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C.P. 6065, C.E.P. 13083-970, Campinas, São Paulo, Brazil

Jerry L. Bona

Department of Mathematics, Statistics and Computer Science
The University of Illinois at Chicago

851 S. Morgan Street (MC 249), Chicago, IL 60607-7045

Marcia Scialom

Departamento de Matemática, IMECC-UNICAMP
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Abstract. This paper is concerned with the stability of periodic trave-
lling-wave solutions of the Korteweg-de Vries equation

ut + uux + uxxx = 0.

Here, u is a real-valued function of the two variables x, t ∈ R and
subscripts connote partial differentiation. These special solutions were
termed cnoidal waves by Korteweg and de Vries. They also appear in
earlier work of Boussinesq. It is shown that these solutions are stable to
small, periodic perturbations in the context of the initial-value problem.
The approach is that of the modern theory of stability of solitary waves,
but adapted to the periodic context. The theory has prospects for the
study of periodic travelling-wave solutions of other partial differential
equations.

1. Introduction

The Korteweg– de Vries equation

ut + uux + uxxx = 0 (1.1)

for the function u = u(x, t) was first derived by Boussinesq in 1877, and
later by Korteweg and de Vries in 1895, as an approximate description of
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surface water waves propagating in a canal. Here, u, x and t are real vari-
ables and subscripts connote partial differentiation. This equation has since
found application to a range of problems in solid and fluid mechanics as
well as plasma physics and astrophysics. Some indication of the range of its
applicability can be ascertained by consulting [24], [23]-[35], [48], [36], [45]
and especially the early reviews [6], [29] and [44].

One of the centrally important properties of this evolution equation is its
travelling-wave solutions, Scott Russell’s solitary waves, later termed soli-
tons, and Boussinesq’s and Korteweg de Vries’ cnoidal waves. The solitons
are the single crested, symmetric, localized travelling waves whose sech2-
profiles have become so well known. The cnoidal waves are also travelling
waves, but their spatial structure is periodic.

It is our purpose here to consider the stability of these latter waveforms.
For solitary waves, stability theory was begun by Benjamin [5] and has since
been refined and improved in several ways (see, for example, [4], [8], [11],
[22], [25], [26], [37], [38], [39], [40], [43], [49], [50]). It is otherwise with
the spatially periodic cnoidal waves, whose orbital stability has received
comparatively little attention.

We intend to cast light on this issue. As our general experience with non-
linear, dispersive evolution equations indicates that travelling waves, when
they exist, are of fundamental importance in the development of a broad
range of disturbances, we expect the issue of stability of cnoidal waves to be
of interest.

We approach the question of cnoidal wave stability by way of the general
methods that have proven successful for deriving stability theory for soli-
tary waves. In particular, we make no use of the KdV-equation’s complete
integrability as did McKean [42] in his study of the periodic initial-value
problem. The periodic problem presents new points not encountered when
considering stability issues related to the solitary waves. The outcome of
our analysis appears in Sections 5 and 6. Roughly speaking, we show that,
indeed, cnoidal waves are orbitally stable to disturbances of the same pe-
riod. Moreover, we show that the perturbed solution propagates at about
the same speed as does the unperturbed cnoidal wave. It is worth pointing
out that theory has recently been developed by H. Chen [18] which includes
stability results for periodic traveling-waves. Her theory applies to a general
class of model equations, but the information gleaned is not quite as specific
as that obtained here in the context of the KdV-equation.

The scheme of the paper is as follows. Section 2 contains some classical
preliminaries about cnoidal waves and an appreciation and critique of earlier
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work of Benjamin reported in [6] on the issue in view here. We also indicate
why the general theory of Grillakis, Shatah and Strauss [25], [26] cannot be
applied directly to the problem at hand. Various characterizations of the
cnoidal waves are made in Sections 3 and 4, and these are used to infer the
stability theory in Section 5. The theory in Section 5 takes advantage of
the ideas in Bona and Soyeur [12]. The theory in Section 5 is extended to
higher-order Sobolev spaces in Section 6 using the idea appearing in Bona,
Liu and Nguyen [10] in their study of stability of solitary waves. An Ap-
pendix A collecting for the reader’s convenience some facts about the Jacobi
elliptic functions is followed by Appendix B where an alternative, variational
argument for stability is sketched. While straightforward, the latter method
fails to provide the detailed aspects about stability that emerge from the
analysis in the body of the paper.

2. Notation and preliminaries

2.1. Function Classes. The following, mostly standard notational conven-
tions will be in force throughout. If Ω is an open set in R and 1 ≤ p ≤ ∞,
then Lp(Ω) is the usual Banach space of (equivalence classes of) real or
complex-valued Lebesque measurable functions defined on Ω with the norm

|f |pLp(Ω) =
∫

Ω
|f |pdx, (2.1)

and with the usual modification when p = ∞. When Ω is understood, we
write simply Lp for Lp(Ω). The inner product in L2(Ω) of two functions f
and g is written as

(f, g) =
∫

Ω
fgdx. (2.2)

The L2-based Sobolev spaces of periodic functions are defined as follows
(for further details see [II]). Let P = C∞

per denote the collection of all the
functions f : R → C which are C∞ and periodic with period 2� > 0. The
collection P ′ of all continuous linear functionals from P into C is the set of
periodic distributions. If Ψ ∈ P ′ we denote the value of Ψ at ϕ by

Ψ(ϕ) =< Ψ, ϕ > . (2.3)

For k ∈ Z, let Θk(x) = exp(ikπx/�) for x ∈ R. The Fourier transform of
Ψ ∈ P ′ is the function Ψ̂ : Z → C defined by the formula

Ψ̂(k) =
1
2�

< Ψ, Θ−k >, k ∈ Z.
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As usual, a function Ψ in L1(−�, �) is realized as an element of P ′ by defining

〈Ψ, ϕ〉 =
1
2�

∫ �

−�
Ψ(x)ϕ(x)dx

for ϕ ∈ P. If Ψ ∈ Lp(−�, �) for some p ≥ 1, then, for k ∈ Z,

Ψ̂(k) =
1
2�

∫ �

−�
Ψ(x)e−ikπx/�dx.

The space P ′ carries the usual weak-star topology, but it will not be needed
here. For s ∈ R, the Sobolev space Hs

2� = Hs
per([−�, �]) is the set of all f ∈ P ′

such that

‖f‖2
Hs

2�
= 2�

∞∑
k=−∞

(1 + |k|2)s|f̂(k)|2 < ∞.

The collection Hs
2�(R) is a Hilbert space with respect to the inner product

(f |g)s = 2�

∞∑
k=−∞

(1 + |k|2)sf̂(k)ĝ(k).

In case s = 0, H0
2� is a Hilbert space that is isometrically isomorphic to

L2(−�, �), and

(f |g)0 = (f, g) =
∫ �

−�
fgdx. (2.4)

The space H0
2� will be denoted by L2

2� and its norm by | · |L2(−�,�). Of course
Hs

2� ⊂ L2
2�, for any s ≥ 0, and, for every n ∈ N, the norm ‖f‖2

Hn
2�

of a function
f is equivalent to the norm( n∑

j=0

‖f (j)‖2
L2

2�

)1/2
=

( n∑
j=0

∫ �

−�
|f (j)(x)|2dx

)1/2
,

where f (j) is the jth derivative of f taken in the sense of P ′. Moreover,
(Hs

2�)
′, the topological dual of Hs

2�, is isometrically isomorphic to H−s
2� for

all s ∈ R. The duality is implemented concretely by the pairing

〈f, g〉s = 2�
∞∑

k=−∞
f̂(k)ĝ(k), for f ∈ H−s

2� , g ∈ Hs
2�.

Thus, if f ∈ L2
2� and g ∈ Hs

2�, it follows that 〈f, g〉s = (f, g). One of Sobolev’s
lemmas in this context states that if s > 1

2 and

C2� = {f : R → C : f is continuous and periodic with period 2�},
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then Hs
2� ↪→ C2�. If X is a Banach space like Hs

2�, and T > 0, then C(0, T ;X)
is the space of continuous mappings from [0, T ] to X and, for k ≥ 0,
Ck(0, T ;X) is the subspace of mappings t �→ u(t) such that ∂j

t u ∈ C(0, T ;X)
for 0 ≤ j ≤ k, where the derivative is taken in the sense of vector-valued
distributions. This space carries the standard norm

‖u‖Ck(0,T ;X) =
k∑

j=0

max
0≤t≤T

‖∂j
t u(t)‖X .

2.2. The Initial-Value Problem. Logically prior to questions of stability
to perturbations of the initial data is the issue of well posedness for the initial-
value problem for (1.1). The initial-value problem for (1.1) with periodic
data has been extensively studied, and very satisfactory theory is available
(see e.g. [13], [14], [30], [31], [32], [15], [20], [46] and [33]). The more subtle
aspects of recent theory do not find use here. All that is needed is the
following result.

Theorem 2.1. Let s ≥ 1 be given. For each u0 ∈ Hs
2� there is a unique

solution u of (1.1) that, for each T > 0, lies in C(0, T ;Hs
2�). Moreover,

the correspondence u0 �−→ u is an analytic mapping of the relevant function
spaces.

Remark. In what follows, we will occasionally use more regularity than
is implied by membership in H1

2l. This extra regularity is only needed at
intermediate stages; the final results only feature elements requiring H1

2l
regularity. To justify the intermediate steps, we follow the standard pro-
cedure of regularizing the initial data, making the calculations which are
easily justified for the more regular solutions and then passing to the limit
in the final result. In this latter step, the full power of the well posedness is
needed to insure that if a sequence of smooth initial data ψn converges to a
rougher initial value ψ, then the associated solutions un converge strongly
to the solution u emanating from ψ.

3. Classical results about cnoidal waves and stability theory

3.1. Facts about Cnoidal Waves. Travelling-wave solutions of the KdV-
equation are obtained by searching for solutions u of (1.1) of the form

u(x, t) = ϕc(x − ct), (3.1)

where c is the speed of propagation. Physically relevant solutions of the
KdV-equation written in travelling coordinates as in (1.1) and with mean
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zero, require 0 < c << 1 in the travelling frame of reference that underlies
the tidy form (1.1). (In the original physical variables, this corresponds
to speeds of propagation c̃ just in excess of the kinematic wave velocity
c̃0 =

√
gh0, where h0 is the undisturbed depth and g the gravity constant.)

Such waveforms are certainly covered here, but our theory is not restricted
to this range. Indeed, the KdV-equation is invariant under the Galilean
transformation

v(x, t) = u(x + γt, t) − γ, (3.2)
where γ is any real number. That is, if u solves (1.1), then so does v. For a
travelling wave ϕc as in (3.1), this means that if γ ∈ R, the function

φe(z) = ϕc(z) − γ

is a travelling-wave solution of (1.1) where e = c − γ, which is to say

φe(x − et) = ϕc(x − (c − γ)t) − γ (3.3)

is also a solution of the KdV-equation. This familiar fact (see e.g. Miura’s
historical perspective in [M]) allows one to normalize considerations. One
has a choice of either restricting the range of speeds or else fixing the mean-
value of the wave. In case ϕc is periodic of period L, this means specifying
the value of

H(ϕc) =
1
L

∫ 1
2
L

− 1
2
L

ϕc(x)dx

whereas if ϕc = φc is of solitary-wave type, the limit

φ∞ = lim
L�→∞

1
L

∫ 1
2
L

− 1
2
L

φc(x)dx

may be specified. Note that the spacial period [0, L] of a periodic traveling
wave solution ϕc of the KdV-equation does not change under the Galilean
transformation (3.2). For the moment, fix the speed c to be positive.

Substitution of the form (3.1) into (1.1) yields an ordinary differential
equation for ϕc(z), say, where z = x − ct, which may be integrated once to
reach the second-order equation

ϕ′′
c +

1
2
ϕ2

c − cϕc = Aϕc . (3.4)

Here, the constant Aϕc of integration need not vanish. Upon multiplying
(3.4) by the integrating factor ϕ′

c, a second exact integration is possible,
yielding the first-order equation

3(ϕ′
c)

2 = −ϕ3
c + 3cϕ2

c + 6Aϕcϕc + 6Bϕc (3.5)
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where Bϕc is another constant of integration. This latter equation may be
solved implicitly, viz.∫ ϕc(z)

ϕc(0)

√
3dy√

−y3 + 3cy2 + 6Aϕcy + 6Bϕc

+ c0 = z, (3.6)

where c0 is a final constant of integration. A class of solutions to (3.6),
found already in the 19th-century work of Boussinesg [5] and Korteweg and
de Vries [34], may be written in terms of the Jacobi elliptic function as

ϕc(z) = β2 + (β3 − β2)cn2
(√

β3 − β1

12
z; k

)
, (3.7)

where

β1 < β2 < β3, β1 + β2 + β3 = 3c and k2 =
β3 − β2

β3 − β1
.

Here is a classical argument leading exactly to these formulas. Fix a speed
of propagation c > 0 and suppose ϕ to be a non-constant, smooth, periodic
solution of (3.5)-(3.6). The formula (3.5) may be written

ϕ′(z)2 =
1
3
Fϕ(ϕ(z)) (3.8)

with Fϕ(t) = −t3 + 3ct2 + 6Aϕt + 6Bϕ a cubic polynomial. If Fϕ has only
one real root β, say, then ϕ′(z) can vanish only when ϕ(z) = β. This means
the maximum value ϕ takes on in its period domain [−�, �] is the same as
its minimum value there, and so ϕ is constant, contrary to presumption.
Therefore Fϕ must have three real roots, say β1 < β2 < β3 (the degenerate
cases will be considered presently), so Fϕ has the form

Fϕ(t) = (t − β1)(t − β2)(β3 − t) (3.9)

where we have incorporated the minus sign into the third factor. Of course,
we must have

β1 + β2 + β3 = 3c, −1
6
(β1β2 + β1β3 + β2β3) = Aϕ,

1
6
β1β2β3 = Bϕ.

It follows immediately from (3.8)-(3.9) that ϕ, if it is to exist, must take
values in the range β2 ≤ ϕ ≤ β3. Since c > 0, β3 > 0 and we can normalize
ϕ by letting ρ = ϕ/β3 so that (3.8)-(3.9) becomes

(ρ′)2 =
β3

3
(ρ − η1)(ρ − η2)(1 − ρ) (3.10)

where ηi = βi/β3, i = 1, 2. The variable ρ lies in the interval [η2, 1]. By
translation of the spatial coordinates, we may locate a maximum value of ρ
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at z = 0. As the only critical points of ρ for values of ρ in [η2, 1] are when
ρ = η2 < 1 and when ρ = 1, it must be the case that ρ(0) = 1. One checks
that ρ′′ > 0 when ρ = η2 and ρ′′ < 0 when ρ = 1. Thus, it is clear that our
putative periodic solution must oscillate monotonically between the values
ρ = η2 and ρ = 1. A simple analysis would now allow us to conclude such
periodic solutions exist, but we are pursuing the formula (3.10), not just
existence.

