. If, on the other hand, [ F (u(k) 1 1:)) dz — A # 0, then
8(1) > 6()) + (1 — ).
However, by homogeneity and positivity, ©(\) = |)\|%®(1) and ©(1) > 0, whence
6(1) 2 6(N) +6(1 = A) = {Al# + 1~ A|*}0(1) > 6(1),
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another contradiction. Thus Dichotomy is seen to be impossible.
Since Vanishing and Dichotomy have been ruled out, it is concluded that there

is a sequence {yn}%>; C R such that for any € > 0, there is an R < oo and an
integer ng > 0 such that for n > ng,

/ pn(z)de > p—¢, / pn(z)dz <,
Iz_anSR |$"yn|2R

/lm—anZR F(u(") (w)) dx‘ S /Iz—yn|zu ’F(u(") (:v))‘ de

<[u® -2 / () de

|z—yn|ZR
=O(E))

as ¢ — 0. It follows that
’/ F(u(")(a:)) d:c—l‘ <e
lw—ynlﬁﬂ

Letting i (z) = u(™ (2 —y,) for z € R, the above property means that (™ (ora
subsequence) converges weakly in X, almost everywhere on R, and strongly in L,
to some function G € X, say, and, moreover,

/F(ﬁ(w)) dz = lim/F(u(")(z)) dz =1.
Furthermore,
O(1) = lim / a™La™ dg > / aLadz.
n

Thus the vector function 1 solves the variational problem (4.5), and therefore,
d = (%ﬁ)ﬁﬁ is a solution of (4.1).

For the regularity result, if s = min{s; : 1 < j < m} > %, then X is a Banach-
algebra, and since ® € X, then f € X and ® = L~'f € H3>**3_ Inductively,
it follows that ® € H® x --- x H®, If % —% < s < %, then f € HI* x4
where ¢ = s — (3 — %), so® = L7If € H™%" where r = 3s — (5 — %) Since
3s—(% — %) > 2s, another inductive argument will establish the advertised regularity
result, which is that if s > % - %, the solution @ of (4.2) lies in H*® x --- x H®.

Theorem 4.1 is proved.
|

5. Further Results for General Systems.

5.1. Notation. The symbol Z, stands for the set of all non-negative integers.

For any integer m > 1, Z7 = {a = (o, -+ ,0m) : ax € Zy for 1 < k < m}.
The bold-face letter x = (zy,--- ,zm,) connotes an m-dimensional vector; for any
a= (o1, - ,0m) € L, define |a| = |a1|+ - -+ |oum| and x* = 27" -+ - 2. In this

situation, |a| is called the degree of x*. For a multi-variable polynomial f(x) =
Ejez+,aez5: ¢j,aX%, the degree of f is the largest value of || whose corresponding

coeflicient c; o is non-zero.
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5.2. Generalizations of the Results in Section 3. In Section 4, we studied a
certain type of system of m-equations (4.1) assuming that the operator L is elliptic
in the sense defined by (A1)-(A2), and that the vector of nonlinear terms f is the
gradient of a homogeneous polynomial on R™. The problem was replaced by a
variational problem, and Lions’ theory came to fore. In this form, the theory has
an interesting range of applications. However, the family of Boussinesq systems
(1.4) does not belong to the preceding category of models. Bearing this in mind,
interest is now turned to the situation where the operator £ in (4.1) lacks symmetry
and the nonlinear vector f is not necessarily homogeneous, nor is it the gradient of
some function. The extended degree theory of positive operators will be brought
to bear on the problem in this more general form.

Assuming that the matrix (aij (E)) associated with the symbol of the operator
L in (4.1) is invertible, take the spatial Fourier transform termwise in (4.1), invert
(aij (§)) and then take the inverse Fourier transform to reach a system of integral
equations

w1 = Nip* fru)+ - + Nig * fm(u),

Um = {Vml *fl(u)+ o+ Neym * fm(u)a

as before, where u = (u1, - ,up). Suppose that each component f; of f =
(f1, f2,-++ , fm) is a polynomial of degree greater than or equal to 2, the high-
est degree being g, say, and that f,(0,0,---,0) = 9;fx(0,0,---,0) = 0 for k,j =
1,2,... ,m. Rearranging these formulas according to the degree of the nonlinearity,
the above system may be rewritten in the form,

Uuy = A12F12(u)+ e Aqulq(u),
. (5.1)
Um = Am2Fm2(u)+ R Aqumq(u)’

where, for 1 < k < m and 2 < j < g, Fg; is a sum of homogeneous monomials of
degree j defined on R™ and Ag; is an integral operator defined by

AgiFi(a) = )" afjxu®
a€ZT,|al=j
(5.2)
= > [ wro.
a€Z] |al=]

The first step is to choose an appropriate function-space setting. Guided by the
theory for one and two equations, let

X =C(R) x -+ x CR) = {f = (f1,+ , fm) : f €C,1 S k < m},

e

m factors

where C = C(R) is as before the class of all continuous real-valued functions of a
real variable. The generating family of semi-norms for the topology on X is

i = 5 < < | =
p](f) —jlinﬁa‘x}%jl {lfk(x)l 1<k< m}a J 1,2, »
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f=(f1,-",fm) €X, where [ > 0 is to be determined later. The cone

K ={f = (f11 e ,fm) €X: fk(x) = fk(_m) Z 0)
fk is non-increasing on (0,00),1 < k < m}
is the m-dimensional analog of the cone used in Section 3 for a system of 2-equations.
Note that, if u = (u1, -+ ,um) € K, then the distance of u to the origin is
max{u;(0) : 1 < j < m}

1+ max{u;(0):1 < j<m}’
or, what is the same, if d(u,0) = r, then max{uzg(0): 1 <k <m} = .

Define an operator A on K by asking that Au is the result of applying the integral
operators on the right-hand side of (5.1) to u. Then equation (5.1) may be written
briefly as

d(u,0) =

u = Au. (5.3)

The study of non-trivial fixed points of A is now undertaken.

