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Abstract

This paper is concerned with the Korteweg-de Vries equation which models unidi-
rectional propagation of small amplitude long waves in dispersive media. The two-point
boundary value problem wherein the wave motion is specified at both ends of a finite
stretch of length L of the media of propagation is considered. It is shown that the so-
lution of the two-point boundary value problem converges as L — +o0 to the solution
of the quarter-plane boundary value problem in which a semi-infinite stretch of the
medium is disturbed at its finite end. In addition to its intrinsic interest, our result
provides justification for the use of the two-point boundary value problem in numerical
studies of the quarter plane problem for the KdV equation.

1 Introduction

Considered here are small amplitude long waves on the surface of an ideal fluid of finite depth
over a flat horizontal bottom under the force of gravity. Interest is focused upon waves which
propagate essentially in the horizontal z-direction and without significant variation in the
transverse y-direction of a standard zyz-Cartesian frame in which gravity acts in the negative
z-direction. For such waves, the full three-dimensional Euler equations can be reduced to
approximate models with only one independent spatial variable. Such models go back to at
least the early part of the 19* century and are included in works by Airy [1] and Stokes
[34] in the first half of the century. The model used in our study was developed in the work
of Boussinesq (16, 17, 18] and later, Korteweg and de Vries [30]. More detailed historical
accounts and formal derivations can be found in modern works (eg. Bona, Chen and Saut
[7], Miura [32], Whitham [35]).

As already indicated, let z denote the coordinate whose increasing values lie in the
direction of propagation and let ho be the undisturbed depth. The free surface is represented
by z = u(z,t) = h(z,t)—ho where ¢ is proportional to elapsed time and h(z,t) is the depth of
the water column over the spatial point z at time ¢. Under the classical small-amplitude, long
wave-length assumptions which feature a balance between nonlinear and dispersive effects,

the evolution equation
Uy + Ugp + Vg + Uggr =0 (1.1)

is a formal reduction of two-dimensional Euler equations usually called the Korteweg-de
Vries equation (KdV equation henceforth, first derived by Boussinesq, see [18] and [30]). The
equation (1.1) is written in nondimensional laboratory coordinates, so the small amplitude,
long wavelength assumptions reside implicitly in u, and hence should be explicit in the
auxiliary data attached to the evolution equation if physically relevant solutions are to be

considered.



Attention is now turned to the auxiliary data. It is standard in mathematical studies of
the KdV equation to focus upon the pure initial value problem in which u is specified at a

given value of 1, say, t = 0. That is,
u(z,0) = uo(z) for z€R (1.2)

is specified for all values of z. Thus values of t > 0 represent time elapsed since the inception
of the motion as described by (1.2). The formulation (1.2) does not inquire as to how the
motion was truly initiated, but imagines a snapshot taken of a disturbance already generated
and then uses (1.1) to predict the further evolution of the waves. The initial-value problem
(1.1)-(1.2) has a distinguished history both analytically and in experimental studies and
applications.

Another natural formulation for (1.1) is the quarter-plane or half-line problem. This
problem, first put forward by Bona and Bryant [3], is concerned with waves propagating into
an undisturbed stretch of the medium of propagation. One imagines measuring the waves
as they come into the relevant portion of the medium at some fixed spatial point, say z = 0.

This leads to the boundary condition
u(0,t) = g(t) for t>0. (1.3)

Since (1.1) is written to describe wave propagation in the positive direction along the z-axis,
it is not particularly desirable to impose a boundary condition at a finite point to the right
of z = 0. To do so can lead to reflected waves which (1.1) is incapable of approximating
accurately. (For such motions, systems of equations are useful; see, for example, Bona, Chen
and Saut [7, 8].) This point leads one to pose the problem for all z > 0, thus placing the
issue of a boundary condition at the right-hand end-point at co. The equation (1.1) along
with the boundary condition (1.3) must be supplemented by an initial condition as in (1.2),

ViZ.
u(z,0) = up(z) for z>0. (1.4)

In practice, it is often the case that ug(z) = 0, corresponding to an initially undisturbed
medium, but the mathematical theory does not require this. Function class restrictions on
ug which imply at least a weak form of boundedness as z — +oo suffice to guarantee that
(1.1)-(1.3)-(1.4) constitutes a well posed problem.