Change variables again by letting

ρ = 1 + (η2 − 1) sin2 ψ

with ψ(0) = 0 and ψ continuous. Substituting into (3.10) yields the equation

(ψ′)2 =
β3

12
(1 − η1)

[
1 − 1 − η2

1 − η1
sin2 ψ

]
with ψ(0) = 0. To put this in standard form, define

k2 =
1 − η2

1 − η1
and λ =

β3

12
(1 − η2).

Of course 0 ≤ k2 ≤ 1 and λ > 0. We may solve for ψ implicitly to obtain

F (ψ; k) =
∫ ψ(z)

0

dt√
1 − k2 sin2 t

=
√

λ z. (3.11)

The left-hand side of (3.11) is just the standard elliptic integral of the first
kind (see Appendix A). As mentioned in Appendix A, the elliptic function
sn(z; k) is, for fixed k, defined in terms of the inverse of the mapping ψ �−→
F (ψ; k). Hence, (3.11) may be rewritten as

sinψ = sn(
√

λ z; k),

and, therefore,
ρ = 1 + (η2 − 1)sn2(

√
λ z; k).

As sn2 + cn2 = 1, it transpires that ρ = η2 + (1 − η2)cn2(
√

λ z; k), which,
when properly unwrapped, is exactly (3.7).

A moment’s reflection about the degenerate cases is worthwhile. First,
fix the value of c > 0 and consider whether or not periodic solutions can
persist if β1 = β2 or β2 = β3. As ϕ can only take values in the interval
[β2, β3], we conclude that the second case leads only to the constant solution
ϕ(z) ≡ β2 = β3. Indeed, the limit of (3.7) as β2 → β3 is uniform in z and
is exactly this constant solution. If, on the other hand, c and β1 are fixed,
say, β2 ↓ β1 and β3 = 3c − β2 − β1, then kϕ → 1, the elliptic function cn
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converges, uniformly on compact sets, to the hyperbolic function sech and
(3.7) becomes, in this limit,

lim
β2↓β1

ϕc(z) = φc(z) = φ∞ + a sech2
(√

a

12
z
)

with φ∞ = β1 and a = β3 − β1. If β1 happens to be zero, the standard
solitary-wave solution

φc(z) = 3c sech2
(√c

2
z
)

of speed c of the KdV-equation is recovered. Note β2 = β1 = 0 exactly when
Aϕ = Bϕ = 0, as one would expect.

3.2. Generalities about stability and Benjamin’s theory. We present
here a brief review of the general stability theory that will come to the fore
in our analysis. In what follows, it is supposed that the travelling-wave
solution ϕc is periodic of period 2� = L > 0 and we let Ω = [0, L] be a
minimal period. The two functionals

E(u) =
1
2

∫
Ω
(u2

x − 1
3
u3)dx and F(u) =

1
2

∫
Ω

u2dx (3.12)

play a central role in the stability results that follow. They are well-defined
C∞-mappings of H1

L = H1
per(Ω) = H1

per to R and each is independent of t

when evaluated on H1
per-solutions of the KdV-equation (1.1).

Starting with [5], the stability theory for solitary waves has always relied
upon a local analysis in a neighborhood of the solitary wave whose stability
is in question. This is also the case with the present theory of stability of
cnoidal waves. One approach to demonstrating stability of cnoidal waves
which is suggested by the associated stability theory for solitary waves is to
show that if u(·, 0) = u0 is close enough to a cnoidal wave ϕc and F(u0) =
F(ϕc), then for all t ≥ 0,

E(u(·, t)) − E(ϕc) ≥ f(d1(u, ϕc)) (3.13)

where f is a continuous and strictly monotone increasing function at least
near 0 and f(0) = 0. Here, for s ≥ 0, and g, h ∈ Hs

per = Hs
per([0, L]),

ds(g, h) = inf
y∈R

‖g(·) − h(· + y)‖Hs
per

(3.14)

is the usual pseudo-metric arising in this context. The inequality (3.13)
implies that for any given ε > 0, if ‖u0 − ϕc‖H1

per
is small enough, then

d1(u(·, t), ϕc) ≤ ε (3.15)



1330 Jaime Angulo Pava, Jerry L. Bona, and Marcia Scialom

for all t ≥ 0, and this is simply an expression of orbital stability since
{ϕc(· + y)}y∈R is precisely the orbit of the solitary wave ϕc. To see that
(3.15) is a consequence of (3.13), let ε > 0 be given and argue as follows. If
u0 is near enough to ϕc in the H1

per–norm, then the quantity

E(u(·, t)) − E(ϕc) = E(u0) − E(ϕc)

is less than any prescribed value γ > 0 for all t ≥ 0. This means that
f(d1(u(·, t), ϕc)) < γ for all t. Let Θ be the orbit of ϕc, so Θ = {ϕc(· + y) :
y ∈ R} is a closed set. The triangle inequality implies that for any t, t′ ≥ 0,

|d1(u(·, t), ϕc) − d1(u(·, t′), ϕc)| = |dist(u(·, t),Θ) − dist(u(·, t′),Θ)|
≤ ‖u(·, t) − u(·, t′)‖H1

per
,

where the distance is referred to the H1
per-norm. Since u(·, t) is a continuous

function of t with values in H1
per, it thus follows that d1(u(·, t), ϕc) is a

continuous function of t. Because f is monotone, we may choose γ0 > 0 so
that r ≤ ε whenever f(r) ≤ γ0. Thus, if ‖u0 − ϕc‖H1

per
≤ δ is small enough

that E(u0) − E(ϕc) ≤ γ0, then (3.15) must hold.
The general case where F(u0) �= F(ϕc) now follows from the triangle

inequality. In a little more detail, fix c and let ϕc be a cnoidal wave whose
stability is in question. We will see in Section 4 that there is a C1-branch of
cnoidal waves {ϕd}|d−c|≤η passing through ϕc, all of the same spatial period
L, and that the mapping d → F(ϕd) is continuous and strictly monotone
increasing. Let ε > 0 be given and let u0 be initial data for (1.1) for which
‖u0−ϕc‖H1

per
≤ δ where δ will be determined presently. For δ small enough,

there is a value e near c such that F(u0) = F(ϕe). Moreover,

‖u0 − ϕe‖H1
per

≤ ‖u0 − ϕc‖H1
per

+ ‖ϕc − ϕe‖H1
per

≤ δ + o(1)

as δ → 0, since the branch of cnoidal waves is continuous. The assumption
(3.13), the just derived conclusion that if δ is small enough, then d1(u, ϕe) ≤
1
2ε for all t, and the triangle inequality assure that

d1(u, ϕc) ≤ d1(u, ϕe) + d1(ϕe, ϕc) ≤
1
2
ε + o(1)

as δ → 0. Moreover, this inequality is valid for all t, since d1(ϕe, ϕc) is
obviously independent of t. The desired result follows.

Thus the issue of orbital stability of cnoidal waves would be reduced to es-
tablishing (3.13) and the existence of the aforementioned branches of cnoidal
waves. However as will be apparent in Section 5, provision of a suitable ver-
sion of (3.13) is not quite as straightforward in the periodic context as it is
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for solitary waves. One reason for this is easily appreciated. The function

F (r, t) =
∫ 1

2
L

− 1
2
L

(
u(x, t) − ϕc(x + r)

)2
dx

figures prominently in the stability analysis. Here, u is a solution corre-
sponding to initial data ψ, say, that is periodic of period L and close to the
cnoidal wave ϕc at t = 0. What is important about F is that, for each t,
there are translations r such that

∂F

∂r

∣∣∣∣
(r,t)

= 0.

In the case of the solitary wave where L = +∞, the extended stability theory
(see [BS]) implies that there is a unique r = r(t) for which the latter holds,
whereas in the periodic context there are always at least two such points,
one of which is, say at time t, the point r0 where

F (r0, t) = max
0≤r≤L

F (r, t).

Thus, points where ∂F
∂r = 0 need not be points where F is small. This

potential obstacle is overcome in Section 5 by the derivation of a slightly
more subtle version of (3.13) and a dynamical determination of r(t). The
latter approach has the salutary effect of yielding sharper results that those
obtaining from the analysis just outlined, were it to be correct.

Except for the caution just raised, the preceding argument is the same as
one made for solitary-wave solutions of (1.1) in [11] or [4], and indeed for a
general class of KdV-type equations of the form

ut + f(u)x − Mux = 0 (3.16)

where f : R → R is typically a polynomial and M is a Fourier multiplier
operator defined via its Fourier transform by the formula M̂v = mv̂ where
the circumflex connotes the Fourier transform in the spatial variable x and
m is the symbol of M . The existence of solitary-wave or periodic travelling-
wave solutions of (3.16) has been dealt with in a number of works, e.g. [2],
[3], [7], [9], [17] and [49].

Fix a speed c and let φc be a solitary-wave solution of (3.16). There are
two principal hypotheses leading to inequalities like (3.13), and hence to the
conclusion of stability.

(I) For a suitably chosen value of s depending upon m, the self-adjoint,
unbounded linear operator L defined on the subspace Hs of L2 by
Lh = Mh + (c− f ′(φc))h has exactly one negative eigenvalue which
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is simple, the zero eigenvalue is simple with eigenfunction φ′
c, and

the rest of the spectrum is positive and bounded away from zero.
The Sobolev-space index s depends upon the large-ξ asymptotics of
the symbol m of M ; provided such a value exists, s is chosen so that
the norm

||f ||2m =
∫ ∞

−∞
[1 + m(ξ)] |f̂(ξ)|2dξ

is equivalent to the Hs-norm, where f̂ is the Fourier transform of f .
(II) The correspondence c ∈ (0,∞) �−→ φc ∈ Hs(R) is a C1-mapping

and, for c > 0, the function d : R
+ → R defined by

d(c) = E(φc) + cF(φc)

is convex, which is to say d′′(c) > 0.

The conclusion to be drawn from these hypotheses is that φc is orbitally
stable in the sense mentioned in (3.15), except relative to ds. It deserves
remark that theory exists giving checkable conditions under which (I) holds
(see e.g. [1]).

The approach taken here to the question of stability of cnoidal waves fol-
lows the same general lines as those that were successful in the just described
theory for solitary waves. Benjamin [6] in his wide ranging lectures on non-
linear waves also put forward an approach to the stability of cnoidal waves.
He claimed that the cnoidal wave, “with appropriate choices of β2, β3 and
c, to make L the fundamental period”, realized the absolute minimum of
E(u) subject to F(u) = λ where λ was restricted by λ > 32π4/L3 so as to
make c > 4π2/L2. Benjamin went on to assert that, for such values of λ,
the quantity E(u) − E(ϕc) is bounded below in terms of d1(u, ϕc) and the
invariance of E then implies stability as previously indicated.

Benjamin did not provide a detailed justification of his assertions, and
several aspects seem problematic. The most important gap is the identifica-
tion of the minimizer of the constrained variational problem with the cnoidal
wave ϕc one starts with. Certainly the variational problem has a minimum ψ
as we show in Appendix B. However, the identification of ψ with ϕc requires
a uniqueness theorem for the variational problem that seems troublesome.
Thus, the conclusion available by this analysis is just that the set of abso-
lute minimizers is stable. The fact that the cnoidal wave is in the set is
not certain without further argument. A related point concerns the spectral
analysis of the operator L in the periodic case. This type of analysis was
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the core of Benjamin’s original proof of stability of the solitary wave, but he
makes no attempt to provide it in the periodic case.

Here, a complete theory is provided of the stability of cnoidal waves. While
inspired by Benjamin’s commentary, our analysis takes a different path than
he envisioned.

3.3. Stability of the constant solutions. Unlike the situation that arises
for solitary waves where the natural physically relevant assumption is that
φc(z) → 0 as z → ±∞ (or what is the same, H(φc) = 0), for which the only
trivial solution is φ(z) ≡ 0, the cnoidal-wave problem throws up two trivial
solutions. This is easily appreciated from (3.4), for example. If a constant
solution taking the value λ is sought, then one sees that λ must satisfy a
quadratic equation. If we let ψ = ϕc + r where r + c =

√
c2 + 2Aϕc , then

ψ satisfies (3.4) with Aϕc = 0. Note that according to the formulas below
(3.9) for c and Aϕc in terms of β1, β2, β3,

c2 + 2Aϕc =
1
18

[
(β2 − β1)2 + (β3 − β1)2 + (β3 − β2)2

]
> 0,

so this is a real-valued transformation. Thus, for ψ, the two constant solu-
tions are ψ = ϕ0 ≡ 0 and ψ = ψ0 ≡ 2(c + r).

The state ϕ0 is clearly stable in H1
per. This follows immediately from the

time independence of E and F . For if ‖ϕ0 − u0‖H1
per

= ‖u0‖H1
per

≤ δ, then∫ L

0
(u − ϕ0)2dx =

∫ L

0
u2dx =

∫ L

0
u2

0 dx ≤ δ2

and∫ L

0
(ux − ϕ0x)2 dx =

∫ L

0
u2

x dx =
1
3

∫ L

0
u3 dx +

∫ L

0

(
u2

0x
− 1

3
u3

0

)
dx

≤ 1
3
‖u‖L∞

per
δ2 + δ2 + Cδ3 ≤ 1

3
δ2

[ 1
L
‖u‖2

L2
per

+ ‖u‖L2
per

‖ux‖L2
per

] 1
2 + δ2 + Cδ3

≤ 1
3
δ2

[ 1
L

δ2 + δ‖ux‖L2
per

] 1
2 + δ2 + Cδ3.

These two inequalities imply the advertised stability result. Note that in the
second inequality, use has been made of the elementary result

sup
0≤x≤L

|h(x)|2 ≤ 1
L

∫ L

0
h2 dx +

( ∫ L

0
h2 dx

∫ L

0
h2

x dx
) 1

2
, (3.17)

which will be needed again later.
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To study stability of the constant state ψ0, we rephrase Benjamin’s argu-
ment as follows. Let u = ψ0 +h where h ∈ H1

per and suppose F(ψ0) = F(u0)
for the moment. Then, by invariance of F ,

0 = F(u) −F(ψ0) =
1
2

∫ L

0
(2ψ0h + h2) dx. (3.18)

In consequence, it transpires that

ΔE = E(u) − E(ψ0) = E(ψ0 + h) − E(ψ0)

=
1
2

∫ L

0
[(hx)2 + (c − ψ0)h2] dx − 1

6

∫ L

0
h3 dx (3.19)

=
1
2

∫ L

0
[(hx)2 − ch2] dx − 1

6

∫ L

0
h3 dx.

