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WAVE GENERATION BY A MOVING BOUNDARY
JERRY L. BONA AND VLADIMIR V. VARLAMOV

ABSTRACT. Considered here is an initial-boundary-value problem
for a Korteweg-de Vries-type equation. The particular problem put
forward involves a moving boundary condition and is argued to serve
as a model for the generation of water waves by a piston- or flap-
type wavemaker in a channel. An interesting feature of the problem is
the appearance of a forced nonlinear oscillator equation (an Emden-
Fowler-type equation) relating the motion of the wavemaker to the
wave amplitude at the boundary. Another point of interest is a pair
of higher order consistency conditions between initial and boundary
data derived to insure solutions are classical. These conditions, and
their obvious lower order counterparts, are automatically satisfied in
a practically interesting configuration.

1. INTRODUCTION

The present study is concerned with the generation of waves by a wave-
maker mounted at one end of a long, uniform, horizontal channel. Of
particular interest are wavemaker motions that generate small-amplitude
long waves corresponding to regimes in which the Korteweg-de Vries
equation (KdV-equation henceforth) or its relatives might apply. Thus
an idealized situation is envisioned in which the fluid is inviscid, the flow
irrotational and uniform across the channel, so sensibly two-dimensional.
We are motivated especially by the laboratory experiments of Zabusky
& Galvin (1971), Hammack (1973), Hammack & Segur (1974) and Bona,
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Pritchard & Scott (1981). These experiments, which were designed ex-
plicitly to test the range of validity of KdV-type equations, all generally
conform to the situation indicated in Figure 1.

Earlier analyses based on the just indicated physical situation have
taken as a mathematical model the so-called quarter-plane problem, writ-
ten here for the Korteweg-de Vries equation, namely

77t+17z+7777z+77zm=0, for $,t>0,

(1.1) n(z,0) = f(z), for z >0,
n(0,t) = g(t), for t>0.

This corresponds to a situation wherein measurements of the wave am-
plitude are made at a fixed station located down the channel from the
waveinaker. ‘The initial-boundary-value problem (1.1) and its relatives
that include dissipation or are posed for the regularized long-wave or
BBM-equation (Benjamin et al., 1972)

Ut + Uy + UUy — Ugge = 0

(an alternative to the KdV-equation) have been analysed (see Bona &
Bryant, 1973, Bona & Winther, 1983, 1989, and especially the extensive
references in the recent paper of Bona, Sun & Zhang, 2002) and a satis-
factory theory of global well-posedness in Hadamard’s sense is available.

Our purpose here is to develop theory for this context based directly
on the motion of the wavemaker rather than on an auxiliary measure-
ment. Thus we presume to be given the motion of the wavemaker as
represented by v(t) in Figure 1 and attempt to determine directly from
this an approximation of the waves generated in the channel.

The plan of the paper is as follows. Section 2 is devoted to discussion
of the modelling and the formal derivation of the differential equations
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governing the wave propagation and the boundary regime. The math-
ematical framework is specified in Section 3 which also deals with the
issues of linear stability for the partial differential equation in question.
An integral equation corresponding to the initial-boundary-value prob-
Jem is analysed in Section 4 leading to a result of local well-posedness of
the model. A priori bounds and global existence are developed in Section
5.

2. MODELING CONSIDERATIONS, BOUNDARY BEHAVIOR

We recall briefly some standard points arising in the derivation of
model equations for small-amplitude long waves on the surface of water.
The usual starting point for such studies is the full Euler equations for
the two-dimensional motion of an ideal liquid in a uniform horizontal
channel under the force of gravity. This classical system may be put in
the form

ﬂ¢mx + ¢yy =0, for (x,y) € Q(t)a

il
N+ agyne — =Py =0,  at the free surface y=1+an,

g
=

1
1) b+ 3 (a2 +5

¢12,> +gn =0, at the free surface y =1+ an,

¢y =0, on the bottom y =20.

Here, z is the horizontal coordinate along the channel, y is the vertical
coordinate, ¢ is the velocity potential, 1 + an(z,t) is the total water
depth at the point (z,t) in space-time and Q(t) = {(z,y)|z € I and
0 <y <14+ an(z,t)} is the low domain at time ¢. The channel bottom
is located at y = 0 and is flat and horizontal. The system (2.1) has
already been non-dimensionalized and scaled, so that

z=lz, y=h{y—1), i= L =, 3= 929,
Co Co

where [ is a typical wavelength of the disturbance, h is the undisturbed
depth, ¢g = +/gh is the kinematic velocity (the velocity of waves of ex-
treme length), a is the maximum wave amplitude, g 1s the gravity con-
stant and the bars adorn the original dimensional variables. Reflecting
Boussinesq and KdV-type assumptions about the wave motion, the two
nondimensional parameters

h2

and ,BIZ—Q

=

a
h
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are both assumed to be small compared to 1 but of the same order, so
that the Stokes number
o

(2.2) S=3

is of order 1. One approach to simplifying the Euler system (2.1) (see
Whitham, 1974) is to expand the velocity potential in the vertical coor-
dinate, viz.

(2.3) B(0,8) = > fm(z, )™

Demanding that ¢ satisfy Laplace’s equation in the flow domain and the

no flow condition at the bottom boundary implies the formal expansion

(2.3) to have the more specific form wherein ¢,, = 0 if m is odd and
(=1)*s*

(2'4) ¢2k (:L‘, t) = _(QI)[—agk¢0(x7 t)

for k= 1,2,.... Putting the representation (2.3)-(2.4) into the two free-

surface boundary conditions in (2.1) and keeping only the terms of order

0 and 1 in powers of a and 8 leads to a coupled system of the form

first put forward by Boussinesq (1872). In the particular representation

(2.3)-(2.4), one comes to the system

me + [(1 + an)gl, — gqm _o

I¢] )
qt + Tz + &QQy — Eq:vzt =U

where ¢(z,t) = ¢5(z,0,t) = Oypo(,t) is the horizontal velocity at the
bottom and 7 is as before. By expressing the motion in terms of the
horizontal velocity w at the height 6h above the bottom, where 0 < 6 <
1, and taking advantage of the lowest order relations

M + wy = order(a, ),
(2.5) wg + N, = order(a, B)

one may derive instead the three-parameter system

‘ e+ wy + a(wn)z + ﬂ(awxaxx = bna:a:t) = Oa
(26) Wy + 1)y + Qwwg + 5(07730“ - dwx:vt) . 0,

where .
_ 1 1 Y 1Y
S (A PO YR P
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C =

N | =

(1—-6*)p, d=-(1-6*)(1—p),

0 < # <1, and A, pu are real numbers (see Bona & Smith, 1976, Bona,
Chen & Saut, 2002). The systems depicted in (2.6) are all formally
equivalent descriptions of the two-dimensional motion of water waves in
which dissipation, surface tension effects, compressibility and rotational
aspects are ignored. A detailed mathematical analysis of this entire class
appears in Bona et al. (2002, 2004).