As in Section 3, the following hypotheses about the kernels af; are made.

(B1) ag;(z) = ag;(—=), af; € L1 NC, ag; > 0 is non-increasing on (0, 00), there
is a number A > 0 such that when z > ), all the af; are convex. Moreover, for any
integer k in [1,m], there is at least one element « in the set

m
A={a: Zaﬁj is strictly convex for |z| > A},
k=1
whose kth component is positive.

(B2) If (u1, - ,um) is a fixed point of A in K and one of its components is
a constant function, then all m-components are constants. Such solutions will be
called trivial solutions. It is assumed moreover that the number of trivial solutions
in K is finite and that a trivial solution is either identically zero or has all m-
components positive.

(B3) Not too many of the Ay; and af; vanish. Precisely, let, ug; = f02 ag;(z) dz.
Assume that there is a number ¢ > 0 and 2 vector u € K such that the system of
inequalities

ot 3 i / u() do < [m(m) da,

i l l
a+ 3 3wty [ w@)da < /0 s
\ ¥ =4

holds. Then there is a constant ¢ depending only on the {,u%j} such that a < ¢ and,

for any o such that there is a k and j with ug; > 0, the quantity fol u*(z) dz is
bounded by a constant u* which depends only on the non-zero elements of {xg;}.

(B4) The non-negative square matrix
Yima Daimjalafily Eioa Y= calanl,

s Z|a|=jam|a?j|1 Z;'f:z Z|a]=j am|a1?;t-j|1
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is irreducible.

Remark: A square matrix A = (a;5) = (@ij)nxn is called reducible (see Gant-
macher 1960) if the index set 1,2,--- ,n can be split into two complimentary sets
(without common indices) ©1,%2, - ,%u; k1,k2,** , kn—p such that

aiﬂkg'__oy fora=1,2,---,,u; ,8=1,2,~-,n—u.

In other words, A is reducible if there is a permutation of {1,--- ,n}, {01, - ,0on}
say, such that

- B 0
A= (aa,-o,-)i,j=1,---,n = (C’ D) )

where p € [1,n), B is a u X p square matrix and D is an (n — u) x (n — u) square
matrix. If A is not reducible, it is called irreducible. In the special case when m = 2
and ¢ = 2, the irreducibility assumption is equivalent to the first part of Hypothesis
(83) in Section 3.2, which requires both off-diagonal elements to be strictly positive.

The major result of this section is the following theorem.

Theorem 5.1. Under Hypotheses (B1)-(B4), the system (5.1) has a nontrivial
solution u = (uy1, -+ ,um) € K.

The proof consists of the following three lemmas and a proposition.

Lemma 5.2. The operator A defined in (5.8) maps K to K and is continuous and
K-compact.

Proof. This result follows as in Lemma 3.1 of Benjamin et al. (1990). a

Lemma 5.3. Ifro = max{}J 4 —;laf;l1 1 1 <k <m, 2 < j < g}, where |a/,‘3‘1|1 is
tZe Ly-norm of the kernel af;, that is lag; |1 = [ lag;(z)] dz = [ af;(2) dw = of;(0),
then

(a) for0<r < 2—+1T—0, u # tAu for any u € KNIB, andt € [0,1],

(b) for ﬁ < R < 1 with R sufficiently close to 1, u — Au # al for any
u € KNOBr and all a > 0, where 1 is the constant function which takes the value
(1,1,---,1) at every point in R.

Proof. Part (a). Suppose the statement is not true. Then there must be some
u e KNoB, and t € [0,1] such that u = tAu. Since each component ux and
each kernel af; is non-negative, even and decreasing on [0,00), for any z € R,
Jag;(z—y)u*(y) dy < [ ag;(z — y)u*(0) dy = |af;|1u*(0). In particular, at z = 0,
u(0) = t(Au){0) leads to the system of inequalities

2(0) < 3 fofhut(0)+ -+ 3 lagliut(0),

lee|=2 lal=g

1
Fun(0) < 3 lagiahut©@++ 3 lag,hu(0).

lee|=2 leel=g
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Since u € 0By, it must be the case that &= = max{ux(0) : 1 < k < m}, so
u*(0) < ( T)Ial and the above inequalities therefore imply

—u1(0 < i
=2

¢

It follows that

1 T _1 T i
i1y 1B, @) S”’;(l =)
=1
_ o al= (%)’ r r
=ro(7=7) =& = =) T=)
from which one deduces that
1 1
>

r> }
T 24trg ~ 241

This contradicts the assumption r < ﬁ and Part (a) is proved.
Part (b). Supposing (b) is invalid, there must be a u € KNdBg and an a > 0
such that
u— Au=al

or, in concrete form,

x)—a+2/a12m yyu*(y)dy + -

|ex|=2
+ 3 [ae-vu@ay++ 3 [ag@-vuwa,
|a|=4 |x|=¢

_a+2/ a%q(z —y)u*(y)dy + -

|a}=2
+ am;(z —y)u(y)dy + -+ mqe(T — y)u(y) dy
\ |°‘|Z_.7/ y |¢;‘1/ !

(6.4)
Notice that

i) 1 [atse-pueways>; [ 11 | 11 (2 - y)u®(y) dy da
=1 / e wazdy> [ a@ar [ ww)a

= Ug; /0 u*(y) dy,
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so, integrating (5.4) over [0, 1] leads to the system of inequalities

a+Z,u12/ *(z) dz + - +ZH1]/

|e|=2 |a|=3

Z H1q/ z)dz < /olul(:v)dx,

la|=¢

4

a+Z,um2/ z)dz + - +Zum]/ u®(z) dz

la|=2 |ed| =3

Z ,umq/ u*(z)de < /01 Um(z) dz.