A lower bound for the conditional second variation δ2E of E , the quadratic
portion of the right-hand side of (3.19), is obtained as follows. Define

h⊥ = h − 1
L

∫ L

0
h dx = h −H(h). (3.20)

Clearly,
∫ L
0 h⊥dx = 0, so it follows from Poincaré’s inequality that∫ L

0
(h⊥

x )2 dx ≥
(2π

L

)2
∫ L

0
(h⊥)2 dx. (3.21)

Formula (3.18) implies that

H(h) = − 1
4cL

∫ L

0
h2dx = − 1

4cL
‖h‖2

L2
per

. (3.22)

It thus transpires that∫ L

0
h2dx =

∫ L

0
(h⊥)2dx + LH(h)2 =

∫ L

0
(h⊥)2dx +

1
16c2L

‖h‖4
L2

per
. (3.23)

As a consequence of (3.17) and Young’s inequality, for any λ < 1, we have
that∣∣∣ ∫ L

0
h3dx

∣∣∣ ≤ sup
0≤x≤L

|h(x)|
∫ L

0
h2dx

≤ 1
L1/2

( ∫ L

0
h2dx

)3/2
+

( ∫ L

0
h2dx

)5/4( ∫ L

0
h2

x dx
)1/4

(3.24)

≤ 1
L1/2

( ∫ L

0
h2dx

)3/2
+

1 − λ

4

∫ L

0
h2

x dx +
1

(1 − λ)1/3

( ∫ L

0
h2 dx

)5/3
.
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We are now in a position to obtain the aforementioned lower bound. Fix
c < (2π/L)2 and choose λ ∈ (0, 1) such that

λ
(2π

L

)2
− c ≥ 1 − λ. (3.25)

Starting with (3.19), argue as follows using (3.21), (3.22), (3.24) and the
choice of λ in (3.25):

ΔE =
1
2

∫ L

0
(h2

x − ch2) dx − 1
6

∫ L

0
h3 dx

≥ 1
2
(1 − λ)

∫ L

0
h2

x dx +
1
2

∫ L

0
[λ(h⊥)2x − c(h⊥)2] dx − 1

32cL
‖h‖4

L2
per

− 1
24

(1 − λ)
∫ L

0
h2

x dx − 1

6L
1
2

‖h‖3
L2

per
− 1

6(1 − λ)
1
3

‖h‖
10
3

L2
per

≥ 1
4
(1 − λ)

∫ L

0
h2

x dx +
1
2

[
λ
(2π

L

)
− c

] ∫ L

0
(h⊥)2 dx

− 1

6L
1
2

‖h‖3
L2

per
− 1

6(1 − λ)
1
3

‖h‖
10
3

L2
per

− 1
32cL

‖h‖4
L2

per

≥ 1
4
(1 − λ)

∫ L

0
(h2

x + h2) dx − 1

6L
1
2

‖h‖3
L2

per

− 1

6(1 − λ)
1
3

‖h‖
10
3

L2
per

− 1
32cL

‖h‖4
L2

per
.

Proceeding just as in the argument following (3.13) allows the conclusion
of stability in H1

per([0, L]). The side condition F (u) = F (ψ0) is then easily
removed by a simple use of the triangle inequality. Reverting to the original
variables ϕc = ψ − r with r =

√
c2 + 2Aϕc − c yields the following formal

conclusion.

Proposition 3.1. Let L > 0 and c > 0 be given. Let ϕ0 and ψ0 be the two
constant solutions of the cnoidal-wave equation (3.4). Then ϕ0 is stable in
H1

per, and ψ0 is stable in H1
per provided c < (2π/L)2.

Remarks. Notice that the translation group acts trivially on ϕ0 and ψ0, so
stability up to translation is simply stability in this case.

If c > (2π/L)2, the second variation of E at ψ0 can be negative. Indeed,
in this case, if h0 = ε cos(2πx/L), then h0 has mean zero on [0, L] and a
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straightforward calculation reveals that

δ2E(h0) =
1
2
(L0h0, h0) =

1
2

[(2π

L

)2
− c

] ∫ L

0
h2

0 dx < 0,

where L0f = −fxx − cf is the operator appearing in the general stability
theory outlined previously. Thus the approach to stability just indicated
fails in this case. Even when c = (2π/L)2,

kerL0 = span
{

sin(2πx/L), cos(2πx/L)
}

is two dimensional. Thus, in this case, Condition I is not met. Of course,
neither of these implies instability, but the general theory of Grillakis, et al.
[25] does not apply because the spectrum of L0 has at least two negative
eigenvalues when c > (2π/L)2. We note also that the theory in [26] can not
be applied. Indeed, it seems likely that the constant solution ψ0 ≡ 2c loses
stability to a branch of cnoidal waves as c crosses (2π/L)2.

4. Existence of smooth curves of cnoidal waves

In Subsection 3.3 the issue of stability of cnoidal waves was connected
to checking hypotheses I and II in a periodic context. It will be shown in
Section 5 that if Condition II and something like Condition I hold in the
periodic situation, then stability obtains. Our purpose in this section is to
deal with smooth branches of cnoidal waves, passing through a given wave,
all having the same fundamental period.

Branches of cnoidal waves having mean zero are constructed here. The
condition of zero mean, namely that∫ L

0
ϕc(ξ) dξ = 0,

physically amounts to demanding that the wavetrain has the same mean
depth as does the undisturbed free surface (this is a very good presumption
for waves generated by an oscillating wavemaker in a channel, for example,
as no mass is added in such a configuration). Wavetrains with non-zero mean
are readily derived from this special case as will be remarked presently.

Let a phase speed c be given and consider three constants β1, β2, β3 and
k as in (3.7). The complete elliptic integral of the first kind (see Appendix
A) is the function K(k) defined by the formula

K ≡ K(k) ≡
∫ 1

0

dt√
(1 − t2)(1 − k2t2)

. (4.1)
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The fundamental period of the cnoidal wave ϕ in (3.7) is

Tϕ ≡ Tϕ(β1, β2, β3) =
4
√

3√
β3 − β1

K(k), (4.2)

with K as in (4.1). The period of cn is 4K(k) and cn is antisymmetric about
its half period, from which (4.2) follows.

The mean value of ϕ over a period [0, Tϕ] is easily determined to be

ϕ = β2 + (β3 − β2)
1

2K

∫ 2K

0
cn2(ξ; k) dξ. (4.3)

Demanding that ϕ have mean zero asks exactly that the expression in (4.3)
vanishes. The integral in (4.3) may be evaluated because∫ 2K

0
cn2(ξ; k) dξ = 2

∫ K

0
cn2(u; k) du =

2
k2

[E(k) − k′2K(k)]

where k′ = (1−k2)1/2 and E(k) is the complete elliptic integral of the second
kind (see again Appendix A). This formula may be found in [16], page 193.
Thus the zero mean value condition is exactly

β2 + (β3 − β2)
E(k) − k′2K(k)

k2K(k)
= 0. (4.4)

Because (β3 − β2)k′2 = (β2 − β1)k2, the relation (4.4) has the equivalent
form

β1K(k) + (β3 − β1)E(k) = 0. (4.5)
And since

dK(k)
dk

=
E(k) − k′2K(k)

kk′2

(see Appendix A), having mean zero also implies that

dK

dk
= − β2

β3 − β2

k

k′2 K, (4.6)

another formula that will find use presently.
From (4.5), the following result may be deduced.

Lemma 4.1. (Cnoidal Waves with Mean Zero) For every β3 > 3, there
are unique constants β1, β2 satisfying β1 < β2 < 0 < β3 and β1+β2+β3 = 3,
such that the cnoidal wave ϕ1 = ϕ1(· ;βi) in (3.7) has mean zero, speed c = 1
and spatial period Tϕ1. Moreover, the map β3 ∈ (3,∞) → β2 ≡ β2(β3) is
continuous.
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Proof. Let β3 > 3, α = β3−3
2 , β = 1

α and I = (−α, 0). For x ∈ I, define the
continuous function J on the interval I by

J(x) =
K(k(x))
E(k(x))

+
β3

3 − β3 − x
− 1,

where k(x) =
√

β3−x
2β3+x−3 . It will be proved that for every β3 > 3, there is a

unique β2 = β2(β3) ∈ I such that J(β2) = 0. Let A be the function defined
for x ∈ I by the integral

A(x) =
∫ 1

0

1√
1 − t2

−β3 + (β3 − x)t2√
2β3 − 3 + x − (β3 − x)t2

dt. (4.7)

A calculation shows that J(x) = 0 if and only if A(x) = 0. If it is demon-
strated that A has at least one zero on I and is strictly monotone there, it
will follow that J has a unique zero, say x0, in I. The choices k = k(x0), β3

as given, β2 as determined and then β1 = 3− β3 − β2 will then satisfy (4.5).
Toward establishing this fact, note that there is at least one point x0 ∈ I

such that J(x0) = 0. In fact, using (4.1) and referring to the integral defining
E in Appendix A, the existence of such a point is a consequence of the
relations

lim
x→−α

A(x) = lim
x→−α

[ β3 − 3 + x√
2β3 − 3 + x

K(k(x))−
√

2β3 − 3 + x E(k(x))
]

= +∞,

A(0) =
∫ 1

0

1√
1 − t2

β3(t2 − 1)√
2β3 − 3 − β3t2

dt < 0.

To prove uniqueness, make the change of variables s = (
√

β3 − x) t in (4.7)
to obtain

A(x) =
∫ √

β3

0

−β3 + s2√
β3 − x − s2

√
2β3 − 3 + x − s2

ds

+
∫ √

β3−x

√
β3

−β3 + s2√
β3 − x − s2

√
2β3 − 3 + x − s2

ds.

(4.8)

Denote by N(x) and P (x) the first and second integrals, respectively, on
the right-hand side of (4.8). It will be ascertained that both are decreasing
functions of x on I.

(i) Let f be the parabola

f(x; s) = (β3 − x − s2)(2β3 − 3 + x − s2).
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For x ∈ (−α, 0),

N ′(x) = −1
2

∫ √
β3

0

(−β3 + s2)∂xf(x; s)
[f(x; s)]3/2

ds.

It is easily seen that for x ∈ [−α, 0] and s ∈ [0,
√

β3], f(x; s) > 0, ∂xf(x; s) �
0 and −β3 + s2 � 0. In consequence, N ′(x) < 0 in (−α, 0) and thus N is
decreasing.

(ii) Letting t2 = −β3 + s2 in P (x), it follows that

P (x) =
∫ √−x

0

t3√
−x − t2

√
β3 − 3 + x − t2

√
β3 + t2

dt.

If we make the change of variables s =
√

α
−x t, the integral defining P is

changed into an integral over the fixed domain [0,
√

α]. The integrand, h(x, s)
that appears in this representation of P can be differentiated with respect to
x and the result shown to be negative for x in (−α, 0), thereby demonstrating
that P is also decreasing there.

Thus, A is a strictly decreasing function on I, and it is concluded that A
and, therefore, J , has a unique zero on I. Hence, if β2 ∈ (3−β3

2 , 0) is such
that J(β2) = 0 then by defining β1 ≡ 3 − β2 − β3, we obtain (4.5) and so
establish the existence of a cnoidal wave ϕ1 of mean zero on [0, Tϕ1 ].

The continuity of the map β3 ∈ (3,∞) �→ β2 = β2(β3) is a consequence
of noticing that ∂xA(β2(β3), β3) < 0, where A(x, β3) is as in (4.7), and the
implicit function theorem. �
Remark. It follows from Lemma 4.1 that if the fundamental period Tϕ1 of
ϕ1 = ϕ1(·;βi) is regarded as a function of the parameter β3, namely,

Tϕ1(β3) =
4
√

3√
2β3 + β2(β3) − 3

K
(√

β3 − β2(β3)
2β3 + β2(β3) − 3

)
,

then Tϕ1(β3) → +∞ as β3 → 3, since K(k) → +∞ as k → 1. On the other
hand, since J(β2) = 0 and 3−β3

2 < β2 < 0, it also follows that

0 ≤ Tϕ1(β3) = 4
√

3
√

2β3 + β2 − 3
β3 + β2 − 3

E(k(β2)) ≤ 2π
√

3
√

2β3 + β2 − 3
β3 + β2 − 3

≤ 4π
√

3
√

2β3 + β2 − 3
β3 − 3

< 4π
√

3
√

2β3 − 3
β3 − 3

,

(4.9)
and so Tϕ1(β3) → 0 as β3 → +∞.
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It is now demonstrated that for an arbitrary positive number L, there is
a smooth branch of cnoidal waves, c ∈ I �→ ϕ1(·;βi(c)), dependent on the
wave speed c in an appropriate interval, to mean zero cnoidal waves with
spatial period [0, L

√
c].

Lemma 4.2. Let L > 0 be fixed and consider βi, i = 1, 2, 3, an arbitrary
but fixed trio as adduced in Lemma 4.1. Define c0 = (Tϕ1/L)2, where Tϕ1 =
Tϕ1(β3) as in Lemma 4.1. Then the following conclusions hold.

(1) There exists an open interval I(c0) about c0, an open neighborhood
B(

−→
β ) in R

3 of
−→
β = (β1, β2, β3) and a unique smooth function

Π : I(c0) → B(
−→
β ), d �→

(
α1(d), α2(d), α3(d)

)
such that Π(c0) = (β1, β2, β3) and αi ≡ αi(d) satisfy the relations⎧⎪⎪⎨⎪⎪⎩

4
√

3√
α3 − α1

K(k) = L
√

d

α1 + α2 + α3 = 3, α2 + (α3 − α2)
E(k) − k′2K(k)

k2K(k)
= 0,

(4.10)

where k2 = (α3 − α2)/(α3 − α1).
(2) The cnoidal wave ϕ1 = ϕ1(·;αi) given by (3.7), with αi instead of

βi, has fundamental period L
√

d, mean zero over [0, L
√

d] and satisfies (3.4)
with c = 1. Moreover, for all d ∈ I(c0)

Aϕ1(d) =
1

2L
√

d

∫ L
√

d

0
ϕ2

1(x)dx = −1
6

∑
i<j

αi(d)αj(d).

(3) The interval I(c0) can be chosen to be (0,+∞), independently of c0.