A further simplification may be effected by restricting attention to
waves travelling only in one direction, say in the direction of increasing
values of z. Such an assumption is certainly warranted in attempting to
describe the aforementioned experiments. To insure unidirectional prop-
agation, a relation between the velocity and surface elevation is enforced.
At the crudest level of approximation, when one ignores even terms of
order o and (3, the model simplifies to the one-dimensional linear wave
equation written in factored form

N =

77t+wz:07

wy + 1, =0
as in (2.5). Propagation in the direction of increasing values of z is im-
plied exactly by the restriction 7 = w, in which case the model simplifies
to basic hydraulics, namely

Reinterpreted in physical variables, this simply expresses the contention
that very small, very long disturbances propagate at velocity ¢y = v/gh,
where recall that h is the undisturbed depth and g is the gravity constant.
As is well known (see e.g. Benjamin (1974), Bona, Chen & Saut (2002),
Whitham (1974)), the relation n = w must be corrected at order o and (3.
The usual route from bidirectional systems to single equations governing
approximately unidirectional waves is to derive a relationaship between
n and w which renders the system of two equations consistent and which
reduces to 7 = w when @ = = 0. In the present variables, this amounts
to the relation

il
(2.7 w=n- %772 — 3 (§ — 502> Nt + terms quadratic in «, B.

Because of this, the lowest order relations (2.5) collapse as above to
simply
n + e = order(a, B).



46 JERRY L. BONA AND VLADIMIR V. VARLAMOV

Thus, the relation (2.7) could be given the equivalent form

1 |
(28) w=mn- %7]2 + 0 <§ - 592) Nez + terms quadratic in «, 3,
or, indeed, any convex combination of these two relations. When one of
these formally equivalent relations is enforced, the Boussinesq systems in
(2.6) condense to a single equation for either 7 or w which has the form

3
(2.9) M+ 1 + oM + g 6Nz — (1 — 8)Nggt) = 0

where ¢ is any real parameter.

It is reasonable to assume that the horizontal speed of the moving
boundary coincides with the speed of the particles of fluid at the bound-
ary (see Mei and Unliiata, 1972), which is to say that

=v(t)
z=7(t)

6" 1 1
1 Bz - 262,
(2.10) n= 4N ﬂ<3 2€>77t

where 7(t) is the position of the wavemaker at time ¢. Two important
variables are the quantities g and h defined to be

(2.11) 9(t) =n(v(t),1) and A(t) =n:(v(t),?).

These are the elevation and slope of the free surface at the wavemaker. It
will he important in our analysis to determine a relation between g(¢) and
7(t). For any dependent variable f(z,t), denote by f(t) the restriction
f(7(t),t). Thus, equation (2.11) may be expressed as g(t) = 7(t) and
h(t) = ().

Attention is now given to determining approximate relationships be-
tween g and . Assuming that all the relevant functions are suitably
differentiable, a straightforward calculation reveals that

(2.12) ¢'(t) = %ﬁ(t) = m(7(8), 1) +7' Ona(7(2), £) = [ (£) = Ul +-h.0.1.

where h.o.t. connotes terms of higher order in @ and 3. In consequence,
it transpires that

d*5(t)

— o = T+ 29 ()7t + (V' (8))* Pz + 7" ()
dt?

e / 2 [ ! Y/
= —[L =" ()]t + 0 =17 (t) + h.ot. = g"(t).



WAVE GENERATION BY A MOVING BOUNDARY 47

Assuming that |y/(t)] < 1, there obtains the relation

- ”tlt ”t
nmt=—7()g()— g'(t) 2-l—h.o.t.

1-y®PF [I-7@)]
Substituting this relation into (2.10) and using (2.11), there emerges the
second-order differential equation
(2.13)

81g"(t) + ’Tﬂ(t)!) /(t):l—*_[l =) [g(t) e 2(15)] _ F (B[ =)

1—~(t 1/3 — 62/2 4 1/3 — 62/2

for ¢g. Here, and henceforth, it is presumed that 6 is chosen so that
62 + 2/3. The latter case requires different treatment which will not
concern us here. We seek a formal asymptotic solution of this equation
in the form of an expansion in integer powers of the small parameters o
and [, viz.

g(t) =+'(t) + aA(t) + BB(t) + O(e + %)

as a, B — 0. Substituting the last formula into (2.13) and comparing
coeficients of equal powers of o and 3 yields

T s W VAN S G ()&
o =0+ 50078 (5 - 3) {75 + 1 o)

+0(a® + B%).
Once ¢ known, it is then straightforward to determine from (2.12) that
i 90
(2.14) h(t) = 7.(t) = Y0 =1
B 1 d ] a, , ) 1 1 ,Ym ('YH“:))Q
~mra 7 5008 (5 5) [ 0 o))
+0(a® + B%).

The evolution equation (2.9) together with the relationship between
~ and g will allow us to formulate a mathematical theory. Once (2.9)
is derived, we may dispense with the small parameters o and 8. The

rescaling
u(z,t) = gan (\/gw, \/gt)

defines the function u satisfying the equation

(2.15) Ut + Ug + Ullg + OUgpg — (1 — 6)Ugze = 0.
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While the choice of 6 € R is at our disposal, it will prove helpful to
choose § = —1, thus arriving at the model

Ut + Uy — Uggg — 2uzzt + uug = 0.

This equation was listed in the family of third-order dispersive equations
of the form

2 2 2
(2.16) Up + CoUg + ClUggr — Collggt = (03u + cquy + ch,'uum)m

where ¢;, i = 0,- - -, 5, are real constants, studied by Degasperis & Pro-
cesi (1999) from the point of view of asymptotic inegrability. Only three
equations in the class (2.16) were found to satisfy an asymptotic inte-
grability condition within this family, namely the KdV equation, the
Camassa-Holm equation (for which ¢; = —3¢s5/ (2¢2), ¢4 = ¢5/2) and
the equation obtained from (2.16) by setting c; = —2¢s /2, ¢y = cs.