\ |al=¢

From Hypothesis (B3), a is bounded and each integral fo *(z) dr with at least
one positive coefficient uf; is bounded by a constant 4. So returning to (5.4) and
following the arguments used in proving part (b) of Lemma 3.5 leads to

oo
O<ug(z)<a+2 D> > aR@)u*+--
la|=2,ag,7#0 j=—00

+2 )0 DD ap@e k2 Y Y ag(@)u®

|0|=.7'70?j¢05=“°° |ﬂ|=q,a§q¢0 j=-o00
for k=1,2,---,m. This means that each component uy, is bounded above by some

number py, say. It follows that d(u,0) < Ry, where
2max{ug: 1 <k <m}
14 2max{pe: 1 <k <m}’
and thus if we choose R € (Rp, 1), then u ¢ KN3Bg and thus (b) is established. O

Ry =

The argument appearing in the proof of Proposition 3.6 leads to the following
result.

Proposition 5.4. Let r and R be defined as in (a) and (b) of Lemma 5.3, respec-
tively. Then i(K, A, KR) = —1, and therefore, there is at least one fized point of A
in the cone segment KI*.

Remark: As in Section 3, this result does not settle the issue of existence of
solitary travelling waves. The reason is that there always exists at least one non-
zero trivial fixed point in the cone segment KZ, that has all of its components
positive constant functions. To prove this claim, consider a much narrower cone
K =R7 = {(z1, - ,2m) € R™:  x1,---,2, > 0}. Notice that the operator
A maps K to K continuously. As the cone is finite-dimensional, this means A is
continuous and compact on K. Positive operator theory can be applied just as in
the infinite-dimensional setting to prove the existence of a fixed point of A in this
new cone, all of whose components are non-zero. In the situation where m = 2 and
the nonlinearity is homogenous, the existence of such a fixed point follows from
algebraic considerations. This point is not pursued here, but a separate note about
this issue will appear in due course.
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As in Section 3, the existence of a non-trivial solution may be inferred if the fixed-
point index of the operator A at any of the trivial solutions in the cone segment
KZ is shown to be zero. This is our next goal, which is the most challenging aspect
of the theory.

The two operators r; : C — C; and s; : C; — C defined in Section 3.2 are
extended componentwise to the m-variable case. Thus if u = (uy,-- - ,um) € C™,
ru = (ryuy, -, T, ), and for any v = (v1, -+ ,vm) € CI*, syv = (syv1,- -+ , 81Um)-
Following the development in Section 3, define

PK= {u = (u1,uz,  ,um) € Ci" : u; is even, non-negative
and non-increasing on [0,1],1 < j < m}.
The homotopy {H¢}sc[o,1) given by
Hi(u) = tAu + (1 — t)s;Arju (5.5)
is defined for ¢ € [0,1] and u € K. As in Section 3, it plays an important role.

Lemma 5.5. Suppose the fized points of A in the cone segment KE are all trivial,
that is, if up = (u3, -+ ,ud) € KE satisfies Aug = uo, then each u) is a constant
function. In that case, each such fized point is isolated and has fixed-point index
equal to zero.

Following the strategy displayed in Lemma 3.7, this result is established in two
steps. The first is to show that the operator A is homotopic to s;Ar; on a small
neighborhood

K N Be(up) = r; {PK N Be(uo)], (5.6)

where B.(up) is the ball in X centered at ug, € > 0 is small enough that KNB.(ug) C
KE, ug is the unique fixed point of 4 in KNBY,, and [ > 0 is sufficiently large. The
second step is to show that i(K, siAr;, KN B, (uo)) = 0. As K r-dominates P;K, the
lemma is concluded via the calculation

i(A4,u0) = (K, A, KN Be(ug)) = i(K, 4, r; [PK N Be(up)])

i
=i(PK, A, PKNBe(ug)) = i(K,s;Ar;, KN Be(uo))

Proof. (Step 1) By way of obtaining a contradiction, suppose A is not homotopic to
s{Ar; on the set defined in (5.6). Then there must be an element u € KN 8B, (up)
and a t € {0, 1] such that

u = tAu+ (1 — t)s;Arju, (5.7
or,
siArju — u = t(s;Arju — Au). (5.8)
On the interval [—1,1], (5.8) reduces to
Arju — u = t(Arju — Au),
or, componentwise,

q q
Z Z ag; * (ru®) —u, = tZ Z ag; * (ru® —u®) (56.9)

Ji=2|al=; J=2|a|=j
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fork=1,2,.--,m. Multiplying (5.9) by cos % and integrating the result over [0, ]
gives

/{ZZ%J (ru®)(z) — uk(z )}cosde

2 =
o I (5.10)
_t/ Z Z ag; * (ru® —u )cos 7 da:
i=2al=j
for 1 € k < m. Notice that for all k, j and «,
i l
/ ag; * (ryu®)(z) cos T2 4w = / az‘-(l)ua(w) cos == dz,

g l A/ l

so (5.10) may be written in an expanded form as
[}
/ {Z Z alj )u () —ui(z )}coszlfdw=t/ wl(z)cosz—wdz‘
7=2 |a|=j 0
. /
& — T T ! T
/ {Z a?‘nj(T)u“(:c) —um(x)}coswa=t/ Ym(z) cosTdm
0 " i=2lal= 0 )

where, for k =1, m,

q

= Z ag; * (ryju® — u?)
3=2a|=j
q
=2 % [ (age-v) +agy e +9) @) - ut) by

7=2 |a|=5 y>l
Denote by ¥ the vector (41, -+ ,%m), and write Ar;u—u in components as ({Arlu—
uly, -, {Aru — ll}m), where, for k=1,--. ,m,

q
{Arju — u}x(z Z E akj (z) — ug(z).
7=2lal=j
Then (5.10) may be written in the compact form
! !
/ {Arju — u} cos?dw = t/ \I/coszrl—mdw. (5.11)
0 0