Proof. The proof begins with an application of the implicit function theo-
rem. Define

Ω = {(α1, α2, α3, d) : α1 < α2 < 0 < α3, α3 > 3 and d > 0 } ⊂ R
4

and Φ : Ω → R
3 by

Φ(α1, α2, α3, c)

=
(4

√
3 K(k)√

α3 − α1
− L

√
c , α1 + α2 + α3 − 3 , α2 + (α3 − α2)

E(k) − k′2K(k)
k2K(k)

)
≡ (Φ1,Φ2,Φ3), (4.11)

with k2 ≡ (α3 − α2)/(α3 − α1). Then, from Lemma 4.1, we see that

Φ(β1, β2, β3, c0) = (0, 0, 0).
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To compute ∂
∂αj

Φi(β1, β2, β3, c0), use (4.6)

dK

dk
=

E(k) − k′2K(k)
kk′2

∣∣∣
(α1,α2,α3)=(β1,β2,β3)

= − β2

β3 − β2

k1

k′
1
2 K(k1)

and the relation

4
√

3√
β3 − β1

K(k1) = L
√

c0

with k2
1 = (β3 − β2)/(β3 − β1) to obtain

∂

∂α1
Φ1(β1, β2, β3, c0) = − 4

√
3 β1

2(β3 − β1)3/2(β2 − β1)
K(k1)

=
−β1L

√
c0

2(β3 − β1)(β2 − β1)
,

∂

∂α2
Φ1(β1, β2, β3, c0) =

4
√

3 β2

2
√

β3 − β1 (β2 − β1)(β3 − β2)
K(k1)

=
β2L

√
c0

2(β2 − β1)(β3 − β2)
, (4.12)

∂

∂α3
Φ1(β1, β2, β3, c0) =

−4
√

3 β3

2(β3 − β1)3/2(β3 − β2)
K(k1)

=
−β3L

√
c0

2(β3 − β1)(β3 − β2)
.

From the definition of Φ2, it follows immediately that

∇(α1,α2,α3)Φ2(β1, β2, β3, c0) = (1, 1, 1). (4.13)

Regarding Φ3, the formula

Φ3(α1, α2, α3, c0) = α2 + (α3 − α2)
k′2

kK(k)
dK

dk

obtains from the fact that

E(k) − k′2K(k)
k2K(k)

=
k′2

kK(k)
dK

dk
,

for all k. Since K satisfies the hypergeometric differential equation (see Ap-
pendix A)

kk′2 d2K

dk2
+ (1 − 3k2)

dK

dk
− kK(k) = 0, (4.14)
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and
k′2

kK(k)
dK

dk

∣∣∣
(α1,α2,α3)=(β1,β2,β3)

= − β2

β3 − β2

(see again (4.6)), it is concluded that

∇(α1,α3,α3)Φ3(β1, β2, β3, c0) (4.15)

=
(

β2β3 − β1β2 − β1β3

2(β2 − β1)(β3 − β1)
,

β2β3 − β1β3 + β1β2

2(β3 − β2)(β2 − β1)
,

β1β2 − β1β3 − β2β3

2(β3 − β2)(β3 − β1)

)
.

The Jacobian determinant of Φ(·, ·, ·, d) at (β1, β2, β3, c0) is therefore

∂(Φ1,Φ2,Φ3)
∂(α1, α3, α3)

∣∣∣
(β1,β2,β3,c0)

= L
√

c0
β1β2 + β1β3 + β2β3

4(β2 − β1)(β3 − β2)(β3 − β1)
, (4.16)

as a consequence of (4.12), (4.13) and (4.15). The properties of the cnoidal
wave ϕ1 imply that

1
2

∫ Tϕ1

0
ϕ2

1(ξ) dξ = Aϕ1Tϕ1 = Aϕ1L
√

c0,

and so (4.16) yields

∂(Φ1,Φ2,Φ3)
∂(α1, α3, α3)

∣∣∣
(β1,β2,β3,c0)

=
−3

4(β2 − β1)(β3 − β2)(β3 − β1)

∫ Tϕ1

0
ϕ2

1(ξ) dξ �= 0.

(4.17)
Therefore, the implicit function theorem implies the existence of neighbor-
hoods I(c0) of c0 in R and B(β1, β2, β3) of (β1, β2, β3) in Ω, and a unique
smooth function Π : I(c0) → B(β1, β2, β3) such that

Φ(Π(d), d) = (0, 0, 0) for all d ∈ I(c0), (4.18)

and this in turn implies (4.10).
Finally, from the remark following Lemma 4.1, for each β3 > 3, Tϕ1(β3)

can take any value in (0,∞) as β3 ranges over (3,∞). So, we may choose
c0 = (Tϕ1/L)2 arbitrarily in (0,∞). By the local uniqueness guaranteed
by the implicit function theorem, the mapping Π can thus be defined on
(0,+∞). This proves the lemma. �

Our next goal is to obtain formulas for the derivatives d
dcαi, 1 ≤ i ≤ 3.

Lemma 4.3. Let Π : I(c0) → B(β1, β2, β3) be the smooth function defined
in Lemma 4.2. If we write Π(c) = (α1(c), α2(c), α3(c)), then

d

dc
α1(c) =

1
c(α1α2 + α1α3 + α2α3)

(
α2

3(α1 − α2) + α2
2(α1 − α3)

)
,
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d

dc
α2(c) =

1
c(α1α2 + α1α3 + α2α3)

(
α2

1(α2 − α3) + α2
3(α2 − α1)

)
,

d

dc
α3(c) =

1
c(α1α2 + α1α3 + α2α3)

(
α2

1(α3 − α2) + α2
2(α3 − α1)

)
. (4.19)

Proof. The formulas in (4.19) are obtained by differentiating (4.18) with
respect to c and using (4.16), (4.17) ( changing βi to αi, i = 1, 2, 3, and d to
c ), viz.

d

dc
Π(c) =

⎛⎝∇αΦ1

∇αΦ2

∇αΦ3

⎞⎠−1 ⎛⎝ L
2
√

c

0
0

⎞⎠ ,

with α = (α1, α2, α3). �
The main theorem of this section is established next. In what follows, the

notation used will be that appearing in Lemma 4.2 except that we use c to
connote the wave speed.

Theorem 4.4. Let L > 0 be a fixed number and n any positive integer.
Then there exists a smooth branch c ∈ (0,+∞) �→ φc ∈ Hn

per([0, L]) of
cnoidal waves such that

∫ L
0 φc(ξ) dξ = 0 for every c, and

φ′′
c (ξ) +

1
2
φ2

c(ξ) − c φc(ξ) = Aφc , for all ξ ∈ R, (4.20)

where

Aφc =
1

2L

∫ L

0
φ2

c(ξ) dξ = −c2

6

∑
i<j

αi(c)αj(c). (4.21)

Proof. Let ϕ1 ≡ ϕ1(·;αi) be the cnoidal wave determined in Lemma 4.2.
Define

φc(ξ) = c ϕ1(
√

c ξ), for all ξ ∈ R. (4.22)
Then, φc has the form (3.7) with βi = cαi and

∑
βi = 3c. Moreover, φc has

period L, mean value zero on [0, L] and satisfies the equation

φ′′
c (ξ) +

1
2
φ2

c(ξ) − cφc(ξ) = c2Aϕ1(c).

Lemma 4.2 implies the relation

Aϕ1(c) =
1

2L
√

c

∫ L
√

c

0
ϕ2

1(ξ)dξ =
1

2Lc2

∫ L

0
φ2

c(ξ)dξ ≡ 1
c2

Aφc(c), (4.23)
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and therefore φc satisfies (4.20).
Finally, since the functions α1, α2 and α3 are smooth, the same property

is deduced for the curve c �→ φc. This proves the theorem. �

Corollary 4.5. Let L > 0 and μ ∈ R be fixed and n a positive integer.
Then there is a smooth branch e ∈ (μ,∞) �→ ψe ∈ Hn

per([0, L]) such that
1
L

∫ L
0 ψe(ξ)dξ = μ for all e and

ψ
′′
e (ξ) +

1
2
ψ2

e(ξ) − eψe(ξ) = Aψe (4.24)

where
Aψe = Aϕc − cμ − 1

2
μ2, (4.25)

c = e − μ, and Aϕc is as in Theorem 4.4.

Proof. This follows directly from the Galilean transformation (3.2)-(3.3).
More precisely, define

ψe(z) = ϕc(z) + μ,

where c = e−μ > 0 and ϕc(z) is as in Theorem 4.4. Obviously, ψe has mean
value μ for all values of e. Then, a calculation reveals that ψe satisfies (4.24)
where Aψe is exactly as in (4.25). �

We close this section with a result about the monotonicity of the modulus
k as a function of the speed c.

Proposition 4.6. Consider c ∈ (0,∞) and define the modulus-function

k(c) =

√
α3(c) − α2(c)√
α3(c) − α1(c)

.

Then d
dck(c) > 0.

Proof. Denoting A(c) = c(α1α2 + α1α3 + α2α3) and B(c) = 2(α3 −
α1)3/2√α3 − α2, it is seen that

d

dc
k(c) =

1
B(c)

[
(α3 − α2)

dα1(c)
dc

− (α3 − α1)
dα2(c)

dc
+ (α2 − α1)

dα3(c)
dc

]
= − 2

A(c)B(c)
(α3 − α2)(α2 − α1)(α3 − α1)(α1 + α2 + α3)

= − 3(α2 − α1)
c(α1α2 + α1α3 + α2α3)

k(c) > 0.

The above computation makes use of the results of Lemmas 4.2 and 4.3. �
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5. Stability of cnoidal waves

In this section, attention is turned to stability results for the cnoidal-wave
solutions ϕc determined by Theorem 4.4 or Corollary 4.5. The first objec-
tive is to obtain the basic inequality (3.13), predicated upon the constraints
F(u) = F(ϕc) and H(u) = 0. For this aspect, a modification of the general
theory is used. Stability of the orbit {ϕc(· + y)}y∈R in the closed subspace
{f ∈ H1

per([0, L]) :
∫

fdx = 0} is thereby obtained. Stability in H1
per([0, L])

without this restriction will then follow readily by making a change of vari-
ables in equation (1.1) and using Poincaré’s inequality∫ L

0
|h(x)|2 dx � 1

L

∣∣∣ ∫ L

0
h(x) dx

∣∣∣2 + C(L)
∫ L

0
|h′(x)|2 dx. (5.1)

From Section 3, we know that the two basic hypotheses I and II are sufficient
conditions to apply the theory in [25] or [4] to solitary waves. The next two
subsections deal with these conditions in the periodic context.

5.1. Spectral Analysis of the Operator Lcn = − d2

dx2 +c−ϕc. As already
mentioned, the study of the periodic eigenvalue problem considered on [0, L]
will allow us to mount a stability theory much as that outlined earlier for
solitary waves. The spectral problem in question is

Lcnχ ≡ (− d2

dx2
+ c − ϕc)χ = λχ, χ(0) = χ(L), χ′(0) = χ′(L), (5.2)

where c > 0 is fixed and ϕc is the cnoidal wave solution given in Theorem
4.4. The following result obtains in this context.

Theorem 5.1. For c ∈ (0,∞), let ϕc be the cnoidal wave given in Theorem
4.4 for some c ∈ (0,∞). Let

λ0 � λ1 � λ2 � λ3 � λ4 � · · ·,
connote the eigenvalues of the problem (5.2). Then λ0 < λ1 = 0 < λ2 are all
simple whilst, for j ≥ 3, the λj are double eigenvalues. The λj accumulate
only at +∞.

Theorem 5.1 is a consequence of Floquet theory (Magnus and Winkler
[41]) together with some particular facts about the Lamé equation. For the
reader’s convenience, we quickly outline the basic results that are needed in
the proof of Theorem 5.1.

Introduce the so called semi-periodic eigenvalue problem

Lcnξ = μξ, ξ(0) = −ξ(L), ξ′(0) = −ξ′(L). (5.3)
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It follows directly from the spectral theory of compact symmetric operators
that both (5.2) and (5.3) have a countable infinity of real eigenvalues,

λ0 � λ1 � λ2 � λ3 � · · ·, (5.4)

and
μ0 � μ1 � μ2 � μ3 � · · ·,

that accumulate only at +∞. As the operators are of second order, the
eigenvalues are either simple or double, and double eigenvalues are displayed
twice in the listings in (5.4). The eigenfunctions associated with λn and μn

are denoted χn and ξn, respectively, n = 0, 1, 2, ···. The boundary conditions
in (5.2) on χn imply that χn can be extended to all of R as a continuously
differentiable function which is periodic of period L. Similarly, the boundary
conditions on ξn allow it to be extended as a periodic solution of period 2L
of

Lcnf = γf (5.5)
with γ = μn (define ξn(L + x) = ξn(L − x) for 0 ≤ x ≤ L). Indeed, the
theory goes on to assert that the only periodic solutions of (5.5) of period
L correspond to γ = λj for some j whilst the only periodic solutions of
period 2L are either those associated with γ = λj , but viewed on [0, 2L],
or those corresponding to γ = μj , but extended as just indicated, for some
j = 0, 1, · · ·. We remind the reader that

(i) χ0 has no zeros in [0, L],
(ii) χ2n+1 and χ2n+2 have exactly 2n + 2 zeros in [0, L),
(iii) ξ2n and ξ2n+1 have exactly 2n + 1 zeros in [0, L).

(5.6)

Sturm’s oscillation theory then implies that the sequences in (5.4) are inter-
twined, viz.

λ0 < μ0 � μ1 < λ1 � λ2 < μ2 � μ3 < λ3 � · · ·.
For a given value γ, if all solutions of (5.5) are bounded, then γ is called a

stable value, whereas if there is an unbounded solution, γ is called unstable.
The open intervals (λ0, μ0), (μ1, λ1), (λ2, μ2), (μ3, λ3), · · ·, are called intervals
of stability. The endpoints of these intervals are generally unstable. This is
always so for γ = λ0 as λ0 is always simple. The intervals (−∞, λ0), (μ0, μ1),
(λ1, λ2), (μ2, μ3), ···, and so on are called intervals of instability. Of course, at
a double eigenvalue, the interval is empty and omitted from the discussion.
Absence of an instability interval means there is a value of γ for which all
solution of (5.5) are either periodic of basic period L or periodic with basic
period 2L.



Stability of cnoidal waves 1347

Proof. (Theorem 5.1) We certainly know that λ0 < λ1 � λ2. Since
Lcnϕ′

c = 0 and ϕ′
c has 2 zeros in [0, L), it follows that 0 is either λ1 or λ2.