The initial boundary value problem (1.1)-(1.3)-(1.4), sometimes in a modified form that
includes some kind of dissipation, has been used to study the relevance of (1.1) to wave
motions in laboratory settings (see, for example, Hammack [26], Hammack and Segur [27] and
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Bona, Pritchard and Scott [10]). When comparison between experimentally produced waves
are made with model predictions, one usually has to depend upon numerical approximation
of its solution. For this, a bounded domain is normally used (but see the work of Guo and
Shen [25]). Analytical theory for the two-point boundary value problem for (1.1) posed on
a finite spatial interval with an initial condition and suitable boundary conditions is also
available.

Study of the KdV equation posed on a finite interval appears to have begun with the
work of B. A. Bubnov [19]. A review of developments following Bubnov’s work may be found
in the recent paper of Bona, Sun and Zhang [13] (also see [22, 23, 24, 28, 29]). For the KdV

equation (1.1), well-posedness holds for the auxiliary specifications
u(z,0) = up(z), for 0<z<IL,
u(0,t) = g(¥), u(L,t) =0:1(t), us(L,t)=go(t), fort>0,

for example, where ug, g, g1 and g, are drawn from reasonable function classes. It is also

(1.5)

the case that the problem (1.1) with the auxiliary conditions
u(z,0) = uo(z), for 0<z<L,
u(0,t) = g(t), uz(L,t) = gi(t), Uga(L,t) = go(t), fort>0

is well posed in reasonable function classes as Colin and Ghidaglia [20] showed.

(1.6)

A natural question arises within the context of the above discussion. What is the re-
lationship between the two-point boundary value problem for (1.1) and the quarter-plane
problem for the same equation? It has been assumed, in using a finite interval for numerical
simulations, that these problems yield essentially the same answer in the appropriate part
of space-time, if g = go = 0. However, the only theory that has come to our attention is
the work of Colin and Gisclon [21] connected with (1.6).

It is our purpose to bring forward exact theory comparing the two types of problems in
view here. Consider the following two initial boundary value problems (IBVP): the KdV

equation in a bounded domain,

UpFUg + Uz + Ugze = 0, zel0,L], t>0, (1.7)
u(0,t) = g(t), u(L,t) =u.(L,t) =0, (1.8)
u(z,0) = uo(z), (1.9)

and the KdV equation in a semi-infinite domain,

UgtUg + Ulg + Ugze = 0, z>0, t>0 (1.10)
u(0,t) = g(t), u(z,0) = uo(x) . (1.11)



We will prove that if the initial and boundary conditions are chosen from function classes
that include suitable decay of ug(z) as ¢ — 400, then for fixed T' > 0 the solution of (1.7)-
(1.9) will converge to the solution of (1.10)-(1.11) as L goes to infinity. To provide a more
precise goal, a version of our main result is stated here.

Theorem 1.1 Let uo(z,t) be the solution of the IBVP (1.10) and (1.11) for the KdV
equation posed for z,t > 0 with the initial condition ug(z) € H°(R*) and the boundary
condition g(t) € H*™3™(0,T) for some s in [0, 3], where ¢ > 0 is any positive constant.
Assume ug is supported on [0, N], say. Let ur(z,t) be the solution of the two-point boundary-
value problem (1.7)-(1.9) for the KdV-equation posed for 0 < z < L and t > 0 with the same
initial condition and the boundary conditions indicated in (1.8), where L > N. Assume that
the compatibility condition ug(0) = g(0) is satisfied if 1/2 < s < 3. Then, uc(z,t) and
ur(z,t) exist for t € [0,T] and the inequality

sup [[teo(-,t) — ur (1)l me(o,n) < Ce™F, (1.12)
te[0,7)

holds, where C only depends on the corresponding norms of up(z) and g(t) and of the form
e'T. The constant y, which is dependent of norms of up(z) and g(t), is of order one, as is
the constant b. Moreover, if up(z) € H*(R'Y) and g(t) € H*$(0,T), the above statement
holds for t € [0,T*] for some T* € (0,T7.

Note that the fractional-order Sobolev classes H*(R*) have been explicitly defined in
[12], and such Sobolev classes on finite intervals can be defined similarly. A good reference
for the fractional-order Sobolev spaces is Lions and Magenes [31].

A similar result for the BBM equation was obtained in [5].

Remark 1.2 From the theorem, we see that if solutions ur, on a time interval [0,T] are in

question and the data is physically relevant, then L must be chosen to be of the form
L Z O(T) + |log |

to have an approzimation to the solution of the quarter-plane problem of error at most 6,
uniformly on [0,T). Notice that once L 2, O(T) the error decays ezponentially with larger

values of L, a very satisfactory result from a practical perspective.