Step 1 is complete if (5.10) or (5.11) can be proved invalid. For this purpose, we
make a pair of Ansatz’s. The first one is that there are m independent vectors
(AR = (AP AR RY = {(21,** ,Zm) : T1,"* ,Tm > 0} such that

/ A®) . { Arju — u} cos IF dz > 0,

where A) . {Au —u} = PV /\(k){Arlu —u};, k=1,2,--- ,m, and that equality
holds if and only if Ay - {Arlu u} is identical to some constant for 0 < z < !. The
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second conjecture is, for any k with 1 < k < m, when [ is chosen large enough,

l
/ wkcosﬂ-l—wd:cso,
0

and equality holds for all k if and only if each component u; of u, 1 < j < m, is
identical to some constant for z > I. Supposing for the moment the validity of these
two propositions, then (5.10) or (5.11) leads to

! !
OS/A(k)'{Arzu—u}cosZ—xdaa:t/ A(k)-\I/cos—?-dmﬁo,
0 0

so that for 1 < k < m,
AP {Aru—u}=C), for 0<z <l (5.12)

and

! l
" T (k) o ® =
t/o A ¥ cos ——l dz t/o (Al 'l,b]_ + + )\m "p'm) Cos ] dx (513)

:0,

where the C are constants. Since the vectors {A(’c)}fc"=1 C R7 are independent,
(5.12) implies each component {Au — u}; is equal to some constant for 0 < z < I,
so that each component ux of u is identical to some constant for 0 < z < [. Again
applying the independence of the {A(®)}™ (5.13) yields in turn that

!
t/ wk(x)coszrlfdx=0,
0

for 1 € k < m. In fact, ¢t must not be zero, otherwise, (5.7) becomes u = s;Ar;u. In
this case, each component uy, of u is constant for z > I; the evenness and continuity
of u then implies that each ug is a constant function on all of R. In consequence,
u € KN aB.(up) is also a fixed point of A, and this contradicts the presumption
that ug is the unique fixed point of A in the small set K N Bac(ug). As t > 0, we
must have

!
/ Yr(z) cos ﬂ—lw- dz =0,
0

for 1 < k < m. The second conjecture indicates that each component uy of u is
constant for z > [, and repeating the above argument made to discard the prospect
t = 0 then rules out the possibility of (5.10) or (5.11).

Now, attention is turned to proving the two conjectures whose validity was just
used to deduce the desired overall conclusion. We start with the second conjecture.
From the representation of the vy, it follows that

!
/ Y (z) cos T2 dx
0 l

=/Olzq: Z./wt (a(I:j(z +y) + ag;(z —-y)) (I‘zua(y) - u"‘(y)) Cosﬂl—mdyda:

3=2|a|=j
l

=i: z-/)t (rzua(y) - u“(y)) dy/0 (a?j(w+y) +af(z — y)) Cosﬂ_lmdx,
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for 1 < k < m. From Hypothesis (B1), all the af; are convex for |z| > A, so by
Lemma 3.5 of Benjamin et al. (1990), when { > 2\ is chosen sufficiently large, it
follows that

| (akj(w + ) +akj(:v - y)) cos Td:v <0

for y > [, and if the convexity is strict, then the integral is strictly less than
zero. Therefore, for 1 < k < m, fo Yr(z) cos BE dz < 0. In these circumstances,

fo Y(x) cos T dz = 0 for all k with 1 < k<m 1f and only if
!
0= / (1 ++++ + ¥m) cos 7rlac dzx
q
Z / riu®(y) — u“(y)) dy x
= y>
=~ T
/0 Z (a‘,:j(:v +y) +ag;(z — y)) cos —~ dz.
k=1

For any o € A, Hypothesis (B1) and Lemma 3.5 of Benjamin et al. (1990) imply
that when [ > 2 is large enough, then

/Z ag;(z +y) + af;(z y))cosﬂ-—lmdz<0

for any y > I. Hence, for such an ¢, rju®(y) — u®(y) must vanish identically for
y > 1. Since for each k € [1,m], there is at least one o € A whose kth component is
non-zero, it is conciuded that for 1 < k < m, uy is constant for y > I. The second
conjecture is proved.

According to Lemma 3.4 of Benjamin et al. (1990), the condition

!
/ A® . {Arju — u} cos 7rl_m dz >0
0

is implied if A®) . {Ar;u — u} is monotone decreasing on [0,]. Hence it suffices
for establishing the first Ansatz to show there are linearly independent vectors
{A®}™ | such that A®) . {Arju — u} is monotone decreasing.

For f € C, z € R, fix Az > 0 and let Af(z) = f(z+ Az) — f(z) as in Section 3;
then f is decreasing on R, say, if and only if Af(z) < 0 for all positive values of
z and Az. In particular, for any u = (u1, -+ ,um) €K, if z > 0, then Aug(z) <0,
1 < k < m. Notice that, for any functions f and g,

A(fg)(z) = f(z + Az)g(z + Az) — f(z)g(z)
= (f(z + Az) - f(2))9(z + Az) + f(2)(9(z + Az) — g(z))
= Af(2)g(z + Az) + f(z)Dg(2),

so, inductively, it is adduced that

k-1

Alfr-- fm)(@) = ZAfk(m)Hf](m) H fi(z+Ag).

k=1 i=1 j=k+1
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Fork=1,---,m, A{Arju — u},c is given in detail as follows:

A{Arju — u}r(z)