We will show that 0 = λ1 < λ2. First, define the transformation

Tηχ(x) ≡ χ(ηx), for η2 =
12

β3 − β1
,

where the βi are as in (3.6) in the initial discussion of ϕc and they also
reappear in Theorem 4.4 (N.B. βi = cαi where the αi are as in Lemma 4.2).
Then, using the explicit form (3.4) for ϕc, the problem (5.2) is equivalent to
the eigenvalue problem

d2

dx2
Λ +

[
ρ − 12k2sn2(x)

]
Λ = 0, Λ(0) = Λ(2K), Λ′(0) = Λ′(2K), (5.7)

for Λ ≡ Tηχ, where

ρ = −12(c − β3 − λ)
β3 − β1

. (5.8)

The second-order differential equation (5.7) is the Jacobian form of Lamé’s
equation. Floquet theory ([41], Theorem 7.8) informs us that this equation
has exactly 4 intervals of instability, namely

(−∞, ρ0), (μ′
0, μ

′
1), (ρ1, ρ2), (μ′

2, μ
′
3),

where the μ′
i, are the eigenvalues associated to the semi-periodic problem

determined by (5.7), (5.8) (see (5.3)). Therefore, the first three eigenvalues
ρ0, ρ1, ρ2 are simple and the remainder of the eigenvalues for (5.7) are double,
so, ρ3 = ρ4, ρ5 = ρ6, · · · , etc.

The first three eigenvalues ρ0, ρ1, ρ2 and their corresponding eigenfunc-
tions Λ0,Λ1,Λ2 are known explicitly. Since ρ1 = 4 + 4k2 is a simple eigen-
value of (5.7) with eigenfunction

Λ1(x) ≡ cn(x)sn(x)dn(x) = CTηϕ
′
c(x),

it follows from (5.8) that λ = 0 is a simple eigenvalue of problem (5.2) with
eigenfunction ϕ′

c. The functions Λ0,Λ2 (sometimes called Lamé polynomials)
defined by

Λ0(x) = dn(x)
[
1 − (1 + 2k2 −

√
1 − k2 + 4k4 )sn2(x)

]
,

Λ2(x) = dn(x)
[
1 − (1 + 2k2 +

√
1 − k2 + 4k4 )sn2(x)

]
,

are the eigenfunctions associated to the other two eigenvalues, ρ0, ρ2. These
eigenvalues must satisfy the equation

ρ = k2 +
5k2

1 + 9
4k2 − 1

4ρ



1348 Jaime Angulo Pava, Jerry L. Bona, and Marcia Scialom

(see Ince [I]). This latter equation is quadratic in the variable ρ and so has the
two roots, ρ0 = 2+5k2−2

√
1 − k2 + 4k4 and ρ2 = 2+5k2 +2

√
1 − k2 + 4k4.

Since Λ0 has no zeros in [0, 2K] and Λ2 has exactly 2 zeros in [0, 2K), it must
be the case that Λ0 is the eigenfunction associated to ρ0, the first eigenvalue
of (5.7). On the other hand, since ρ0 < ρ1 for every k ∈ (0, 1), there obtains
from (5.8) and the relation −β1(1 + k2) = (2 − k2)α3 − 3c, the inequality

12λ0 = 3
β3 − c

k2 + 1
ρ0 + 12(c − β3) < 0.

As a consequence, the first eigenvalue λ0 of Lcn is negative and has the
eigenfunction χ0(x) = Λ0( 1

ηx). It is also true that ρ1 < ρ2 for every k ∈
(0, 1), so it follows from (5.8) that

12λ2 = 3
β3 − c

k2 + 1
ρ2 + 12(c − β3) > 0,

and so λ2 is the third eigenvalue to Lcn with eigenfunction χ2(x) = Λ2( 1
ηx).

It is straightforward to ascertain that the first two eigenvalues of Lamé’s
equation in the semi-periodic case are

μ′
0 = 5 + 2k2 − 2

√
4 − k2 + k4 and μ′

1 = 5 + 5k2 − 2
√

4 − 7k2 + 4k4.

The associated eigenfunctions are

ξ0(x) = cn(x)
[
1 − (2 + k2 −

√
4 − k2 + k4 )sn2(x)

]
,

ξ1(x) = 3sn(x) −
(
2 + 2k2 −

√
4 − 7k2 + 4k4

)
sn3(x),

respectively, both of which have exactly one zero in [0, 2K). Since μ′
0 < μ′

1 <
4k2 + 4, it is concluded from the relation

μ′
i = −12(c − β3 − μi)

β3 − β1
, for i � 0, (5.9)

that the first three instability intervals associated to Lcn are

(−∞, λ0), (μ0, μ1), (λ1, λ2).

The third and fourth eigenvalues are

μ′
2 = 5 + 2k2 + 2

√
4 − k2 + k4 and μ′

3 = 5 + 5k2 + 2
√

4 − 7k2 + 4k4
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with associated eigenfunctions

ξ2(x) = cn(x)
[
1 − (2 + k2 +

√
4 − k2 + k4 )sn2(x)

]
,

ξ3(x) = 3sn(x) −
(
2 + 2k2 +

√
4 − 7k2 + 4k4

)
sn3(x),

respectively, both of which have exactly three zeros in [0, 2K). Finally, it
follows from (5.9) that the last instability interval of Lcn is (μ2, μ3). This
concludes the proof. �

5.2. Convexity of the Function d(c). Attention is turned to the convex-
ity property of the map d(c) = E(ϕc) + cF(ϕc), where the smooth branch
of cnoidal waves c ∈ (0,∞) �→ ϕc ∈ Hn

per([0, L]) is that adduced in Theorem
4.4. Since ϕc satisfies (E ′ + cF ′)ϕc = −Aϕc , there obtains immediately that

d′(c) = (−Aϕc ,
d

dc
ϕc) + F(ϕc) =

1
2

∫ L

0
ϕ2

c(x) dx = −c2L

6

∑
i<j

αi(c)αj(c),

(5.10)
where, in the last equality, use has been made of (4.21).

Theorem 5.2. For every c ∈ (0,∞) the function c �→ d(c) is strictly convex.
More precisely,

d′′(c) =
2304
L3

(
K(k) − E(k)

)
E(k)K(k)

dK

dk

dk

dc
> 0. (5.11)

The equality in (5.11) is obtained via the explicit formulas for the functions
αi = αi(c) in (5.10). With the notation set out in Lemma 4.2, for every
c ∈ (0,+∞),

4
√

3√
α3 − α1

K(k) = L
√

c

where k ≡ k(c) =
√

α3−α2√
α3−α1

. An immediate consequence is that α3 − α2 =
48k2K(k)2/cL2 and, because of (4.10), there is derived the relation

α2 = −(α3 − α2)
E(k) − k′2K(k)

k2K(k)
= −48K(k)

cL2

[
E(k) − k′2K(k)

]
. (5.12)

Using k2 + k′2 = 1 and solving for α3 in (5.12) gives

α3 =
48k2K(k)2

cL2
+ α2 =

48K(k)
cL2

[
K(k) − E(k)

]
. (5.13)
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The third equality in (4.10) implies α2(E(k) − K(k)) = α3(E(k) − (1 −
k2)K(k)) and so (α2 − α3)(E(k) − K(k)) = α3k

2K(k). Using the definition
of k2 yields

K(k)−E(k) =
α3

α3 − α1
K(k), which implies − α1

α3 − α1
=

E(k)
K(k)

. (5.14)

The values obtained in (5.12) and (5.13) imply the further relation

α1 =
E(k)

E(k) − K(k)
α3 =

48K(k)
cL2

E(k)
E(k) − K(k)

[
K(k) − E(k)

]
= −48K(k)

cL2
E(k). (5.15)

Note that formulas (5.12), (5.13) and (5.15) together with the condition
α1 + α2 + α3 = 3 imply that the speed c associated to the cnoidal wave ϕc

satisfies

c = − 16
L2

K(k)
[
3E(k) + K(k)(k2 − 2)

]
. (5.16)

A calculation using the MAPLE software shows that the unique root of 3E(k)+
K(k)(k2 − 2) is approximately k = k0 ∼ 0.9804. Since c �→ k(c) is a strictly
increasing mapping, the cnoidal wave solutions found in Theorem 4.4 are
determined by a modulus k > k0.

We are in position to give a proof of Theorem 5.2.

Proof. (Theorem 5.2) The relations

dK

dk
=

E(k) − k′2K(k)
kk′2 ,

dE

dk
=

E(k) − K(k)
k

, (5.17)

and (5.10), (5.12), (5.13), lead to the formula

−6L3

482
d′(c)= K(k)2

[
kk′2E(k)

dK

dk
+k2k′2 dK

dk

dE

dk
+kE(k)

dE

dk

]
≡ K(k)2D(k).

(5.18)
It remains to determine the quantity

d

dc
D(k) =

d

dk
D(k)

dk

dc
.

We will show that

d

dk
D(k) =

dK

dk

[
2k′2(E(k) − K(k)) − 2k2E(k)

]
. (5.19)
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Indeed, as K(k) satisfies (4.14) and E(k) satisfies the hypergeometric differ-
ential equation (see again Appendix A)

kk′2 d2E

dk2
+ k′2 dE

dk
+ kE(k) = 0, (5.20)

one comes to the formulas⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
(1 − 3k2)

dK

dk
+ kk′2 d2K

dk2

]
E(k) = kK(k)E(k),

[
2k(1 − 2k2)

dK

dk
+ k2k′2 d2K

dk2

]dE

dk
=

[
kk′2 dK

dk
+ k2K(k)

]dE

dk
,

k2k′2 dK

dk

d2E

dk2
= −k2E(k)

dK

dk
− kk′2 dK

dk

dE

dk
,

kE(k)
d2E

dk2
= −E(k)

dK

dk
,

(5.21)

where, in the last equation in (5.21), we used d2E
dk2 = − 1

k
dK
dk (see again Ap-

pendix A). As a consequence of (5.21), it follows that
d

dk
D(k) = kK(k)E(k) + kk′2 dK

dk

dE

dk
+ k2K(k)

dE

dk

−k2E(k)
dK

dk
+ E(k)

dE

dk
+ k

(dE

dk

)2
− E(k)

dK

dk
.

(5.22)

Another collection of relations are obtained from (5.17), viz.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

kk′2 dK

dk

dE

dk
= (1 − k2)

dK

dk
E(k) + (k2 − 1)K(k)

dK

dk
,

(k2 − 1)K(k)
dK

dk
=

(1 − k2)K(k)2 − K(k)E(k)
k

,

k2K(k)
dE

dk
= kK(k)E(k) − kK(k)2,

E(k)
dE

dk
+ k

(dE

dk

)2
=

2E(k)2 − 3E(k)K(k) + K(k)2

k
.

(5.23)

Collecting the results from (5.23), (5.17) and (5.22), it is deduced that
d

dk
D(k) = 2kE(k)K(k) − kK(k)2 − 2k2E(k)

dK

dk
+ (k2 − 1)K(k)

dK

dk
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+
2E(k)2 − 3E(k)K(k) + K(k)2

k

= 2kK(k)E(k) − 2kK(k)2 − 2k2E(k)
dK

dk
+

K(k)2 − E(k)K(k)
k

+
2E(k)2 − 3E(k)K(k) + K(k)2

k

= 2[E(k) − K(k)]
[E(k) − k′2K(k)

k

]
− 2k2E(k)

dK

dk

=
dK

dk

[
2k′2(E(k) − K(k)) − 2k2E(k)

]
, (5.24)

as claimed in (5.19).
The following expression for D(k) comes next:

D(k) = [E(k) − K(k)][3E(k) − K(k) + k2K(k)] + k2E(k)K(k). (5.25)

Using (5.17), (5.20) and the fact that
d2E

dk2
= −1

k

dK

dk
, there obtains⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

kk′2E(k)
dK

dk
= kE(k)

(
k′2 dE

dk
+ kE(k)

)
= kE(k)

(
dE

dk
+ kK(k)

)
,

k2k′2 dK

dk

dE

dk
= k2 dE

dk

(
(1 − k2)

dE

dk
+ kE(k)

)

=
dE

dk

[
k(E(k) − K(k)) + k3K(k)

]
,

(5.26)
which leads to

D(k) =
dE

dk

[
2kE(k) + k(E(k) − K(k)) + k3K(k)

]
+ k2E(k)K(k), (5.27)

and this in turn gives (5.25) because of (5.17). Thus, (5.19) and (5.27) imply
the equality

− 6L3

482
d′′(c)

= 2K(k)
dK

dk

dk

dc

[
D(k) + k′2K(k)

(
E(k) − K(k)

)
− k2E(k)K(k)

]
= 2K(k)

dK

dk

dk

dc

[(
E(k) − K(k)

) (
3E(k) − K(k) + k2K(k) + k′2K(k)

)]
= 6

(
E(k) − K(k)

)
E(k)K(k)

dK

dk

dk

dc
. (5.28)
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Since K(k) is a strictly increasing function, dk
dc > 0 (Theorem 4.6) and since

K(k) > E(k) for k ∈ (0, 1), the formula (5.28) implies the convexity property
of d(c). �

5.3. Stability of Cnoidal Waves. The stability theory for the branches
of cnoidal waves determined by Theorem 4.4 is developed in this subsection.
The periodic problem throws up points not arising in the considerations
concerning stability of solitary waves. We combine ideas present in [4] and
[25] with perspectives in [8] and [12] to obtain the following result.

Theorem 5.3. Let c ∈ (0,∞) and let {ϕc} be the cnoidal wave branch of
period L given in Theorem 4.4. Then, for each c, the orbit Oc = {ϕc(·+s)}s∈R

is stable in H1
per([0, L]) with regard to L-periodic perturbations and the KdV-

flow. More precisely, given any ε > 0, there is a δ = δ(ε) > 0 and a
C2-function r : R → R such that if ψ ∈ H1

per([0, L]) and d1(ψ,Oc) < δ, then

d1(u(·, t),Oc) ≤ ‖u(·, t) − ϕc(· + r(t))‖H1
per([0,L]) ≤ ε

for all t ∈ R, where u(x, t) is the solution of the KdV-equation with initial
value ψ and r

′
(t) = −c + O(ε) as ε ↓ 0, uniformly for t ∈ R.

Several preliminary results are needed to prepare for the proof of Theorem
5.3. These will occupy attention for the moment.