Equation (2.13) is conveniently rewritten to take account of the rela-
tion (2.2) between the parameters a and 8 and the Stokes number S.
The new form is

Q1) alg'(®) +s@g6)] +be) [s0) - 2 0)] = ¥ (0800,
where

_ _ Sy

K(t) = T—~@)’ (t) = B2

Notice that by introducing the new dependent variable z(t) = g(t) —
2/a, equation (2.17) may be rewritten as a forced Emden-Fowler-type
equation, namely

(2.18) () + (8)2(t) — ?zz(t) = G(t)

where :
60 =5 (v~ 1) b0y
' = a\T a '

Since our interest is focused upon long waves of small amplitude, only
small solutions of the equation (2.17) are of physical interest. A typical
example of the wavemaker movement is described by the function v(t) =
esin(e'/?t). Thus we are led to pose the Cauchy problem

elg"(2) + Klt,€)g (D) 4b(t,€) [9(8) — 29%(2)] = €2 cos(eb(t, ), t > 0,
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S[1—ed? cos(s”%)]2
1/3—62/2

2 sin(e'/?t)
1 —e¥2cos(e/?t)’

b(t,e) =

and
9(0) = %2, ¢'(0) = 0.

We are interested in small perturbations of the stationary solution g(t) =
0. Of course, there is another, realtively large stationary solution g(t) =
4/e which is not of interest in the present context. Introducing a new
variable ¢ = £'/2t, the equation may be rewritten as

2d%g 7/2 sin dg

where
S(1 — €32 cos ()?
1/3—62/2

b(¢,e) =
and

90 =, o) =0

Looking for a solution in the form

9(¢,€) = go(¢) + e291(¢) + €g2(C) + e295(¢) + €294 (C) + -+,

we find that

90(¢) = 91(¢) = 92(¢) = 9a(¢) = 0, g3(¢) = cos(.

Returning to the original variables, there thus appears
g(t,€) = %2 cos('/?t) + O(?).

In any event, whether we accept the first non-zero term in the as-
ymptotic solution just derived as adequate or we go ahead and integrate
(2.17) with the given forcing (t), the point is that the surface eleva-
tion g(t) at the wavemaker is determined via separate considerations
and may thus be viewed as independent auxuliary data that helps to de-
termine the appropriate solution of the partial differential equation. As
already pointed out, once g is determined, the second boundary function
h(t) = n.(7y(t),t) is then specified via (2.14).
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3. PRELIMINARIES

In this section, further notation is introduced and some mathematical
preliminaries are set forth.

Notation

The function spaces to be described now are all taken to be real-
valued. For T' > 0 the space C (0, T) is the usual collection of continuous
functions h defined on [0, T] with the norm

”h“C(O,T) = sup |h(s)].
0<s<LT

The subspace C' (0,T) is the collection of continuously differentiable
functions g defined on [0, 7] with

HQHCI(O,T) = ||9”o(o,:r) s “gI“C’(O,T) ’

and similarly for C* (0,T), k = 2,3, ---. The space CF (R*) is the space of
bounded continuous functions f defined on R+ whose first k derivatives
are likewise bounded and continuous. It is a Banach space with the norm

n

Iflopmey =D sup |[f®(a)].

k=0 zeR*

The standard symbol H*(R™) connotes the Sobolev space of measur-
able square integrable functions defined on R* whose generalized deriva-
tives to order k are also square integrable over R*. This is a Hilbert space
with the usual inner product

k 00
(f,9), = Z/o F(z)gD (z)dz.

The norm on H* (R™) is denoted by

£l gy = (F O

The space H° (R*) is simply Ly (R*).

We shall also need spaces of functions of two variables analogous to the
one-dimensional spaces introduced above. For any Banach space X of
functions of one variable z, say, C (I; X) is the class of functions u(z,t)
of two variables such that the mapping ¢ — (-, ) is continuous from the
closed interval I to X. This space carries the induced norm

”u“C’(I;X) = sup [u(-,?)]x -
tel
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In particular, for T > 0, we will systematically abbreviate C ([0, T]; Cy(R)) =
C (0,T; Cy(R)) by Cr.

As a guide to what might be true for the nonlinear problem, we under-
take an analysis of an associated linear initial-boundary-value problem,
namely

(3.1) Up + Ug — Uggg — 2Uggy =0, £ > 0,1 >0,
u(z,0) = f(z), z >0,
lim u(z,t) =0

T—0
with boundary conditions posed at the fixed point z = 0. This problem
is analogous to the problems considered by Bona, Sun and Zhang (2002)
and the references contained therein for the pure KdV-equation and in
Bona and Tzvetkov (2004) and Bona, Chen, Sun and Zhang (2004) and
the references mentioned there for the BBM-equation. Interest is fo-
cussed on what boundary conditions are needed at z = 0 to determine a
solution. Following Bona, Sun and Zhang (2002), this issue is approached
by reducing (3.1) to an ordinary differential equation in the variable z.
Applying the Laplace transform

u(z,p) =/ e Ptu(z, t)dt
0

in the variable ¢ leads to

ﬁzxz + 2pa:m: - am - pa = f”(l‘) - f(x)
Seeking solutions of the corresponding homogeneous equation in the form
e’ there obtains the characteristic equation

(3.2) N 42A2 - A —p=0.

Descarte’s Theorem implies that, for all p > 0, there exists one positive
root A (p) of this equation. Changing A to —A yields

N4+ X —p=0.

This equation can have either zero or two positive roots. Therefore
(3.2) has either two or no negative roots. Making the change of variable
A = z — 2p/3 reduces (3.2) to the canonical form

(3.3) 22 +3Pz+Q=0

where ] )
1 /4p p [ 16p

P=—|— ==|——1].

3<3 +1) and @ 3( 9 )
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The discriminant D = 4P3 + 2 is calculated to be
32p" + 19p° + 12

- 27 )

and this means that the cubic equation (3.3) always has three real roots
for p > 0. Consequently, equation (3.2) also has three real roots, at
least one of which is postive. As the sum of the roots of (3.2) is —2p <
0, it follows that they cannot all three be positive and therefore there
are two negative roots Ay(p) and A3(p). In any event, a solution of the
homogeneous equation may be written in the form

u(z,p) = Ci(p) exp (—A1(p)z) + Ca(p) exp (Aa(p)z) + C5(p) exp (Aa(p)z) .