—
=A(Z Z agj(T)(uo + ev)G) (z) — A(uf} + evi)(z)
J=2|a|=j
q g
=Y 3 @ (DA + ev)*(x) — v (o)
3=2 |a|=j
g o
— T _ eAvg(z)
={3>° 3 FHDHAQ+euv)*(a) - T2,
§=2|a|=j & &
where 1 represents the constant function (1,1,---,1), and ug® = (;10', e ,ﬁr)a.
1 m
Note that if the kernels af; in (5.2) are renormalized by
o [uﬂ)u
kj up '
then (1,1,---,1) becomes the trivial solution. Under this renormalization, the

quantities |aﬁ‘j|1 in the matrix defined in (B4) are then replaced by

i (a3
|a%; |1%'
It is easy to see that this renormalization does not change the irreducibility of
the corresponding matrix. So without loss of generality, it may be supposed that
u =(1,1,---,1)andu=up+ev=_1+evy, - ,1 + evy) € KN IBc(ug), where
each v € C and |vg(z)| < 1_1_5 for all z € R, by the definition of the metric in the
Fréchei space X. Consequenlly, we have 1+ evg(w) > 1 — 7= for all & € R. The
relation (%) may be used to determine that

Alug + ev)*(@) = A((L +ev1)® -+ (1 + ev1)* ) (2)

m k-1 m
=Z A1+ evi) ™ (z) H (1 + evj(z))™ H (1 + ev;(z + Az)).
k=1 j=1 k1

Because Avj(z) < 0 and v;(z) > — 1=, it transpires that

el

AL+ en)™ (@) =) (1+ evy (7))’ eAvg(2) (1 + evy(z + Az))**
<e : — E yalAy (g
j=1( ) k()
=eag(l — T i e)ak_lA’Uk(iL‘)a
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8o long as 0 < € < 1. Then, the preceding relations imply

k—1
A(ug + ev)*( x)<ZA 1+ evr )™ ( H
k=1 j=1 j=k+1
<D ean(l - )IO‘| ' Avy(z)
k=1
—e(1 — & a1
=¢(1 — €) Zakch(:z:)
k=1
and so it follows that
A{Arju — u}g(z) <€Z E a,cJ )|°‘| =l ZanAvn (z) — eAvg(z)
i=2 |a|=5 n=1
<e(1 ==l . )t Z Z akJ ZanAvn z) — eAvg(z).

=2 |a|=j

Since ag; € LN C for all the relevant o,k and j, t;g\j € C are bounded and
liml_.ooa/k\]( )= a/,:] |a,k]|1 = Bk], say. Hence, for any 6 with 0 < § < 1,
there is an l5 such that when I > Is, ak]( ) 2 (1—6)Bg;. For such values of I,

A{Aru — u}g(z) < (1 — )q 1 - 5)2 > ZaanJAvn ) — eAvg(z).

i=2|a|=jn=1
In particular, if § < 1%, then the last inequality becomes
A{Arju — u}lg(z) < Z Z ZaanJAvn(w — eAvg(z).
J=2 |al=5 n=1

Choosing € > 0 small enough so that (1 — $£;)9 > 1 — 2¢e, it follows that

A{Arpu — u}i(z) < €(1—2ge) D D Y an By Ava(z) — eAvg(a).

J=2|a|=j n=1
So, for any A1,--+, A > 0, we have
MA{Aru — u}y(z) + )\gA{Anu —u},(@)+ -+ ApA{Aru - u} (x)

<e(1 - 2g¢) Z Ak Z Z Z anBE;Avn(z) — ez A Avg(z)

=2 jof=i )

=¢(l-— 2qe){ Z Avp(x) Z Z E AkQin Bi; — 1—_12E Z )\nAvn(x)}
n= k=1j=2 ja|=j n=1

m

q
€(1 — 2ge) {ZAvn(w ZE Z Ak Big; — (1 + 3qe) Z/\ Avn(w)}

k=1j=2 |a|=j
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For 1 < n <m, Au,(z) <0 for z > 0, and hence if Ay, -+, A\ > 0 exist such that
m
(143ge)A ZZ > AanBg, )
k=1j=2|a|=3

for 1 £ n < m, then for 7 > 0,
A(/\l{Anu —u}; + A {Arpu—u}s + - + Ap{Arju — u}m) (z) <0,
which is to say
A{Aru—u}ly + A{Arpu—u}e + - + Ap{Aru — u},,

is a decreasing function on R, . In the present normalized variables, the fact that
up = (1,---,1) is a solution of (5.1) means

g9
> By=1

7=2 |a|=3

In consequence, we have
q
=2 |a|=j

for k =1,..- ,m. In fact, the irreducibility assumption (B4), the above inequality
and Corollary 6.4 in the Appendix guarantee that the matrix

Ve Ya=j 0By - K Yja=j B

q
nB?j =2 > lelBy>2

7=2 |a|=3

||MS

Dli=2 Dlaj=; @By T Yjai=j omBh;

has a dominant eigenvalue r > 2 corresponding to an eigenvector (8y,.-+  A.) all
of whose components 8y, - , By, are strictly positive. Therefore there must exist

m linearly independent vectors

m
{A(k) - ()\gk)’ ™ ’,\g:))}kﬂ CRT?

which satisfy (**) if ¢ > 0 and likewise 3qe is sufficiently small. This says exactly
that for 1 < k < m, A®) . {Au — u} is a decreasing function of z > 0.
(Step 2) It is asserted that

i(PK, A, P,K N B.(up)) = 0.

Let u* € P,K with at least one component strictly decreasing on (0,1). If we can
rule out the possibility that

u— Au=qu* (5.14)

for any a > 0 and u € P;K N 0B,(ug) for € > 0 small, then Proposition 2.2 of
Benjamin et al. (1990) shows the validity of the claim. Arguing by contradiction,
suppose there is such a u* and an a > 0 satisfying (5.14). Multiplying (5.14) by
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cos &F and integrating over (0,1) gives

a /Ol (i szi?\](%)ua(x) - ul(:v)) cos Elf dz = /Ol au? (2) cos ? i

! 4q t
B / (Z Z a?"j(%)ua(m) - um(x)) s % = / au,, (z) cos FT:E dz,
0 " i=2|a|=j A

or, in short form,

! !
—/0 {Au—u}cos?d:&=a/0 u*(m)cos%dz. (5.15)