To prove Theorem 1.1, it is convenient to use a change of the dependent variable by
writing u(z,t) = w(z,t)e®+*)*- with b > 0, which transforms the equation in (1.7) or

(1.10) to a KdV-Burgers type equation,

Wt (1 + 367wy — 3bWag + Wege + 8T (w, —bw)w =0, z,t>0, (1.13)



with initial condition
w(z,0) = "uo(z) = ¢(z)

and boundary condition at z = 0
w(0,t) = e O Ng(t) = h(t),  t>0.

The boundary conditions at z = L remain the same for (1.8). The proof of Theorem 1.1
is based upon bounds on the solutions of (1.13) in certain Banach spaces. It is worthy
mentioning that the change of variables from u to w is equivalent to considering v in a
weighted space with weight e in the z-variable. This gives the solution w of (1.13) a
global Kato-smoothing effect in Ly (0, L)- or Ly (0, 00)-based spaces, which carries over to the
solution u of (1.1). Such global smoothing effects are necessary to obtain estimates of w
independent of L.

In outline, the paper proceeds as follows. Section 2 is devoted to linear estimates for
(1.13) when considered on [0, L]. Similar linear estimates for (1.13) when posed on all of R*
are given in Section 3. Local well-posedness of the problems is discussed in Section 4 and
global well-posedness is presented in Section 5. The proof of Theorem 1.1 is presented in

Section 6.

2 Linear estimates for (1.13) on [0, L]

Here, for fixed L > 0, consideration is given to the linear problem

wy + (1 + 36%)wy — 3bWey + Wegz = 0, z€[0,L], t>0, (2.1)
w(0,t) = hi(t), w(L,t) = hy(t), we(L,t) = hs(t), t>0, (2.2)
w(z,0) = ¢(z), =z€0,L] (2.3)

Let A be the operator defined by
Aw = —Wggy + 3bwye — (1 + 3b?)wy

with domain D(A) = {w(zx) € H3(0,L), w(0) =w(L)=w' (L) =0}. It is straightforward
to check that A is the infinitesimal generator of a Cy-semigroup Wi (t) in Ly (0, L). Therefore,

the solution u of

uy + (14 30%)ug — 3bUgg + Ugee = 0, re(0,L], t>0, (2.4)
u{0,t) =0, u(L,t) =0, ug(L,t) =0, t>0, (2.5)
u(z,0) = ¢(z), z€l0,L] (2.6)



can be expressed in the form
u(t) = Wi(t)é € Co([0,T]; L2(0, L)), (2.7)

where Co([0,T]; L2(0, L)) is the bounded continuous function space from [0, T] to L2(0, L)
with supreme norm. Because b > 0, the parabolic nature of the equation insures that v is
smooth for 0 < z < L and t > 0. Upon multiplying (2.4) by 2u and integrating the result
from 0 to L, using the boundary conditions (2.5), there obtains the following energy-type
estimate (or global Kato smoothing)

Proposition 2.1 For any ¢ € Ly([0, L]), u(t) = Wi (t)¢ satisfies

t L t
s )20z + 60 / / W2dzdt + / w2(0,7)dr = |16l ozp -

Next, our attention is turned to the inhomogeneous linear problem

U (1 + 3% ug — 3bUgy + Ugew = f(z,t), z€[0,L], t>0, (2.8)
u(0,1) =0, uw(L,t) =0,  u(L,t)=0, t>0, (2.9)
u(z,0)=0, z€]l0,L]. (2.10)

In terms of the operator A defined above, one may write (2.8) as an initial-value problem

for an abstract non-homogeneous evolution equation, viz.

i =dutf,  w(0)=0 (211)

By standard semigroup theory (see [33]), for any f € Ly . (R*; L2(0, L)),

u(t) = /u Wi (t —7)f(r)dr (2.12)

belongs to the space C(R*; Ly(0, L)) and is called a mild solution of (2.8)-(2.10). It is also
a weak solution in the sense of distributions. In addition, if f(t) € D(A) for ¢ > 0 and
Af € Ly oe(R; Ly(0, L)), then u(t) given by (2.12) solves (2.8)-(2.10) for each ¢ > 0 in the
L, (0, L) sense and is called a strong solution.