Since it is demanded that 4 be bounded, and A1(p) > 0, we must require
that Cy(p) = 0. This leaves Cy(p) and Cs(p) to be determined and since
A2(p) < 0 and A3(p) < 0, these functions are conveniently specified by
boundary conditions at x = 0. Thus we see that two boundary conditions
are required to specify the solution of the linear, fixed-domain problem.
This calculation is helpful in understanding what might be expected
when considering the full nonlinear problem with conditions imposed at
a moving boundary.

D =

4. STATEMENT OF THE PROBLEM
Our purpose now is to consider the initial-boundary-value problem

Ug + Uz — Uggy — 2Uggy + Uy = 0, z >~(t), t >0,

(4.1) u(y(t),8) = 9(8), usz(y(t),¢) = h(t),  ¢>0,

u(z,0) = f(z), z > v(0),

lim u(z,t) =0,

T—00

along with the consistency conditions

F(v(0)) = g(0),  f'((0)) = h(0)
(see Figure 2). Without loss of generality, we suppose v(0) = 0 hence-
forth. It is assumed throughout that the function v(t) describing the
movement of the boundary satisfies the assumptions: () € C'(0, 00), v(0) =
0and —yo <+/(t) < v <1/2 withvy, 7, > 0 and vy < co. At this point,
we take it that g and h are known functions.
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t/\. t=2x
%
x=7%’ >
p
/
/
A
"/’ gr B i = = x/
Fig. 2

Definition. A function u(z,t) will be termed a classical solution of (4.1)
if v and its partial derivatives included in the equation are continuous in
the domain Qr = {(z,t) : > ~(t), 0 <t < T}, for some T > 0, and u
satisfies the initial and boundary conditions and the partial differential
equation pointwise in Q.

4.1 Local existence

First, by formal operations, problem (4.1) is reduced to an associated
integral equation. It is propitious first to make the change of variable

(4.2) u(z,t) =v(z —7(t),t/2 — (1))
and use the notation
(4.3) T = ;— — (%).

Since by assumption
1
r(t) = 5 ~7(®) >0,
there exists a unique solution ¢ = ¢(7) of equation (4.3). Also, 7(0) =
0 and 7(t) — 400 as t — +o00. Thus, this is a legitimate change of
variables and the function v, which is defined on R* x [0, 7] for some
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T > 0, is seen to satisfy the equation

(1—-282) (vr +ve) = O (v+v?), for €>0,7>0,

( )
v(0,7) = g(p(1)), ve(0,7) = h(p(r)), for 7>0,
v(€,0) = f(§), for£>0
(4.4) Jm (&, 7) =
where
/ 1 /
an=r| =370
t=p(r) t=¢(7)

Introducing the function V = v, + Ve, (4.4) becomes

(1—28§)I7= —Fz)@f (v+2?), for €>0,7>0,
V(0,7) = a(e(r)) + h(p(r) = F(r), for 7>0,
lim V(¢ 1) =
g—+oo

Inverting 1 — 282 subject to the specified boundary conditions at £ = 0
and £ = 400 leads to the integro-differential equation

V(y,) = exp(~¢/V2)F(r)
(4.5) :

o | [l =l vE) - exp(—(e + 1)/ VD) 0y 01 0, e

Integrating by parts in (4.5) and recalling the definition of 17, there
obtains

or + v = exp(—€ VR F(r)
+E%/o K¢, y) (v+v*)(y,T)dy, for €>0,7 >0,

46)  v(0,7) = g(p(7)), v(0,7) = h(p(r)), for 7>0,

v(£,0) = f(£), £ >0,

ghm ’U(f, )_07

where

K(&,y) = exp(—¢ — y|/V2)sgn(€ — y) — exp(—(€ +1)/V2).
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Introducing the characteristic variables x = £ —7, 7 = 7 maps the quar-
ter plane {(£,t) : € > 0, t > 0} into the domain {—7 < x < 400, 7 > 0}.
In (x,7), the differential operator on the left-hand side of the equation
in (4.6) is a full derivative and thus (4.6) becomes

Brv(x +7,7) = exp(—(x +7)/V2)F(r)

1 oo
4.7y + / Kx+ny v+ v*)(y,7)dy, for x> -—-7,7>0,
da(T) Jo
v(x + 7,7) = f(x), for x>0,
=0
v(x +7,7) =g(p(=x)), for x<O.
T=—X

It is natural at this point to integrate (4.7) with respect to 7. The
contour of integration is the segment of the line parallel to the T-axis
and connecting the points (x,0) and (x,7) when x > 0 and the points
(—7,7) and (x,7) when x < 0. Performing this integration and reverting
to the variables (£, 7) leads to the formula

w(E,7) = flE—7)+ V2 | TIVER(5)ds
0

1 [T ds oo r
(4.8) +—f o / M€, 1y, 8) (v + v*)(y,8)dy, for &> >0,
( 0

4 Jo a(s).
and
v(€,7) = glep(r — £)) + /Y2 / "IN (s)ds
¢
(4.9) —i& /T; % /Ooo M, 7,y,8)(v+v*)(y,s)dy, for 0<é<T
where

M(&,7,y,5) =exp (= |E =y = (r = 5)| /V2) sen (£~ y — (7 = 5))
texp (= (€ +y = (r—9) /V2)

and, as above,

F(r) = ~=g(p(r) + hl(r)).
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This pair of relations is written in shorthand notation as
(4.10)

— Ay — _ | f=7)+ F(§ 1)+ B, 0<7<6
o= A= { o DG 0SS

where F} and F;, denote the second terms and Bjv and B,v denote the
third terms on the right-hand side of (4.8) and (4.9), respectively.

Lemma 1. Let T' > 0 be given and suppose that v, g € C* (0,T), h €
C(0,T) and f € Cy(R"). Suppose also that —ys < ' (t) <y < 1/2 in
the interval 0 <t < T for some constants o and ~v,. Then there is an
S with 0 < S < T, depending on the norms of v, g, h, f, Yo and 7,
such that the integral equation (4.8)-(4.9)-(4.10) has a unique solution
in Cs. Moreover, the mapping that assigns to initial- and boundary data
(f,9,h,7) the solution u in Cg is locally Lipschitz continuous.

Proof. View A as a mapping of the space Cg, where S < T will be
specified presently. Note that F is continuous since ¢ is continuous. Let
u, v € Cg. If (§,7) € R* x [0, 5] is such that £ > 7, then (4.8) applies
and it is straightforwardly deduced that

(4.11)  |Au(§,7) = Av(€, )| < Ca(S)]|u = vlles (1 + [[ulles + Ilvllos)-
In deriving (4.11), we have used the inequality
sup [ |M(£, 7y, 8)l dy < 44/2
¢-1>0.Jo

and the notation
C.(S) = V2 / gl
¢ o a(s)

where a(7) > 0. Note that C,(S) is an increasing function of S and that
there are constants C7 and C} for which SC? < C,(S) < SC..