From the previous step, it is known that there are m independent vectors {A(®)} s, C
R7 such that A%). { Au—u} is decreasing on [0,1], 1 < k < m. Fix such a collection
A®)}m _ Then, as in Section 3,
k=1

!
_/ A(k)-{Au—u}cos¥dCESO
0

and l
a/ AR -u*cos?dm >0.
Because of (5.15), it must be tohe case that for 1 < k < m,
- /l A® . {Au — u} cos %a—: dz =0 (5.16)
and '
a/ol A®) . u* cos Wl—xd:v =0. (5.17)

The strict monotonicity of at least one component of u* and the independence
of {A®}™ | plus (5.17) implies a = 0. On the other hand, (5.16) implies that
AR) . {Au — u} must be a constant for 0 <z <land k=1,2,--- ,m. Because of
the independence of the {A")}7 | each component function of u must be constant
for 0 < x < I. The periodicity of u then implies that each component of u is a
constant function on R, so u is seen to be a (trivial) fixed point of A in KN Bae(up)
other than ug. This contradiction proves (5.14) to be impossible for any a > 0.
The proposition is established. O

The proof of Theorem 5.1 is complete. We now initiate a study of the properties
of non-trivial solutions of the system (5.1).

Theorem 5.6. Ifu = (uy, - ,um) is any non-trivial solution of the system (5.1),
then
zll.rjrzloouk(x) =0,k=1,---,m.

Proof. Since each component uy, is even, continuous, non-negative and non-increasing
on (0, 00), it follows that lim, .o uk(z) exists, for 1 < k < m. Ifuf) = limy oo uk(z),
then u) > 0. Since af; € Ly NC, up = (uf,u), -+ ,ud)) is easily inferred to be a

fixed point of the operator A. Suppose the statement isn’t true, that is to say,

there is some k such that u) > 0. Then, Hypothesis (B2) implies all components
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uf,- - ,ud, arestrictly positive. Let up = @ +u, so that ® = (@1, ¢, - ,¢m) €K
is non—tr1v1a1 and satisfies the system of equations

3

d)l(w Z Z 01] ¢1 + U1) e (¢m + 'U'En)amv

=2 |a|=j

Because Aug = ug, there obtains the obvious estimate

’

: o a¢1 a¢k a¢'m
35 i g+t SE)
= ud up U

m
q : (5.18)
¢m(:1:) > Z Z ag,; * (a1u0 ¢(1) +- -+-ozku8‘¢—g e amugd)—om).
i=2al=j ! b m
Since af; € L1 N C(R) for all k, j and «, there is an M > 0 such that
= 3
/ a:k:‘7 d:l: > 4/ akj = ZB’?] (519)
Since u) > 0 for k =1, -+ ,m, by normalization of the kernels ag; to
ST
V4o
ak] = agj 3
it may be supposed again without loss of generality that u = .-+ = 4%, = 1 and
that

Zq: > By =1, (5.20)

i=2|al=j

for 1 < k < m. Integrating (5.18) with respect to = over the interval (—3M,3M)
gives

/3M¢()dxz

Z ] = /_ :: agi(T —y) (a1¢1 (y)+- -+ am‘?"mr(iy)i)dy_dm’;

=2 jaj=j  —3M
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fork =1,2-.-,m, where the tilde over af; has been omitted. If b = fféwM dr(z) dz
for k=1,2,.-- ,m, then the above inequalities imply
r _ q 3 _ -
é1 > Z Z ZBﬁ‘(alfﬁl + s +am¢m)v

q
Im2 3 30 2B (bt cmdn)-
=2 |a|=j

\ j=2

Renumber the indices so that ¢; = min {qgl, Gay - ,¢;n}. Then the first inequality
above becomes

q
a2y > %Bf‘j(aw;l +"'+am¢;1)

=2 |al=j

g
3 - . 3=
=y 3 1 Btlelér 2 Sé1,

I=2 |a|=j
which contradicts the fact that ¢; > 0. The theorem is proved. O
Theorem 5.7. Ifu= (uy, -+ ,um) is a non-trivial solution of (5.1), then for any

p21and k with 1 < k < m, the components uy of u lie in Ly,.

As in Proposition 3.9, it suffices to prove that for each k, nug(n) is bounded for
n > 0 large. In particular, it will then follow that u® € L; for a € 7,2 < lal < g,
whence up = 337, 37, af; ¥ u® € Ly.

Proof. Fix n > 0 and integrate each equation in (5.1) over (0,7n). Rearranging the
order of integration, there appears

/Onul(x)dw= Zq: > /Ooo /On (ai‘j(w—y) +a‘1"j(fv+y)) dzu*(y) dy,

3=2 |a|=j

/0" um(z) dz = Xq: > /Ooo /On (aféj(w —y) +an;(z+ y)) dz u®(y) dy.

i=2 |a|=j
Summing these equations leads to
n oo 9
L m@+tm@)a= [T Y o ma, 6
7=2 |a|=4

where

Yim(y) = g:l /0 ' (a?j (z —y) +af(z+ y)) da.
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Let n > p with u > 0 to be determined later, and rewrite (5.21) in the form,

/u+/n ul(a:)+---+um(a:))dx
([ [+ [ S e

3=2 |o|=j
Define the quantity I, by
n=[ (3 3 e @) ~ (1) +---+ ) }
=2 |o|=j
and write it as

I = /ﬂ (1) - ) - T Yin(y)u(y) } dy

i=2al=j

- (35 o)} v

7=2 |a|=3
From its definition, I,, is bounded above by
/ Z Z 'Y],oou (ul(y) +-ire+ um(?/)) } dy,
=2 |al|=j
where

3 [T (e - )+ o @ +v) do = 3B,
Tl

k=1

On the other hand, since limy_, o, ux(y) = 0, there is a u > 0 such that when y > u,
33 peeut(y) < (1) + -+ un@))-
J=2 |o|=j

Moreover, since all the components u, are non-negative and non-increasing on
[0, 00), it follows that