Focus on a mean-zero branch {ϕc} of cnoidal waves as guaranteed by
Theorem 4.4. As the correspondence c ∈ (0,∞) �→ ϕc ∈ H1

per([0, L]) is a
C1-mapping, it must be the case that

0 =
d

dc

∫ L

0
ϕc(x)dx =

∫ L

0

d

dc
ϕc(x)dx

and, in addition, differentiating (4.20) with regard to c, it also transpires
that

−Lcn

( d

dc
ϕc

)
= ϕc +

d

dc
Aϕc .

Thus, (4.20) yields the basic relations

d′(c) = 〈E ′(ϕc) + c F ′(ϕc),
d

dc
ϕc〉1 + F(ϕc)

= −Aϕc

∫ L

0

d

dc
ϕc dx + F(ϕc) =

1
2

∫ L

0
ϕ2

c dx, (5.29)

d′′(c) = (ϕc,
d

dc
ϕc) = −(Lcn

d

dc
ϕc,

d

dc
ϕc).
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Lemma 5.4. Let c ∈ (0,∞) and suppose d′′(c) > 0 in the above context.
Define

A =
{

ψ ∈ H1
per([0, L]) : H(ψ) =

1
L

∫ L

0
ψdx = 0, (ψ, ϕc) = (ψ, ϕ′

c) = 0,

and ‖ψ‖L2
per([0,L]) = 1

}
.

Then, ζ = inf{〈Lcnψ, ψ〉1 : ψ ∈ A} > 0, and consequently 〈Lcnψ, ψ〉1 �
ζ‖ψ‖2

H1
per

for all ψ with H(ψ) = (ψ, ϕc) = (ψ, ϕ
′
c) = 0.

Proof. The proof is standard. It is first shown that ζ � 0. The second
formula in (5.29) then insures that 0 < d′′(c) = −〈Lcn

d
dcϕc,

d
dcϕc〉1. In

more detail, using Theorem 5.1, we may write d
dcϕc = a0χ0 + b0ϕ

′
c + p0,

where Lcnχ0 = λ0χ0 with ‖χ0‖ = 1, λ0 < 0, and 〈Lcnp0, p0〉1 > 0. Hence,
〈Lcnp0, p0〉1 < −a2

0λ0. Let ψ ∈ A and write ψ = aχ0 + p with p in the
positive subspace of Lcn. Since

0 = −(ϕc, ψ) = 〈Lcn
d

dc
ϕc +

d

dc
Aϕc , ψ〉1 = a0aλ0 + 〈Lcnp0, p〉1,

it follows that

〈Lcnψ, ψ〉1 = a2λ0+〈Lcnp, p〉1 � a2λ0+
〈Lcnp, p0〉21
〈Lcnp0, p0〉1

> a2λ0−
(a0aλ0)2

a2
0λ0

= 0.

Therefore, ζ � 0. Now suppose ζ = 0, then following the analysis in Albert
and Bona [4] for example, we obtain the existence of a ψ∗ ∈ A such that
〈Lcnψ∗, ψ∗〉1 = 0, which is a contradiction. So, we conclude that ζ > 0.

Finally, it follows easily from a homogeneity argument that 〈Lcnψ, ψ〉1 �
ζ‖ψ‖2

H1
per

for all ψ with H(ψ) = (ψ, ϕc) = (ψ, ϕ
′
c) = 0. �

The crucial inequality, an improvement on (3.13), is addressed next. Fix
an ε > 0, c > 0 and an element ϕc from the branch of cnoidal waves.
Without loss of generality, we may suppose ε is small; the precise restriction
will appear later and will only depend on c, L and ϕc. Let ψ ∈ H1

per([0, L])
be an initial datum for the KdV-equation which is a small perturbation of
ϕc, and let u ∈ C(R;H1

per([0, L])) be the solution corresponding to ψ by
imposing u = ψ at t = 0. By translating ψ if necessary, say by considering
ψ(x + r0), it is assumed that

‖ψ − ϕc‖2
L2

per([0,L]) = d0(ψ, ϕc) ≤ d1(ψ, ϕc) ≤ δ0 (5.30)
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where δ0 > 0 will be determined later. Define the function F : R
2 → R by

F (r, t) =
∫ L

0

(
u(x, t) − ϕc(x + r)

)2
dx. (5.31)

Since ϕc ∈ H∞
per([0, L]), F is a C∞-function of r and, as will appear momen-

tarily, a C1-function of t. Moreover, because of the first equality in (5.30),
the quantity

−2
∫ L

0
u(x, t)ϕ

′
c(x + r)dx =

∂F

∂r
= G(r, t) (5.32)

must vanish when (r, t) = (0, 0). That is to say, (ψ, ϕ
′
c) = 0. The following

corollary to Lemma 5.4 thus applies to ψ.

Corollary 5.5. Let ρ ∈ H1
per([0, L]) be such that H(ρ) = 1

L

∫ L
0 ρ(x)dx =

0, F(ρ) = F(ϕc) and
∫ L
0 ρϕ

′
cdx = 0. Then there are positive constants

A0, B0, A1 and B1 depending only on c and ϕc such that

A0 d1(ρ, ϕc)2 + B0 d1(ρ, ϕc)3 ≥ E(ρ) − E(ϕc)

≥ A1‖ρ − ϕc‖2
H1

per([0,L]) − B1‖ρ − ϕc‖4
L2

per([0,L]), (5.33)

where F and E are the KdV-invariants defined in (3.9).

Proof. Write ρ in the form

ρ(x) = (1 + a)ϕc(x) + ω(x),

where (ω, ϕc) = 0 and a is a scalar. Note that
∫ L
0 ω(x)dx = 0. Since

F(ρ) = F(ϕc), it follows immediately that if h = ρ − ϕc = aϕc + ω, then∫ L

0
ϕ2

cdx =
∫ L

0
ρ2dx =

∫ L

0
(ϕc + h)2dx =

∫ L

0
(ϕ2

c + 2ϕch + h2)dx,

whence

a

∫ L

0
ϕ2

cdx = −1
2

∫ L

0
h2dx. (5.34)

Another calculation reveals that

E(ρ) − E(ϕc) = E(ρ) − cF(ρ) − (E(ϕc) − cF(ϕc))

= 〈Lcnh, h〉 − 1
6

∫ L

0
h3dx. (5.35)
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Both E and F are invariant under translation of the independent variables x,
which is to say, E(τsρ) = E(ρ) and F(τsρ) = F(ρ), where τsρ(x) = ρ(x + s).
In consequence, (5.35) implies

E(ρ) − E(ϕc) ≤ A0d1(ρ, ϕc)2 + B0d1(ρ, ϕc)3 (5.36)

where A0 and B0 are constants depending only on ϕc, c and the period L,
all of which are fixed in the present considerations.

If ω and h are as above, then because of Lemma 5.4,

〈Lcnω, ω〉1 ≥ ζ‖ω‖2
H1

per([0,L]) (5.37)

where ζ > 0 depends only on c and ϕc. Because of the elementary inequalities

〈Lcnω, ω〉1 = 〈Lcn(h − aϕc), h − aϕc〉1 ≤ 〈Lcnh, h〉 + 2Γa2‖ϕc‖2
H1

per([0,L])

where Γ depends only on c and ϕc, and

‖ω‖2
H1

per([0,L]) ≥
1
2
‖h‖2

H1
per([0,L]) −

3
2
a2‖ϕc‖2

H1
per([0,L]),

(5.37) can be expressed in terms of h, viz.

〈Lcnh, h〉1 ≥ 〈Lcnω, ω〉 − Γa2‖ϕc‖2
H1

per([0,L]) ≥
1
2
ζ‖ω‖2

H1
per([0,L]) − Γ1a

2

(5.38)

≥ 1
4
ζ‖h‖2

H1
per([0,L]) − Γ2a

2 ≥ 1
4
ζ‖h‖2

H1
per([0,L]) − Γ3‖h‖4

L2
per([0,L])

where, in the last step, (5.34) is used and Γ3 is a constant depending only
on c and ϕc.

Finally, the cubic term in (5.35) needs to be considered. Clearly, we have∫ L

0
h3dx ≤ ‖h‖L∞

per([0,L])‖h‖2
L2

per([0,L]) ≤ ‖h‖
5
2

L2
per([0,L])

‖hx‖
1
2

L2
per([0,L])

≤ 1
8
‖hx‖2

L2
per([0,L]) + b‖h‖

10
3

L2
per([0,L])

≤ 1
8
‖hx‖2

L2
per([0,L]) +

1
8
ζ‖h‖2

L2
per([0,L]) + D‖h‖4

L2
per([0,L])

where b and D depend only on ζ. In summary,

d1(ρ, ϕc)2 + d1(ρ, ϕc)3 ≥ E(ρ) − E(ϕc)

≥ 1
8ζ‖h‖2

H1
per([0,L]) − B1‖h‖4

L2
per([0,L])

as advertised in (5.33) with A1 = 1
8ζ. The corollary is established. �
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Consider the polynomial

P (y) = A1y
2 − B1y

4. (5.39)

The maximum positive excursion of P is 1
4

A2
1

B1
, taken on when y2 = 1

2
A1
B1

. If

0 < γ < 1
4

A2
1

B1
and y is such that P (y) ≤ γ, then either

0 ≤ y2 ≤ x−(γ) (5.40)

or
x+(γ) ≤ y2 (5.41)

where

x±(γ) =
A1 ±

√
A2

1 − 4γB1

2B1
.

Notice that as γ ↓ 0, x−(γ) ↓ 0 and x+(γ) ↑ A1
B1

. For 0 < α < 1
2

A1
B1

, let
γ(α) > 0 be such that x−(γ(α)) = α. A calculation reveals that if α is in
the range just mentioned, then

γ(α) = A1α − B1α
2. (5.42)

Thus, for such values of α, P (y) ≤ γ(α) and y ≥ 0 implies that y ≤ α or

y ≥ x+(γ(α)) =
A1

B1
− α > α = x−(γ(α)). (5.43)

Returning to (5.32), note that

∂G

∂r
=

∂2F

∂r2
= −2

∫ L

0
u(x, t)ϕ

′′
c (x + r)dx

= 2
∫ L

0

[
(ϕ

′
c(x + r))2 − h(x, t)ϕ

′′
c (x + r)

]
dx, (5.44)

where h(x, t) = u(x, t)− ϕc(x + r(t)) and the C1-function r(t) is soon to be
specified. In particular, if

‖h(·, t)‖L2
per([0,L]) <

‖ϕ′
c‖2

L2
per([0,L])

‖ϕ′′
c ‖L2

per([0,L])
= M0, (5.45)

then
∂G

∂r

∣∣∣∣
(r(t),t)

> 0.
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Evaluating at (r, t) = (0, 0), we see that

∂G

∂r

∣∣∣∣
(0,0)

≥ 2‖ϕ′
c‖2

L2
per([0,L]) − 2‖ψ − ϕc‖L2

per([0,L])‖ϕ
′′
c ‖L2

per([0,L])

≥ 2
(
‖ϕ′

c‖2
L2

per([0,L]) − δ0‖ϕ
′′
c ‖L2

per([0,L])

)
. (5.46)

The following lemma concerning the regularity of the function G will be
helpful.

Lemma 5.6. Let u be a spatially periodic solution of the KdV-equation (1.1)
of period L lying in C(R;Hk

per([0, L])) where k ≥ 0 is an integer. Let ϕc be
any cnoidal-wave solution of (1.1), also of period L. Then the function

G(r, t) =
∫ L

0
u(x, t)ϕ

′
c(x, t)dx

is an L-periodic, C∞-function of r and a Ck+1-function of t.

Proof. The fact that G is an infinitely differentiable function of r follows
immediately since, for each t, u(x, t) ∈ L2([0, L]) and ϕc ∈ H∞

per([0, L]). Since
the map t �→ u(·, t) is continuous from R to L2([0, L]), it follows at once that
G is a continuous function of t.

The higher-order smoothness in t is established by straightforward calcu-
lations indicated now, using the fact that u satisfies (1.1). In these compu-
tations, at intermediate stages, extra regularity appears to be needed, but
the final result does not reflect more regularity than is hypothesized. As
mentioned before, one justifies these calculations by regularizing the initial
data u(·, 0), making the computations for the smoother solution emanating
from the smoother data, and then passing to the limit in the final result as
the regularization becomes weaker, making use of the well posedness of (1.1)
in Hs

per([0, L]) for s ≥ 0.
Consider first the case k = 0 and note that for smooth solutions u of (1.1),

∂G

∂t
=

∫ L

0
ut(x, t)ϕ

′
c(x, t)dx

= −
∫ L

0
(uux + uxxx)ϕ

′
cdx =

1
2

∫ L

0
u2ϕ

′′
c dx +

∫ L

0
uϕ

′′′′
c dx. (5.47)

Integrating in time leads to

G(r, q) − G(r, s) =
∫ q

s

∫ L

0

(1
2
u2ϕ

′′
c + uϕ

′′′′
c

)
dxdt. (5.48)
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Formula (5.47) continues to hold as the regularization vanishes, and this
formula together with the fact that u ∈ C(R;L2

per([0, L])) implies G is C1 and
that (5.47) holds pointwise in R×R. In terms of h(x, t) = u(x, t)−ϕc(x+r),
and using the equation ϕ

′′′
c + 1

2ϕ2
c = cϕc satisfied by the cnoidal wave, this

formula may be rewritten as

∂G

∂t
= −c

∫ L

0
[(ϕ

′
c)

2 − hϕ
′′
c ]dx −

∫ L

0
h[(ϕ

′
c)

2 − hϕ
′′
c ]dx, (5.49)

a formula that will be useful momentarily.
Again assuming temporarily that u is smooth, it is deduced after appro-

priate integrations by parts that

∂2G

∂t2
=

∫ L

0

(
−3

4
u2

xϕ
′′′
c − uxϕ(iv)

c +
1
3
u3ϕ

′′′
c +

1
2
u2

xϕ(v)
c

)
dx. (5.50)

Assuming u ∈ C(R, H1
per([0, L])) and arguing as in the case k = 0 shows that

G is C2 as a function of t and that its second partial derivative with respect
to t is given by (5.50). A slightly tedious, but straightforward induction on
k concludes the proof. �

Returning to (5.45), notice that if

δ0 ≤ 1
2
M0, (5.51)

then ∂G
∂r

∣∣
(0,0)

> 0 and so the implicit function theorem applied to G implies
there is a T > 0 and a C2-function r : [−T, T ] → R with r(0) = 0 such that

G(r(t), t) = 0 (5.52)

for all t ∈ [−T, T ]. (Because of Lemma 5.6, if u happens to be smoother,
say u ∈ C(R;Hk

per([0, L])) for some k > 1, then r will be a Ck+1 function of
t.) By choosing T possibly smaller, it may also be presumed that

‖h(·, t)‖L2
per([0,L]) = ‖u(·, t) − ϕc(· + r(t))‖L2

per([0,L]) < M0 (5.53)

for t ∈ [−T, T ]. In consequence, for t in this range, implicit differentiation
yields

r
′
(t) = −

∂G
∂t (r(t), t)
∂G
∂r (r(t), t)

= −c +

∫ L
0 h

(
1
2hϕ

′′
c − (ϕ

′
c)

2
)

dx∫ L
0 ((ϕ′

c)2 − hϕ′′
c ) dx

(5.54)

according to (5.44) and (5.49). Naturally, (5.54) holds as long as the C1-
function r exists, satisfies G(r(t), t) = 0 and (5.45)-(5.53) continues to hold.