If, instead, 7 > £ > 0, then (4.9) applies and exactly the same inequal-
ity as in (4.11) is seen to hold. Taking the supremum of (4.11) and its
counterpart when 7 > ¢, for ¢ € R and 7 € [0, 9] yields

(4.12) | Au — Avllos < Ca(G)llu = vllos (1 + [lulles + [vlcs)-

Let §(&,7) be the zero function in Cg. After an integration by parts
in the temporal variable, (4.8) and (4.9) may be rewritten as

v(€,7) = F(€ —T) + e V2g(p(r)) — e T-O/VEg(0)
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(4.13) e~ & V2 [ msIV2F(g)ds+ By for £€>7>0

J0

and
(4.14)

v(,T) = 6‘E/ﬁg(s0(7))+e‘(5‘”/‘/§/ e /2 F(s)ds+By for 0<E<T
T—¢

where
g(p(s))
F(s) == + h(p(s)).
(s) 7 (0(s))
In consequence of these formulas, it transpires that
(4.15) 148Ics < I fllg,mery + 3119l c.s) + Plleo,s) = T(5),

say. Hence if u, v € Cs and ||u|lcg, ||vllcs < R, then
[Avlig, < [[Av — Ab|ic, + [ 48]l ¢,

< Ca(8) [[vllgg (1 + Ivllgg) +7(S)
< C,(S)R(1+R) + r(9S)
and
JAu — Avllg, < Cal(S)(1+2R) ju = vllg,

Thus, if R is chosen to be 2r(S), then since C,(S) — 0 as S — 0 and
r(S) is decreasing with S, there are positive values of S such that

(4.16) C.(S) (1 + 4r(S)) < 1/2.

For such a determination of R and S, the operator A is a contraction
mapping of the ball By of radius R about 6 in Cg. Thus A has a fixed
point in Clg.

The local Lipschitz continuity of the solution mapping Q : Cj (R*) x
C'(0,T) x C(0,T) x C* (0,T) — Cs defined by

Q(f,9,hy)=u

follows since u is obtained via the contraction mapping principle. In
a little more detail, let (f,g,h,7v) and (f,?j,hﬁ) be given and let

A(f,g,h,v) and A=A (f, 'gv,ﬁ,?y) be the corresponding mappings as
defined in (4.8)-(4.9)-(4.10). Let Sp < min {S, 5}, where S and S are
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determined by (4.16) for their respective quantities C, and . The dif-
ference u — u can be estimated as follows:

lu— gy, = HAu - ZaHOS < || Au — 4dlg, + HAa ~ A
0

Cs,

1 " _ P
< 5 lu=llg, + | £ - f“c,,(m) 819 = Gllcgos + |- thm,S)-

This completes the proof of Lipschitz continuity and of Lemma 1. (J

A direct consequence of the contraction mapping principle is the fol-
lowing corollary.

Corollary. Let v, f, g and h be as in Lemma 1, and let

_ _JfE-n+nRnEn), i o0<7<e,
(&, 7) = AG(¢,7) = { g(tP(T—ﬁ))Jler(é,’f), if  0<é<T

Then the Picard sequence v, (€,7) defined by the formula

6,7) = Al 1) = (e, 1) + { Btnei(6r) Sor g7 >0

converges in Cg to the unique solution v of (4.8)-(4.9) in the ball Hvlles <
R (the operators By and By are defined in (/. 10)).

Lemma 2. Let v, g, h € C*([0,T]), f € C®*(RY)NCE(R*), —y <
V() < < 1/2, 4(0) = 0, and let t = (1), where ©(0) = 0, be the
unique solution of equation ({.8). Moreover, assume that the following

consistency conditions hold:

(4.17) £(0) = 9(0), 7/(0) = h(o),
" _ il ' / / / 9(0) [1 ] 9(0)]
(418) 1'0) = 5 OO+ 1) + K (o)) + L LEAO)
£10) = == [50) (#0))* + 4 0}/ (0) + K (0)(0)]
+3 [/O)6/(0) + (O)] + K(0) (¢ (0))" + (0)4(0)
_¢"(0)g(0) [1 + g(0)] MO) . FOY o
(4.19) TN, + (4@’(0) 5 ) [1 + 2g(0)]
where
(0) =i oy = — 10
YOy SO
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Then any solution v € Cs of (4.10) is a classical solution of the initial-
boundary-value problem (4.4).

Remark. The first two conditions (4.17) are transparent, but (4.18)
and (4.19) appear complicated. In fact, they are automatically satisfied
for the practically interesting case where the liquid is quiescent at t=20
and the wavemaker actually starts to move smoothly at a later time
to > 0 (see Zabusky & Galvin (1971), Hammack (1973), Hammack &
Segur (1974), Bona, Pritchard & Scott, (1981)). For, in this case,

£(0) = £(0) = f"(0) = £"(0) = 0,
9(0) = h(0) =0
and
¢'(0) = 2, ¢"(0) = 0.
Moreover, referring back to Section 2, in these circumstances
K(0) = —¢'(0) = —¢"(0) = 0,

whether g is determined from the differential equation (2.13) or from
an asymptotic expression for g. Thus all the consistency conditions are
trivially met.

Proof. Setting 7 = 0 in (4.8) and £ = 0 in (4.9) leads to the conclusion
that v(£,0) = f(£), for € > 0, and v(0,7) = g(i(r)), for any 7 > 0. To
verify the second boundary condition, differentiate equation (4.9) with
respect to & and then set £ = 0. For 0 < § < 7, this gives

1 T
wl6,7) =~ expl(r = O)/VD) | expl=s/VDF(5)ds

+h(p(r— &) + Ll (v+v?) (£ = (T —s),8)ds
4 )¢ a(s)

i | [ e (slemu- a1V

(4.20) + exp (— (E+y—(1—89) /\/—f)] (v+ v*) (y, $)dy.