/{zz% o)}y <

J=2 |a|=j j

1/\
&M"

u*(n) oowm(y)dy
Z J
Z *(n)Vs,00

(1) +++ um()’,

I/\
.'LM‘“

IA
Ny
'F’J*

[
/|
[N

n
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where ¥ = maxi<j<m{7Vj,00}- Thus, for a fixed u and any n > u,

T2z 5 [ (1) + o+ @) dy —nai () + -+ )’

Zé(n—u)(ul(n) +um(n) n Jiz(ul ot um(n ))]
=n(u1(n)+---+um(n)){%(1——) S(ul ny+ - +um(n)) }
j=1

Choose n large enough that

1 ik il
L0 2) 55 (w4 umm) < 1
Jj=1
For such values of n, one has
1
I > Zn(ul(n) EEE um(n)),
and the theorem is thereby proved. O
Theorem 5.8. Let u = (u1," - ,um) be a non-trivial solution of (5.1) in the space

(LiNLoo)™. For1 <k <m and o € Z7T with 2 < |a| < g, if all the integral kernels
ag; € LiNLs are even functions, non-negative and non-increasing on [0, c0), then
u € (H®)™.

Proof. Since u € (L1 N Lyo)™, u® € Ly for any o € Z with o > 1. On the other
hand, the proof of Theorem 3.10 shows that the quantities |§ |a’g\](§) are bounded,
so af; * u* € H', whence u € (H')™. Inductively, it is adduced that u € (H*®)™

The proof is complete.
O

6. Appendix.

Lemma 6.1. Let r,s € (0,1) and suppose f € H" and g € H*. If there are two
positive numbers Ry > Ry > 0 such that

supp f C (—Ri1,R1) and suppg C (—o0, —Rg) U (Rg, 00), (6.1)
then the inequality
20|71 + llgll?
T+ F(€)3(€) d : 6.2
[/ IE' f £| Cr.s (q+;)({?‘! - H—I)('”M ( )

. i el 1 2
is valid, where ¢, s = f_ i AT

Proof. Note that

/ / [f(=) = F®)][9(=) — 9()] dy de

fo =yl
I

_L ]z|1+7'+8 dz /oo [f(z + y) - f(y)] [g(z + y) - g(y)] dy)

o0
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and, by Plancherel’s formula,

/_ - [f(z +9) - @) [96z +9) - o)) dy

1
27r

e /_ FOF@le - 17 de.

Parseval’s formula ffo f(z)g(z) dz = 5 f_ (€)7(€) dé implies that
/—oo /— f(q) _l.j'f(_y)‘_}'EgI—(ra’-i-s ] dy dill = Cr,s ./—oo |£|T+af(£)@d£ (63)

where ¢rs = 2= [0 - _l - dz. Because of (6.1), the left-hand side of (6.3) is equal

to
{/suppf /suppg /suppg /suppf} |z (_?;)j&g:(:"")s o) dy dz

Re
_ _Hyglz) _fW)alz)
- 2/ /R1 13._ |1+r+s d dx — /122 / |3 ._J|1+r+s d dz,

whence

cra [ leT+ P70 de] < {/ ) /R} [ LT iy

2051 + llgli®
= (s+7)(Ra — Ry)ot
The lemma is proved. O

Let ¢ € C° be the function defined in (2.6).

Lemma 6.2. Let m be a non-negative integer, s € (0,1) and {fn}52, a bounded
sequence in H™Y*. Define {pn}5%, by

pn(2) = p(fa)(z) = fa(x) + min{l,m}| DT’ fa(z)|"
o0 |D:lfn(m) = DL"fn(y)]z
+/_°° |m_yli+2!i

Suppose that for any ¢ € (0,1), there is an Eg > 0 and a sequence {Rn}52; CR
with Ry, > Ey for all n and lim,_,o Ry = 00 such that for large n

2R, —Eyg
/ o) do + / pul) dz < e.
Ey —2R,

If By > Ey is chosen so large that (Ey — Eo)‘zs < ¢ and n is large enough that
R,, > 2E1, then there ezists a constant Cy independent of n for which

||77nfn”$n+s < Coe and ”Cnfn”?n-}-.g < Coe,

F(&)[e"* — 1]3()[e "= — 1] d¢

dy.

where C( ) (=) i B R,
B . + ﬁ: ) 1 £z < 2R,,
Mn(z) = { otherwise
and
~((&)+((E) if —2R,<z<-FE,
0 otherwise.

Cnlz) = {
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Proof. Since the H™**-norm of a function h : R — R is equivalent to

[e%s) o " _ ym 2 1
{1l + ming myopnff + [~ [ PERD _DEMOL 5 )

the Li-norm of p(f) is equivalent to ||f||2. Hence, for f € H™T?, there are two
constants v > 0 and 7 > 0 such that

U loss < lp(HlL S TN Nonse- (6.4)

In particular, the sequence {pn = p(f)}3® C L; is bounded.
In the simplest case m = 0, the equivalence (6.4) implies that

tndalls < [ ptoasi)ao
L) nlt i i 2
= ||t +/ / |71 (2) f () — 7 () f (0] e

o~y
< |lnmfal’
(@) P fa (@) = fal@)® + |mnlz) — mu ()2 £2(y)
+2/ / l |;-._ |1+Es$ e dy dx

[+ .!
<ol 42 [ [ OB SO 4, 4,
v e [ IO m

2R" oo 2
sz/E pole)dz+2 [ fn()/ ey i

Eo —00

Ey 00 :L‘ 2

+2/ f2(z,)/ Inn |1+(23)l dyd:v

The first term on the rlght-hand side of the last inequality is bounded by 2¢. Re-

() =m0 () |*

garding the second term, for any Ey < z < 2R,, the fraction S is

bounded by

4 e ue 2
maxﬁ;;gg (2)] }Iw _ y|1—2s as |z —y| — 0
1
and by

4o —y|7H2) as e —y| - oo,

" 2
SO f i :_:’.".(, dy is bounded, and the bound is independent of n, call it C1, say.