We are now in a position to prove Theorem 5.3.
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Proof. (Theorem 5.3) The proof commences with the special case wherein
the initial datum ψ respects the additional constraints

H(ψ) =
1
L

∫ L

0
ψdx = 0,

F(ψ) =
1
2

∫ L

0
ψ2dx =

1
2

∫ L

0
ϕ2

cdx = F(ϕc). (5.55)

These restrictions are easily removed after the result is established in case
(5.55) holds. First, restrict the δ0 appearing in (5.30) as in (5.51), which is
to say

‖ψ − ϕc‖L2
per([0,L]) ≤ δ0 ≤ 1

2
M0, (5.56)

where M0 is defined in (5.45). Let r(t) be the C2-function determined via
the implicit function theorem as above. Initially, r is only defined on a finite
interval [−T, T ] and is such that

0 = G(r(t), t) = −2
∫ L

0
u(x, t)ϕ

′
c(x + r(t))dx. (5.57)

We use the notation h(x, t) = u(x, t) − ϕc(x + r(t)). Since both ϕc and
ψ have mean zero, so does h. Moreover, since F(ψ) = F(ϕc) and F is a
KdV-invariant, it must be the case that F(u(·, t)) = F(ϕc). Coupling these
two points with (5.57) allows us to apply Corollary 5.5 and conclude that

A0δ
2
0 + B0δ

3
0 ≥ A1‖h(·, t)‖2

H1
per([0,L]) − B1‖h(·, t)‖4

L2
per([0,L])

≥ P
(
‖h(·, t)‖L2

per([0,L])

) (5.58)

at least for −T ≤ t ≤ T where P (y) = A1y
2 − B1y

4 as before. Restrict δ0

further by requiring that

A0δ
2
0 + B0δ

3
0 ≤ γ(μ) (5.59)

where μ = ε
√

A1
2B1

and ε itself is restricted by

ε <

√
A1

2B1
. (5.60)

Notice that, in consequence of the two conditions above, μ lies in the interval
(0, 1

2
A1
B1

) and hence (5.58) and (5.59) imply that either

0 ≤ ‖h(·, t)‖2
L2

per([0,L]) ≤ μ (5.61)
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or
x+(γ(μ)) ≤ ‖h(·, t)‖2

L2
per([0,L]). (5.62)

As the mapping t �→ ‖h(·, t)‖2
L2

per([0,L]) is continuous on [−T, T ] and μ <

x+(γ(μ)) (see (5.43)), one or the other of (5.61) or (5.62) must hold for all
t ∈ [−T, T ]. Hence, if

δ2
0 < x+(γ(μ)), (5.63)

then we conclude (5.61) holds at t = 0 and hence for t ∈ [−T, T ]. Returning
to (5.58) armed with this information yields the inequality

A0δ
2
0 + B0δ

3
0 ≥ A1‖h(·, t)‖2

H1
per([0,L]) − B1μ

2, (5.64)

whence,

‖h(·, t)‖2
H1

per([0,L]) ≤
A0δ

2
0 + B0δ

3
0

A1
+

1
2

ε2 = δ2
1 (5.65)

for t ∈ [−T, T ]. Note that δ1 just determined does not depend on t, but only
on ε, δ0 and constants depending only on c and ϕc.

To extend this argument to larger time intervals, it suffices to choose ε
and δ0 so that δ1 satisfies the same restriction as did δ0 and then reapply the
implicit function theorem. The uniqueness aspect of the implicit function
theorem assures that the function r thereby determined remains C2 and, as
remarked earlier, as long as (5.45) holds, the equation (5.54) for r continues
to be valid.

The needed restrictions on δ1 are that

δ1 ≤ ε, δ1 ≤ 1
2
M0 (5.66)

and
A0δ

2
1 + B0δ

3
1 ≤ γ(μ). (5.67)

The restrictions (5.66) are easily managed, for example by insisting that, in
addition to the restriction (5.56) and (5.59),

ε < M0 and
A0δ

2
0 + A1δ

3
0

A1
<

1
2

ε2. (5.68)

The inequality (5.67) is a little more complicated as ε appears on both sides.
Because of (5.66)

A0δ
2
1 + B0δ

3
1 ≤ A0ε

2 + B0ε
3. (5.69)

On the other hand, because of (5.60), μ < 1
2

A1
B1

and so (5.42) implies

γ(μ) = A1μ − B1μ
2 = εA1

√
A1

2B1
− 1

2
ε2A1. (5.70)
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Thus, (5.67) is seen to hold as soon as ε is small enough that

εA1

√
A1

2B1
− 1

2
ε2A1 > A0ε

2 + B0ε
3.

The theorem is thus established in case the restrictions (5.55) on ψ are valid.
Note the condition that r

′
(t) = −c+O(ε) as ε ↓ 0 follows from the inequality

‖h(·, t)‖H1
per([0,L]) = ‖u(·, t) − ϕc(· + r(t))‖H1

per([0,L]) ≤ ε

and the formula (5.54) for r
′
.

The restrictions in (5.55) on ψ are now lifted. Let ε > 0 and a cnoidal
wave ϕc from the branch constructed in Theorem 4.4 be given and suppose

||ψ − ϕc||H1
per

≤ δ

where δ > 0 is to be determined. It follows immediately that

μ =
1
L

∫ L

0
(ψ(x) − ϕc(x))dx ≤ L− 1

2 ||ψ − ϕc||L2([0,L]) ≤ δL− 1
2 .

Let ρ(x) = ψ(x) − μ so that H(ρ) = 0. Note that

||ρ − ϕc||H1
per

≤ 2δ

by the triangle inequality. Notice also that

|F(ρ) −F(ϕc)| =
∣∣∣∣∫ L

0
(ρ − ϕc)[ρ − ϕc + 2ϕc]dx

∣∣∣∣
≤ 2δ

[
2δ + 2||ϕc||L2([0,L])

]
≤ δ

[
4 + 4||ϕc||L2([0,L])

]
= δM1

provided δ ≤ 1, which we now presume. Because F(ϕc) is a strictly mono-
tone function of c (see (5.10), (5.11)), it follows that for δ small enough,
there is an e near c for which F(ρ) = F(ϕc). Of course e has to be near to
c. Indeed,

M1δ ≥ |F(ρ) −F(ϕc)| = |F(ϕe) −F(ϕc)| = d
′′
(c̃) |e − c|,

where c̃ lies between e and c. Because d
′′
(c) is bounded below on compact

subsets of (0,∞), we conclude that |e− c| ≤ M2δ, where M2 depends on M1

and the formula (5.11) for d
′′
. Since the mapping c �→ ϕc is C2 from R

+ to
H1

per([0, L]), it follows that

||ϕe − ϕc||H1
per([0,L]) ≤ M3δ

where M3 depends on M2 and a local upper bound on the derivative of the
curve of cnoidal waves.
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The existing theory applied to ρ viewed as a perturbation of ϕe assures
that if δ is small enough, then

||v(·, t) − ϕe(· + R(t))||H1
per([0,L]) ≤

1
2
ε

for all t, where v is the solution of (1.1) with initial data ρ. Here, the
C2-function R(t) is the solution of the ordinary differential equation

R
′
(t) = −e −

∫ L
0 h̃

(
(ϕ

′
e)

2 − 1
2 h̃ϕ

′′
e

)
dx∫ L

0

(
(ϕ′

e)2 − h̃ϕ′′
e

)
dx

where h̃(x, t) = v(x, t) − ϕc(x + R(t)).
By uniqueness, if u is the solution of (1.1) emanating from ψ, then u(x, t) =

v(x − μt, t) + μ. If we define S(t) = R(t) − μt, then it is straightforward to
ascertain that

||u(x, t) − ϕc(x + S(t))||H1
per([0,L])

= ||u(x + μt, t) − μ + μ − ϕc(x + R(t))||H1
per([0,L])

≤ ||v(x, t) − ϕe(x + R(t))||H1
per([0,L]) + L|μ|

+ ||ϕe(x + R(t)) − ϕc(x + R(t))||H1
per([0,L]) ≤

1
2
ε + L

1
2 δ + M3δ ≤ ε

provided that δ is chosen small enough.
As for R, since ||h̃||H1

per([0,L]) ≤ 1
2ε for all t, it follows that

R
′
(t) = −c + (c − e) + O(ε) = −c + O(δ) + O(ε) = −c + O(ε)

as ε ↓ 0, as required. �

Corollary 5.7. Let L > 0 and let {ψc} be the branch of cnoidal waves
determined in Corollary 4.5. Then each ψc is stable to small H1

per([0, L])
perturbations. That is, given ψc and ε > 0, there is a δ = δ(ε, ψc) > 0 such
that if

‖ψ − ψc‖H1
per([0,L]) ≤ δ,

then, for all t ∈ R

d1(u(·, t), ψc) ≤ ||u(·, t) − ψc(· + r(t))||H1
per([0,L]) ≤ ε,

where u is the solution of (1.1) with initial value ψ and r : R → R is a
C2-function such that

r
′
(t) = −c + O(ε)

as ε ↓ 0, uniformly for t ∈ R.
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Proof. This follows from Theorem 5.3 and the Galilean transformation
(3.2). �
Remarks. i) If the constant of integration Aϕc in (3.4) is set equal to zero,
we can show the existence of a branch of positive cnoidal-wave solutions, c ∈
(4π2

L2 ,∞) �→ ϕc, of the form established in (3.7) with 0 < β2 < 2c < β3 < 3c
and β2 � ϕc � β3. A proof of the existence and the stability of these positive
solutions is analogous to the theory of stability of cnoidal-wave solutions to
the Hirota-Satsuma system{

ut − auxxx + 6uxu = 2bvvx

vt + vxxx + 3uvx = 0,

established by Angulo in [3].
ii) The ideas in this paper have been applied to other nonlinear evolution

equations. For example, Angulo in [2] obtained a stability theory for peri-
odic travelling-wave solutions of the form u(x, t) = eiωtϕω(x) to the cubic
nonlinear Schrödinger equation

iut + uxx + |u|2u = 0,

where, for ω > 2π2/L2, ϕω is a real-valued function with fundamental period
L and with a profile defined via the Jacobian elliptic function dn.

iii) Our stability result for the orbit {ϕc(·+ s)}s∈R in H1
per([0, L]) (Theo-

rem 5.3) under the flow of the periodic KdV-equation is obtained for initial
disturbances of ϕc having the same period L. It is a conjecture going back to
Benjamin1 that cnoidal waves of period L are unstable to perturbations of
period 2L, for example. Some evidence in favor of this scenario is available
only in the case of the nonlinear Schrödinger equation at the moment (see
Angulo [2]), where, for a profile ϕω depending of the dnoidal function dn,
the existence of three simple negative eigenvalues for the linear operator

Ldn = − d2

dx2
+ ω − 3ϕ2

ω

and the positivity of the function d′′(c) = d
dω

∫ 2L
0 ϕ2

ω dx imply that the
orbit {eiyϕω : y ∈ R} is H1

per([0, 2L])-unstable. We note that these same
background points obtain in the case of the KdV-equation, since the proof
of Theorem 5.1 and Theorem 5.2 imply that the linear operator Lcn defined
on H2

per([0, 2L]) will have exactly three negative eigenvalues which are simple
and that d′′(c) > 0.

1Personal Communication to the second author.
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6. Stability in higher order sobolev classes

The preceding theory was developed in the space H1
per([0, L]) that arises

naturally in the context of the two invariants F and E of the KdV-flow.
Better control of high frequency components than would be afforded by
being small in H1

per can be obtained if one works in the higher order classes
Hk

per, k = 2, 3, · · ·. As pointed out long ago by Saut and Temam [47], the
mapping ψ �→ u(·, t) of initial data to the solution at time t �= 0 of (1.1)
is a one-to-one mapping of Hk

per([0, L]) onto itself, for any k = 1, 2, 3, · · ·.
As a consequence, to have stability in Hk

per([0, L]), one must start with an
Hk

per([0, L]) perturbation of a cnoidal wave. As it turns out, this is the only
additional restriction needed to infer stability in these smaller spaces. The
analysis presented in favor of this assertion follows closely the idea in the
recent paper [10].

Theorem 6.1. The cnoidal waves in Theorem 5.3 or Corollary 5.7 are stable
in Hk

per([0, L]) for any integer k ≥ 1. More precisely, let L > 0 be fixed and
let {ϕc} be any branch of cnoidal waves that are stable in H1

per([0, L]) as
asserted in Theorem 5.3 or Corollary 5.7. Then, for each speed c and ε > 0,
there is a δ = δ(ε, c) > 0 such that if ψ ∈ Hk

per([0, L]) and

dk(ψ, ϕc) < δ,

then there is a Ck+1-function r : R → R such that if u is the solution of the
KdV-equation (1.1) starting at ψ, then for all t ∈ R,

dk(u(·, t), ϕc) ≤ ||u(·, t) − ϕc(· − r(t))||Hk
per([0,L]) ≤ ε.

Moreover,
r
′
(t) = −c + O(ε)

as ε ↓ 0, uniformly for t ∈ R

Proof. In fact, it will transpire that the same function r(t) determined in
Theorem 5.3 or Corollary 5.7 suffices. In a little more detail, suppose ε > 0
to be given and, for a given ψ ∈ H1

per([0, L]), let δ1 = δ1(ε, ψ) > 0 be such
that

||u(·, t) − ϕc(· + r(t))||H1
per([0,L]) ≤ ε1 (6.1)

if d1(ψ, ϕc) ≤ δ1, where r is determined by 5.57 and ε1 will be specified
below.

Suppose now that ψ ∈ Hn
per([0, L]) and that

dn(ψ, ϕc) ≤ δn



1366 Jaime Angulo Pava, Jerry L. Bona, and Marcia Scialom

where δn will be determined presently, but in any event δn ≤ δ1(εn, ϕc). In
particular, it follows from Lemma 5.6 that the function r lies in Cn+1 and
that (6.1) holds.