In consequence one sees readily that, ve(0,7) = h(p(7)), for 0 <7 < 5.
Also, it is easy to check using (4.8) and (4.9) that, thanks to the first
consistency condition (4.17), the function v(§, 7) is continuous on the line



60 JERRY L. BONA AND VLADIMIR V. VARLAMOV

segment L = {({,7)| £ =7, 0 < 7 < S}, which is to say, v(t+0,7) =
v(r = 0,7). A similar calculation using (4.8) yields

ve6,7) = 1€ — 1) — % exp(— (€ — 7)/v3) / " exp(—s/v/2) F(s)ds

il s [ rew (cle—y- - 91/v8)
texp (— €+ - (= ) /VE)] (v + v¥)(y, 5)dy

171 X
(4.21) +Z/o o(s) (v40?) (€ - (7 — ), 5)ds.

provided £ > 7. Therefore,

ve (T+0,7) = f'(0) — % Orexp(—s/\/ﬁ)F(s)ds

_\/LE%/OT.(%/OOO [exp (_ ly — sl/\/§> + exp (—(y-i- S)/\/ﬁ)J

=1l
X (v+v?) (y, 8)dy + i/o a(s) (v +v?) (s, 5)ds.
On the other hand, (4.20) yields

T

ve (T —0,7) = h(p(0)) — L exp(—s/\@)F(s)ds

V2 Jo
11 (7 ds [

—EZ/O @/O |exp (— ly—SI/\/E) + exp (—(y+8)/3/5)]

x (v+v%) (y, 8)dy + i /OT ﬁ (v 4 v?) (s, 5)ds.

Hence, due to the second consistency condition (4.17), the jump across
the line segment L vanishes, viz.

[velp = ve (74 0,7) — ve (1 = 0,7) = £/(0) — h(p(0)) = 0.
In the region £ > 7,0 < 7 < S, (4.8) implies

0 (6,7) = —F/(E — 1) + = exp(=(€ — 7)/v) / " exp(—s/VD) F(s)ds



w2t [ s [ e (Cle-u -0l v3)]
+exp (= (€+y— (1= 9)/V2)] (v4+9%) (v, )dy

(4.22) —% /OT ﬁ (v+v*) (€ — (7 — 5),8)ds.

In the domain £ < 7, 0 < 7 < 5, there obtains

(6, = (plr — )¢ T4 T expl(r=0)/VD) | exn(—s/VE)F(s)ds

+exp(~ —£/V2)F (1) — F(1 =€)
vimm | [ (Sl v1/vE) st
+ exp <—(§ +y)/\/§)] (v+?) (y,7)dy

+—j—§§/7%/0°°[exp( €=y~ (-9 /V2)]

T—¢
+exp (— E+y—(r—29) /\/5)] (v +?) (y, 5)dy
(4.23) _i /OT (v+wv )(i(:;)(T - s),s)d&

Calculating the jump of v, (&, ¢(7)) on the line segment L, it is seen that

[v:], = —£(0) + h(0) = 0.

The formulas (4.21)-(4.22) yield, for the entire strip £ > 0,0 <7< .S

Vrtvg = exp(—é/\/ﬁ)F(T)_y_%&_(lT_) /Ooo [e—lé—yl/ﬂsgn@ —y)+ e—(€+y)/x/§]

(4.24) x (v +v?) (y,7)dy.
Differentiation of (4.20) for 0 < < 7,0 < 7 < S leads to

Vgg = — \/—[9 (p(T =€) - (1 = &) + h(p(r = ON-N (p(r = §)) ¢ (T—£)

G(sO(T—‘S)) g* (p(r —€)) T
da(T — E) +2 exp((1-£))/V2) /T_€ exp(—s/V2)F(s)ds

-I-/ —1—— (v+2?) (- (1 —s),8)ds

g
4 ‘rﬁa’(
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_L [T as
4\/5 T—€ CI,(S)

(425)  texp(=(E+y—(r—9)/V2)] x (v+97) (w,9).

On the other hand, differentiation of (4.21) yields for ¢ > 7,0 <7< §

vee = (€ =) + 2 exp(—(€ — 7)/V3) / " exp(—s/V3)F(s)ds

/Ooody [exp<—|§—y—(7-s)|/\/§>sgn(§_y_(T_S))

2

1

+‘_1/0 ﬁag (v+0*) (€ = (1 —s),5)ds

i b s [ e (<le-y - (-9 /vR)sene —y— (- 5)
(426)  dexp (= (E+y— (7= 5)/V2)] x (v4+9%) (3, 9).

Therefore, due to the consistency condition (4.18) the jump of vg on the
line segment L is zero. Indeed, (4.25) and (4.26) imply that

[vee] ;, = vee (T 4+ 0,0(7)) — vee (1 — 0, 0(7))

o 1 / / ’ / ."J(O) []- i U(O)J .
= f"(0) + 7 [9'(0)¢'(0) + A(0)] + K'(0)¢'(0) — g O

Now we are prepared to compute the third derivatives Veee and Vg,
For 0 < £ < 7,0 <7 < S differentiation of (4.25) yields

T

5 epl((=O)/VD) [ exp(-s/Va)F(s)ds + LF (7 -8

U€€£:_2\/§ . 2
—%@F (T =& +h (p(r =) (' (T — &)’ + W (p(r — €)' (1 — £)
+a'(T — &)glp(T — &) [1+ (9(p(r — €)))?]

4(a(r —¢))?
_glp(r =€)’ (1 = &) [1 + 29(p(r — £))]
da(T — &)
(v +20v¢) (0, (p(T =) 1 P T (P =Sl
Hut OB +4/0a(3)a,5(+ ) (€~ (7 — ), 5)d
1 7 ds [
_g/T_gﬁ/o dy [exp(—lf—y—(T—S)l/\/ﬁ)

+exp (— E+y— (T—S))/\/i):l x (v+17) (y,s)
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BETA
4\/§ T—€ CL(S)

and for £ > 7, 0 < 7 < § differentiation of (4.26) leads to

veee = (€ —7) — Qiﬂ exp(—(€ — 7)/v2) / " exp(—s/VI)F(s)ds

(4.27) v+ %) (€ — (1 — s),8)ds,

L R 2 — (17— s), 8)ds
+Z/0 SR ) € =9),9d

—é—/()T%/Ooody[exp(—lﬁ—y—(T—S)l/\/i)

(4.28) + exp (— (E+y—(1—29)) /\/5)} x (v+°) (y,s)

: t! (- (r—2s),s)ds
-5 | ) - 9.9

Therefore, according to the compatibility condition (4.19), veee (€, (7))
is continuous on the line segment L since