The second term is thus bounded by

2R, 2R,
20, [ A0 [ AE)is <20

Eo EO
In the third term, z € (—o0, Ep), so n,(z) = 0 by its definition. It follows that
[e%] 2 2R 2
() — n 1
/ |7 () vlrngy)i dy =/ Inn(yzl ey < <L
oo |m—y|tH2s B |le—y[1t? 2s(Fy — Ey)?s — 2s
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With respect to the fourth term, £ € (2R,,,00), 80 n,(z) = 0. Hence when n is
large enough that R,, > 2F;, we have the estimate

0 M l®) — T i i T 2
[ e, b,

oo iy B o —yE
[ [
N i N T
1 /w» S
- 2SR%‘9 Ry |9g — y|l+2s

il i ¢ ()]
< o / ———— Ay
2SR%S G Ri,'( — 3)‘) 1428

By
1, maxelC@)P
~ 2sR2s (2 — 2s)R2s

1 | maxger|¢'(z)?
(e )

Combining these four inequalities gives

€ 1 maxgeg |¢()]? 2
Al < 26+ 201+ Sl + (5 + =B 1

for n sufficiently large. It may be deduced in a similar manner that

€ 1 maxger |[C'(2))? 2
WGntall} < 26+ 2C1e + ;”fn|[2 + (; + ~(—1€R_s}—-)l|fnl| €
for n sufficiently large. The overall result is thus seen to be valid in case m = 0

because || fr||s is bounded.
In case m > 0, (6.4) implies that

1|Innfn|lil+s < ||77nfn“2 -+ ”D;"(ﬂnfn)”z
oo 00 T N M 2
+/ / | D (1n fu)(@) — D (nn fr) ()] dy dz.

F‘T" = yll{-'}s

Note that

m
TH m j ]
D™ fn) = DT fr + § (j ) Ding DT fu,
j=1
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where the notation DS f represents f. In consequence of the last two formulas, it
appears that

m
Aol < Il + 2Dl 420 Y () DEratz 5ol

=1
oo poo |5 (") Dina(2)DF fule) — 3511 (7)) Dina(y) Dy £ (y)I?
+2‘[m‘/_m Izj—l (J) 27 () flz(m_) y|1§233 1 (J) y7l (v) v fW)l dy dz

va [ [ o2 - WP

|z — y|'+2e

m
< lmml|* + 27 > (T) DinaDF fu| 2 + 27| DI |2
Jj=1

m
< Jntull + Y (7 ) D2wDZ 1ol + 27l mm D2 1o
j=1

Using the result for the case m = 0, we derive that

||"7nfn||2 + ||77nD;"fn||§ < Cog,

where Cy is a constant independent of n. With regard to the second term, denote
by ¢, the quantity max{|Di{(z)|: z € R,1 < j < m} and then note that

™S\ » T/ 7 4GP 4¢F
15 (7 ) pimpzsall <2y (7) (5% + —is) Il
j=1 \J =1 \J B

Since || fn|lm is bounded and E; % < (E; — Eg)™2* < ¢ for j > 1, it transpires that
|7nfall%, 4 is bounded by e times a constant which is independent of n for large
values of n. The same is true of |[(nfnllZ, 4, @ fact that may be established by the
same line of argument. O

For the readers’ convenience, the following lemma is quoted from Gantmacher
(1960) Chapter XIII.

Lemma 6.3. Let A = (asj)nxn be a square matriz with non-negative components.
If A is irreducible, then A has a positive eigenvalue r, called the dominant eigen-
value, that is a simple root of the characteristic equation. The absolute value of any
other eigenvalue of A does not exceed r. Furthermore, to the dominant eigenvalue
r, there corresponds an eigenvector all of whose components are strictly positive.

Corollary 6.4. In Lemma 6.3, suppose X = (z1,-++ ,Tn) is an eigenvector corre-
sponding to the dominant eigenvalue r with z; >0 for 1 <i <n. Then

n k03
min{Zaijzlstn}STSmax{Zaijzl_{an}. (6.5)
i=1

i=1

Moreover, for € in the interval (0, %r) small enough, there are n linearly independent
vectors {X7}7_, with strictly positive components such that

AXI > (r — XI
for1<j<n.



376 JERRY L. BONA AND HONGQIU CHEN

Proof. Since X is an eigenvector of A corresponding to the eigenvalue r,

a1+ + a1nTy = 171,

An1Z1+ - + QppTn = T'Lp.

Summing these n equations yields

n n n
xlzai1+---+xn2am=r2xi. (6.7)
=1 i=1 i=1

Since z; > 0 for all 4, (6.5) follows by dividing both sides of (6.7) by Y .-, ;.
To prove the second part of the corollary, notice that since A is irreducible and
non-negative, Y .. a;; > 0 for any fixed ¢ in the range of [1,n]. The equations

i
(6.6) and the strict positivity of all the components of X imply
Q;i%; < TL;
for 1 <1i < n, and hence that
> aq

for all 4. If € is chosen so that 0 < € < -;-('r —max{a;;:1 <1< n}), then for any 1
and any & such that 0 < dz; < —=H—, it is easy to verify that

il

a1 + -+ (T + 075) + -+ - + @inTn > (1 — €)1,

{ a1+ + a,;,;(m.,; + 55131) + -+ aipTn > (7‘ - 6)(.’131' + (S.'L',;),

(@n1Z1 + -+ @ii(@i + 025) + -+ + GinTn > (T — €)Tn.

For 1 <4< n,let X' = (z1,---,2i_1,2; + 6%, Tiy1, -+ ,Zn). The last inequalities
are the same as .
AX' > (r— e)X".
The linear independence of {X*}2_, follows directly, and the corollary is proved.
O
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