We show by induction on n that

dk(u(·, t), ϕc) ≤ ||u(·, t) − ϕc(· + r(t))||Hk
per([0,L]) ≤ εk

for all t ∈ R and k ≤ n, where the εk are chosen appropriately for k < n.
The case n = 1 is in hand so we consider next n = 2. For f ∈ H2

per([0, L]),
let

I4(F ) =
∫ L

0

(9
5
f2

xx − 3ff2
x +

1
4
f4

)
dx.

The functional I4 is invariant on H2-flows of the KdV-equation, which is to
say,

I4(u(·, t)) = I4(ψ)
for all t if u is the solution of (1.1) with initial value ψ. Let ε2 > 0 be given.
If ||ψ − ϕc||H2

per([0,L]) = δ2, it is straightforward to see that

I4(ψ) − I4(ϕc) ≤ C2δ2 + C
′
2δ

4
2 ,

where C2 and C
′
2 are constants depending only on c and ϕc. Assume at the

outset that δ2 ≤ δ1(ε1) where ε1 will be quantified shortly. As before, let

h(x, t) = u(x, t) − ϕc(x + r(t))

and, without loss of generality, assume ψ has been translated so that r(0) =
0. Since δ2 ≤ δ1, it follows that (6.1) holds. At time t �= 0, note that

C0δ2 + C1δ
4
2 ≥ I4(ψ) − I4(ϕc) = I4(u(·, t)) − I4(ϕc)

= I4(h(·, t) + ϕc(· + r(t))) − I4(ϕc(· + r(t)))

=
∫ L

0

{
9
5
h2

xx +
18
5

hϕcxxxx − 6ϕcϕcxhx − 3ϕch
2
x − 3hϕ2

cx

− 6hhxϕcx − 3hh2
x +

1
4
h4 + h3ϕc +

3
2
h2ϕ2

c + hϕ3
c

}
dx. (6.2)

Because of (6.1), elementary considerations reveal that the quantity
I4(u(x, t)) − I4(ϕc) in (6.2) is bounded below by

9
5
||hxx||2L2([0,L]) − D2ε1 − D

′
2ε

4
1, (6.3)

where D2 and D
′
2 also only depend upon c and ϕc. It follows that for all t,

||hxx||2L2([0,L]) ≤ ε1M2 + δ2M
′
2
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if ε1 and δ2 are small. As M2 and M
′
2 are bounded above for 0 < ε1, δ2 ≤ 1,

say, it simply remains to choose ε1 ≤ 1
2ε2 so that ε1M2 ≤ 1

4ε2. The quantity
δ1 is then determined and we choose δ2 ≤ δ1 so that δ2M

′
2 ≤ 1

4ε2. It then
follows that

||u(x, t) − ϕc(x + r(t))||2H2
per([0,L]) = ||h||2H2

per([0,L])

≤ ||h||2H1
per([0,L]) + ||hxx||2L2([0,L]) ≤

1
4
ε21 +

1
4
ε22 ≤ ε22,

thereby establishing the result for n = 2.
For n = 3 the argument relies upon the functional

I5(f) =
∫ L

0

{108
35

f2
xxx − 36

5
ffxx + 6f2f2

x − 1
5
f5

}
dx, (6.4)

which is invariant under H3
per-flows of the KdV-equation and the result just

established for H2
per-perturbations. One considers the constant

I5(u(·, t)) − I5(ϕc) (6.5)

and bounds this above at t = 0 by C3δ3−C
′
3δ

5
3 with δ3 ≥ ||ψ−ϕc||H2

per([0,L]).
After writing u = ϕc + h and expanding the integrals in (6.4) defining I5, a
lower bound on (6.5) is obtained of the form

108
35

∫ L

0
h2

xxxdx − D3ε2 − D
′
3ε

5
2.

The desired time-independent bound on ||h||H3
per([0,L]) now follows from the

case n = 2 and appropriate choices for ε2 and δ3.
In general, one uses the functional

In+2(f) =
∫ L

0

{
(∂n

xf)2 + · · · + anfn+2
}

dx

(see [10] for example), which is invariant under Hn
per([0, L])-flows of the KdV-

equation. The difference In+2(u(·, t)) − In+2(ϕc) is bounded above at t = 0
by Cnδn + C

′
nδn+2

n and below at any time by∫ L

0
(∂n

xh(x, t))2dx − Dnεn−1 − D
′
nεn+2

n−1.

The desired inequality follows after choosing εn−1 and then δn appropriately.
�
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Appendix A

In this Appendix, some basic properties of Jacobian elliptic integrals (see
[16]) are collected for the reader’s convenience. As before, the normal elliptic
integral of the first kind is∫ y

0

dt√
(1 − t2)(1 − k2t2)

=
∫ ϕ

0

dθ√
1 − k2 sin2 θ

≡ F (ϕ, k),

where y = sinϕ, whereas, the normal elliptic integral of the second kind is∫ y

0

√
1 − k2t2

1 − t2
dt =

∫ ϕ

0

√
1 − k2 sin2 θ dθ ≡ E(ϕ, k).

The number k is called the modulus and belongs to the interval (0, 1). The
number k′ =

√
1 − k2 is called the complementary modulus. The parame-

ter ϕ is called the argument of the normal elliptic integrals. It is usually
understood that 0 � y � 1 or, what is the same, 0 � ϕ � π/2.

For y = 1, the integrals above are said to be complete. In this case, one
writes∫ 1

0

dt√
(1 − t2)(1 − k2t2)

=
∫ π/2

0

dθ√
1 − k2 sin2 θ

= F (π/2, k) ≡ K(k)

and ∫ 1

0

√
1 − k2t2

1 − t2
dt =

∫ π/2

0

√
1 − k2 sin2 θ dθ = E(π/2, k) ≡ E(k).

Clearly, we have K(0) = E(0) = π/2, whilst E(1) = 1 and K(1) = +∞. For
k ∈ (0, 1), K ′(k) > 0, K ′′(k) > 0, E′(k) < 0, E′′(k) < 0 and E(k) < K(k).
Moreover, E(k) + K(k) and E(k)K(k) are strictly increasing functions for
every k ∈ (0, 1).

An important property of the complete elliptic integrals K and E is that
they satisfy the equations{

kk′2 d2K
dk2 + (1 − 3k2)dK

dk − kK = 0,

kk′2 d2E
dk2 + k′2 dE

dk + kE = 0,

respectively, which are special cases of the hypergeometric equation. In fact,
if we consider the binomial expansion of (1 − k2sin2θ)−1/2, namely,

(1 − k2sin2θ)−1/2 =
∞∑

n=0

(1
2)n

n!
k2nsin2nθ,
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where (a)n denotes the shifted factorial defined by (a)n = a(a+1)···(a+n−1)
for n > 0, (a)0 = 1 (note that since |k| < 1 this series converges absolutely),
and use the integral formula

∫ π
2

0 sin2nθ dθ = (1
2)n

π
2 /(1)n, we obtain that

K(k) =
π

2

∞∑
n=0

(1
2)n(1

2)n

(1)n

k2n

n!
=

π

2
F (1/2, 1/2; 1; k2).

Since the hypergeometric function F (1/2, 1/2; 1;x) satisfies Euler’s hyperge-
ometric differential equation

x(1 − x)
d2y

dx2
+ (1 − 2x)

dy

dx
− 1

4
y = 0,

the first differential equation above obtains immediately. It follows similarly
that E(k) = π

2 F (−1/2, 1/2; 1; k2), from which follows the second differential
equation above.

Next we record some derivatives of the complete elliptical integrals K and
E used in this work, namely⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dK

dk
=

E − k′2K

kk′2 ,

dE

dk
=

E − K

k
,

d2E

dk2
= −1

k

dK

dk
= −E − k′2K

k2k′2 .

The Jacobian elliptic functions are usually defined as follows. Consider
the elliptic integral

u(y1; k) ≡ u =
∫ y1

0

dt√
(1 − t2)(1 − k2t2)

=
∫ ϕ

0

dθ√
1 − k2 sin2 θ

= F (ϕ, k),

which is a strictly increasing function of the variable y1. Its inverse function
is written y1 = sinϕ ≡ sn(u; k), or briefly y1 = sn(u) when it is not necessary
to emphasize the modulus k. So, sn is an odd function. The other two basic
elliptic functions, the cnoidal and dnoidal functions, are defined in terms
of sn by ⎧⎪⎨⎪⎩

cn(u; k) =
√

1 − y2
1 =

√
1 − sn2(u; k),

dn(u; k) =
√

1 − k2y2
1 =

√
1 − k2sn2(u; k).
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Note that these functions are normalized by the requirement sn(0, k) =
0, cn(0, k) = 1 and dn(0, k) = 1. The functions cn(·; k) and dn(·; k) are
therefore even functions. These functions are all periodic with

sn(u + 4K(k); k) = sn(u; k), cn(u + 4K(k); k) = cn(u; k),

dn(u + 2K(k); k) = dn(u; k).

Moreover, the relations⎧⎨⎩ sn2u + cn2u = 1, k2sn2u + dn2u = 1, k′2sn2u + cn2u = dn2u,

−1 � sn(u; k) � 1, −1 � cn(u; k) � 1, k′2 � dn(u; k) � 1,
sn(u + 2K; k) = −sn(u; k), cn(u + 2K; k) = −cn(u; k),

hold for all k ∈ (0, 1) and u ∈ R. Moreover, these functions take on the
following specific values:

sn (0) = 0, cn (0) = 1, sn (K) = 1, cn (K) = 0.

Also, we have the limiting forms

sn(u; 0) = sin(u), cn(u; 0) = cos(u), sn(u; 1) = tanh(u), cn(u; 1) = sech(u).

Finally, the formulas
∂

∂u
snu = cnu dn u,

∂

∂u
cnu = −sn u dn u,

∂

∂u
dnu = −k2sn u cn u

are straightforwardly deduced from the foregoing material.

Appendix B

In this Appendix, we sketch a theory of existence and stability of peri-
odic travelling waves solutions with mean zero to the KdV-equation via a
variational argument.

Consider the minimization problem

B(λ) = inf{E(f) : f ∈ H1
per([0, L]), F(f) = λ and H(f) ≡ 1

L

∫
fdx = 0}

with λ > 0, and denote by Gλ the set of minimizers associated to B(λ),
namely,

Gλ = {ψ ∈ H1
per([0, L]) : E(ψ) = B(λ), F(ψ) = λ and H(ψ) = 0 }.

We claim that Gλ is a stable set of periodic travelling waves solutions to the
KdV-equation in the following sense: for every ε > 0 there exists δ > 0 such
that if

d1(u0, Gλ) ≡ inf
ψ∈Gλ

‖u0 − ψ‖H1
per

< δ,
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then the solution u(x, t) of (1.1) with u(x, 0) = u0 satisfies

inf
ψ∈Gλ

‖u(t) − ψ‖H1
per

< ε, for all t ∈ R. (∗)

As a first step, it is ascertained that Gλ �= ∅. Indeed, since Sobolev’s
embedding theorem implies that H1([0, L]) ↪→ C([0, L]) is compact and the
functional E is weakly lower semi-continuous, so every minimizing sequence
{fn}n∈N ⊂ H1

per([0, L]) associated to B(λ) has a subsequence {fnk
}k∈N that

converges uniformly to a function ϕ ∈ H1
per([0, L]) which is a minimizer to the

constrained problem in question. Of course, ϕ(0) = ϕ(L). In consequence,
there are Lagrange multipliers c(λ) and a(λ) such that

−ϕ′′ − 1
2
ϕ2 = c(λ)ϕ + a(λ).

It follows from standard arguments and the fact that ϕ is a minimizer that
the minimizing sequence that converges weakly to ϕ in H1

per([0, L]) and
strongly in C([0, L]) must also converge strongly in H1

per([0, L]). Moreover,
since B(λ) = E(ϕ) < 0 and

∫ L
0 ϕ3dx > 0 it follows that c(λ) < 0. Also, since

H(ϕ) = 0, it follows that a(λ) = − 1
LF(ϕ).

Now we prove that Gλ is a stable set. The proof follows classical arguments
(see Cazenave-Lions [19]). Initially we have that if {fn}n∈N is a minimizing
sequence for B(λ), then limn→∞ d1(fn, Gλ) = 0. In fact, supposing that this
statement does not hold, there exists a subsequence {fnk

}k∈N of {fn}n∈N and
a number ε > 0 such that

d1(fnk
, Gλ) � ε for k ∈ N.

But, since {fnk
}k∈N itself is a minimizing sequence for B(λ), there exists

a ψ0 ∈ Gλ such that fnk
→ ψ0 in H1

per([0, L])-norm, a contradiction that
implies the stated result.

Next, it is shown that (∗) is true in the closed subspace χ = {f ∈
H1

per([0, L]) : H(f) = 0} of H1
per([0, L]). Supposing this is false, there is

an ε > 0, a sequence {gn}n∈N ⊂ χ and a sequence of times {tn}n∈N such
that

d1(gn, Gλ) <
1
n

and d1(un(tn), Gλ) � ε

for all n, where un solves (1.1) with un(0) = gn. Then, since

lim
n→∞

d1(gn, Gλ) = 0

and Gλ is a bounded set in H1
per([0, L]), it follows that {gn} is a bounded

set in H1
per([0, L]). Moreover, since E(g) = B(λ) and F(g) = λ for g ∈ Gλ,
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it follows that E(gn) → B(λ) and F(gn) → λ. Choosing {αn}n∈N such
that F(αngn) = λ and defining ψn = αnu(tn) it follows that {ψn}n∈N is a
minimizing sequence for B(λ) and so there is a sequence {ϕn} ∈ Gλ such
that ‖ψn − ϕn‖H1

per
< ε/2 for large n. Because {gn} is bounded and E and

F are invariant, it follows that {un(tn)} is bounded, say, ‖un(tn)‖H1
per

≤ M

for all n. Hence, we have

ε � ‖u(tn) − ϕn‖H1
per

� |1 − αn|M +
ε

2
,

which is a contradiction since αn → 1.
Finally, by using Poincaré’s inequality (5.1) and the validity of (∗) in χ,

it is inferred that (∗) holds in all of H1
per[0, L] and thus Gλ is seen to be a

stable set.
We note that this variational approach to stability gives only information

on the set of minimizers Gλ without providing information on the structure
of this set, nor distinguishing among its possibly different orbits. In particu-
lar, without further information, an individual travelling wave might not be
stable in a sense that would be recognized in the laboratory.
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