[Veee] ; = Vege (T4 0,7) — vgge (T — 0,7)
1

= 1"(0) = 75 [¢"0) (#(0))" + ¢ (0)¢'(0) + K(0)¢ ()]

—% [9'(0)¢'(0) + h(0)] = 1"(0) (¢'(0))° ~ K (0)"(0)

I , % /

(LOOL IO (KO, SOV o500,
1(p0)) 4(0) " 4

Next, we calculate the mixed derivative vge, and show that it is contin-

uous on L thanks to the same consistency condition (4.19). Indeed, for

0<é<T1 0<7<S8, it is straigthforwardly ascertained that

Veer = _% |9 (e(r =€) - (¢ = £ + ¢ (e(r = ) - (r = &)
+h(p(r = ) - ¢ (r =€)
—H(p(r =€) (¢(T = ) = W(p(r =€) ¢'(r = §)
a(r =€) gle(r— )+ (glp(r —£))’

..I_

4(a(r = &))* 9(p(1 =€)
1 ge(r =)' (T — &) [+ 2g((r — §))]
da(t —¢§) g(p(r = £))
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L eeip () SF(r—¢)

2
+1 [(’)E (v+v*) (& 7) e v+2?) (0,7 - :f)}
4 a(r) a(T — &)
1/ 1
+Z /r—g m@g, (v+0?) (€= (1 —s),8)ds

o] e/ VEegr (g ()3
4\/@{L(T)/() [e Y sn(l —y) te i 2] (U+U2) (y,7)dy

w5 [ 2 [Cavfew(~le-y- o-91/v3)

8 Jr—¢ a(s)
texp (— (€ +y—(r=9) /V2)| x (v+*) (v,5)

Ll @)= (r—s),)
4/2 T—€ a(s)
For £ > 7,0 < 7 < S the result is

ds.

(4.29)

T

veer = — F"(0) + +—= exp(—( — 7))/v/3) / exp(—s/V3)F(s)ds

2v/2 e
19 2
+—;'€_E/\/§F(T) m Z 3 (’U _;g;)) (5) T)

1« F i 9 .
+Z/o a(e) % (0 +0%) (€= (7 = s), 8)ds

_4.\/§1a('r) /Ooo [ Bsgn(€ — y) + € V2] (0 402) (y, )y

1 [T ds [
+§/0' E(S—)/O dy [e_lg_y_(r_s)l/‘/§ + e—(£+y—(‘r—3))/\/§ X (U + /U2) (y’ S)

1 T (v+v?) (€ — (T — 5),9)
(4.30) t15 /0 e ds.

The formulas (4.29) and (4.30) allow to verify that the jump of vge, on
the line segment L is zero due to (4.19). Thus, the last consistency
condition guarantees the continuity of both vege and vee, in the entire
strip€ >0, 0<7<8S.
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Finally, calculating veee + veer for € > 0, 0 < 7 < S on the basis of
(4.27), (4.28), (4.29) and (4.30) and taking into account (4.24) shows
that the equation

1
vy + v — 2 (Vege + Veer) = —5— 0 (v +0°)

2a(T)

is satisfied in £ > 0, 0 < 7 < S in the sense of continuous functions. [J

Remarks. 1. Further regularity of v, f, g and h results in further reg-
ularity of the solution v. This follows by a straightforward continuation
of the arguments put forth in Lemma 2. A precise statement is provided
in Theorem 4.

2. If f(¢) — 0 as £ — +o0, then the solution v has the same property
for all 7 € [0, S]. This follows from the following two observations. First,

if 8’SC Cyg is the subset of functions v € Cs such that v(§,7) — 0 as
¢ — +oo for each 7 € [0, S], then Coj’g is a closed subspace of Cs. Second,

ifve C%’s, then Av € 5’5 . This is a consequence of the representation
(4.13) for £ > 7 > 0, where the kernel M(§, 7,y,s) decays exponentially
as £ — oo and so lies in L; (R*). Once these two points are appreciated,
the stated result follows from the Corollary to Lemma 1.

3. If instead of assuming f € C,(R™"), it is supposed that f €
H'(R*) C Gy (R1), it follows that the solution v of (4.8)-(4.9)-(4.10)
lies in C (0, S; HY) . This follows readily from the analog of (4.12) in an
Hl-setting. Similarly, if f € H* (R*) for k > 1 and v, g and h are
suitably more regular, then the solution v will lie in C' ([], Sl ’”').

4. In all the above scenarios, the solution depends continuously on the
data. This follows immediately because the solution is obtained by way
of the contraction mapping principle.

5. If we happen to know that the solution v corresponding to auxiliary
data 7, f, g, and h remains bounded on any bounded time interval for
which it exists, and that g, h, and 7 are defined on all R¥, it follows
by standard arguments and the local existence theorem that v may be
uniquely extended to a globally defined solution, that is, a function v :
R+ x R+ — R that solves (4.4) everywhere in (0, 00) x (0, 00).

Once v is determined as in Lemma 2, the solution u of the moving
boundary problem (4.1) is obtained from the transformation (4.2). The
following theorem about (4.1) thereby emerges.

Theorem 3. Let vy, g, h and f be as in Lemma 2. Then there is a
T > 0 and a unique function u defined on Qr which is a classical solution
of the boundary-value problem (4.1).
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The remarks following the proof of Lemma 2 all have obvious coun-
terparts for (4.1) that follow directly from the change of variables (4.2).

5. A PRIORI BOUNDS

In this section, an “energy-type” relation is derived which allows one
to extend the local solvability result for (4.1) to arbitrary time intervals
[0,T]. To begin, define U by the relation

(5.1) u(z,t) =u(x,t) + Uz, t)

where
u(z,t) = [g(t) + (z — 7(t)) h(t)] @ (z, t)
and
w(3,t) = exp (— (2 — 1(1))?) .

Note that w(vy(t),t) = 1 and @w,(y(t),t) = 0, so that the function
u(z, t) satisfies the boundary conditions in (4.1), and the function I/ (z,t)
therefore satisfies the homogeneous boundary conditions U(y(t),t) =
0, Uz(7(t),t) = 0. Also, U(z,t) — 0 as  — oo if the same is true of v
since the functions g(t) and h(t) are bounded on bounded time intervals.

Substituting (5.1) into equation (4.1) yields an equation for U, namely

1

which may be rewritten in the form

(5.2) Us+ L+ Uy 4+ UUp + U — Upgy — 2Uas = flz, 1)

where

f(.’l?,t) = —U — Uy — Uy + Uger + ZE:E:ct-

Note that the functions %, and %, include the first derivatives of the
boundary data g and h.

Presume for the moment that the auxiliary data -, g and A are in C3,
say, and that f € H* (R") for some k > 4. This implies that the func-
tions v(z,t) = u (z — ¥(t),t/2 — y(t)) and V(z,t) = U (z — v(t),t/2 — 7(t))
lie in CF (R* x [0,T1) and, for each ¢ € [0, T], that they lie in H* (R*).
This level of regularity more than suffices to justify the formal calcula-
tions that appear below. Once the final inequalities are obtained, the
continuous dependence results come to our aid and it is adduced that
the bounds continue to hold for weaker levels of regularity of the data.
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Multiplying the equation (5.2) by U, integrating with respect to  over
[v(t), 00) for each t € [0, T], and integrating by parts in z leads to

%di (17 +2|Us[*) dm+1/ U |UPde= | fUdz.
A0 2 Jye 0
Integrating the last relation in the temporal variable from 0 to ¢ and
applying the elementary inequality

jab| < 5 (a2 + )

o

(5.3)

to the last term on the right-hand side of the result yields

1 o0 t [e%s)
(U +2U) de+ 2 [ ar [ |UPda
2 2

v(t) 0 ¥(7)

1 t o0 1 i e .
(5.4) gC’1+—/ d’T'/ |U|2dsv+—/ d’?’/ |f(x,7’)|2dm
2 Jo ~(7) 2 Jo ¥(7)

where
= [ 7 _Rt
K1 = (m,glefQT Ug(z,t), Qr=R"x[0,T],
1 (o]
Ci=5 [ (UP+200.P) (@0)ds,
0
U(z,0) = f(z) — [9(0) + zh(0)] exp (—z?) ,
Ua(2,0) = £(z) — [(1 — 25%)h(0) — 229(0)] exp (—3?),
and B ,
if(l', t) . E? i —a?r o (m-’b‘)2 + —agxzzm == 47&2:::13
+2 (Tls + UloT + Ul + Uglges + Uit ) -
Since

T, = h(t) (1 - 26%) e ~29(t)ee™ = A1) 1(§) — 90 fa(6),
where f1(£) and f5(£) are bounded independently of £ € R* and g(¢) and
h(t) are bounded for ¢ € [0, T, it is clear that &, is finite, though of course
it need not be positive. Dropping the nonnegative term f;((;) |U3,,]2 dz on
the left-hand side of (5.4) and letting kK = k1 — 1, there obtains the

inequality
[o. ] t o]
/ |U|2da:+n/ d’T/ U dz < 2C) + F(t),
¥(t) 0 y(7)

F’(t)z/o d’r/()|f(x,7’)|2dx.

where
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Introducing the notation

Ut) = /OthL:) |U(z,7)|)? dz,

the last inequality may be written

U'(t) +sU(t) <201 + F(t),  for te0,T],
with
U(0) =0.
Gronwall’s lemma thus implies

B 1— e—fit

(5.5) U(t) < 20,

+ /{]; exp (—&(t — 7)) F(7)dr.

Note that the constant x in (5.5) is not positive, so this estimate does
not yield other than an exponential growth of U(¢) with time. However,
combining (5.4) with (5.5) allows one to conclude that

”U('at)“Hl(R“‘)
is uniformly bounded for all ¢t € [0, 7. It follows at once that u(-,t) is
bounded on [0,7] in H* (R*) since

(5.6) Gy Ol ey < NG Ol gy + 10 C Ol sy -

Theorem 4. Let T > 0 be arbitrary and suppose f & Hl(R+) N
CF ' (R*) and v, g, h € C* (0,T) where k > 2. Then there exists a
unique solulion w of the integral equation (4.8)-(4.9)-(4.10) such that
v(z,t) = u (e —(t),t/2 — (1)) lies in C (0,T; H' (R")) and in

C (0,T;CF* (RH)).

Moreover, the mapping that associates to (f, g, h, 7) the solutionu is a
locally Lipschitz mapping from H' (R*)x C* (0, T) x C* (0, T) x C* (0,7)
to the space X where

X ={v: G oRi w(,0) € B ((7(1),00)) N CF ((4(8), 00)
0 <t < T and the correspondence t —v (z — (t), t)
is continuous from [0,T) to H’ (R+)},
J=0,1,2 ...

Proof. Ezistence. By a straightforward iteration of the existence proof
of Lemma 1, we infer that there is an increasing sequence of times {Tx oo
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over which the solution in the small can be extended. The terms of this
sequence are determined by (4.16) to be

1
T, =Ty
¢ = et e e (T
where
r(Ty) = sup [u(€, Te-1)| + 3 Wl9llco.z) + 1Ml oo, -
Of course,

3119l oo + 1Pllomy < 3l19llcry + I1Rllco,m
and the latter quantity is bounded. Moreover it is elementary that

52’?(1;15—1) w6 Te-)l < ”u(.’Tk)”Hl(’r(Tk—ﬂyoo)
and the latter quantity is bounded a priori on [0, T] according to the last
proposition. In consequence, 7 (T}) is bounded indepéndently of T}, €
[0, T, from which one deduces a positive lower bound on the difference
Ty — T—1. This in turn means the solution can be extended to [0,T] by
a finite number of applications of the contraction mapping argument.

Uniqueness. Assume that on the time interval [0, T'] there exist two so-
lutions u; and uj, of the problem (4.1) in the space XJ. This corresponds
to existence of two solutions v; and v, in the space C(0,T; H'). Let
w = u; — ug and correspondingly W = U; — Uz. Then (5.5) immediately
implies that W = 0 a.e. on [0,T] whence u; = us.

Continuous dependence follows from the usual procedure of approxi-
mating the initial and boundary data by smooth functions, making the
calculations for the associated smooth solutions and then using the con-
tinuous dependence theory to obtain the final result for less smooth data.

6. CONCLUSION

Developed herein is a theory for water waves generated by a wavemaker
which is at the same KdV- or Boussinesqg-level of approximation as in
earlier works (e.g., Bona & Bryant, 1973). However, the present work
relies, for the initiation of the waves, upon direct measurement of the
wavemaker motion rather than an auxiliary measurement taken down-
stream. A natural further development would be to create a numerical
scheme for the approximation of solutions of the initial-boundary-value
problem (4.1) together with a scheme to solve the Emden-Fowler type
equation (2.17), (2.18). This is the first step toward determining the
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quantitative predictive power of the conception put forward here. Such
a program will be the subject of a future work.
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