Proposition 2.2 For any f € Ly(R;L2(0,L)) and any T > 0, the solution u(t) =
[y Wit — 7) f(r)dT of (£.8)-(2.10) satisfies

T oL T
sup ||u(-,t)||2L2(0'L) + Gb/ / udzdt —I—/ uZ(0,7)dr < 8||f||2L1([o,T];L2(o,L))-
t€[0,T] o Jo 0



Proof: Without loss of generality, we assume that u is a strong solution. The general
case follows using a standard limiting procedure. Multiply the equation in (2.8) by 2u and
integrate over (0, L) with respect to z and (0,t) with respect to t. Integration by parts leads
to

t
0

1
<2 / 17 G I zaeollul ) lzaoydr (2.13)

t pL
||u(-,t)l|%2(0’L)+6b/0/o uidwdt-&—/ uZ(0, 7)dr

Assume that ||u(:,t)[|Z,(,;) takes its maximum value on [0, L] at the point . Because

to o
2/0 IS C el oo,y 1 )|l oo,y < 2||u(':t0)||L2(O,L)/ £ (-, )l 2o,y At
4]

<2 (/0 ° ”f(-,ﬂ“Lz(O,L)di;) + -;-||u(-,t0)[[2L2(O,L),

(2.13) implies that

2

o 2 T
||u<-,to>||%2(o,ms4(£ Ilf(-,T)IILz(o,de) 54(‘/0 uf<~,T>nL2<o,L>df)

The last inequality combined with (2.13) yields
T pL L T
o [ [ aasar+ [ ui0,mar <2 [ 1SC D waln, londs
0 0 0 0

T 2
<4 ( o IIf(-,T)lILz(o,de) ,

thus completing the proof. [
Finally, consider the nonhomogeneous boundary value problem

up + (14 3v%)ug — 3bugy + Ugez =0, 3 €[0,L], t>0, (2.14)
u(0,t) = hi(t), u(L,t) =ho(t), ug(L,t)=hs(t), t>0, (2.15)
u(z,0) =0, z€]0,L]. (2.16)

Here, we use the method put forward in [13], which treats the KdV equation itself in a finite
domain. Applying the Laplace transform with respect to ¢, (2.14) becomes

st + (1 + 307ty — 3bligy + e =0, 3 €[0,L], $>0, (2.17)
’l'l(O, S) = ill(s) ) ﬂ(L, S) - 77'2(3) ) am([H S) = ils(s) ; (2-18)



where
+00 . +00
ﬂ(m,s)=/ e~ *tu(z,t)dt and hj(s)=[ e~*h(t)dt, j=12,3 (2.19)
0 0

The solution u of (2.14) is obtained from the inverse Laplace transform

r-+100

u(z,t) = eti(z, s)ds (2.20)

57}2 r—1i00
where r > 0 is arbitrary. The solution #(z, s) of (2.17) can be written in the form

iz, s) = Z cj(s)e>‘f(’)m (2.21)
j=1

where for § = 1,2,3, the )\; are the three roots of
s+ (14 36%)A — 36X + M =0 (2.22)
and ¢; = cj(s) are solutions of the linear system

C1+62+03=51(3); )
e eM@L 4 cpe?? (M + cse O = hy(s), (2.23)
e\ eM Ol codpe?2 O eghge O = hg(s) .

By Cramer’s rule, ¢; has the form

Ai(s)L)
As,L)

where A(s, L) is the determinant of the coefficient matrix of the linear system (2.23) and
Aj(s, L) is the determinant of the matrix that is obtained by replacing the j-th column of
the coefficient matrix by (hy, ha, hs)T. Hence, (2.20), (2.21) and (2.24) imply

1 A8 L) e
= N 2D Xl ds 2.2
w(z,t) =5 /T_m ¢ ‘ &(S,L)GJ ds (2.25)

i=

It will be shown in a moment that A(s,L) # 0 whenever Res > 0. It is easy to see
that the terms in the integral in (2.25) are analytic in s and the left-hand side of (2.25) is
independent of 7. It follows that we may take 7 = 0 in the formula, thereby obtaining the
tidy representation

ioo

3
_ 1 st A_-;(S, L) Aj(s)T
u(z,t) = ngl 53 fﬁwe __—-_F&(s,b) e ds. (2.26)



Here, if s is written as s = ip®, then the Ajy §=1,2,3, are the roots of
10"+ (14 36°5)A — 3602 + A3 = (2.27)
or, equivalently,
A=+ (A =b)+ (ip* + b+ b%) = 0. (2.28)

Notice that the A; are independent of L, but certainly depend on 5. To be definite, the );’s
are arranged so that Re A, < 0, Redy > 0, ImA, > 0 and Re); > 0, Im )\; < 0. Thus, if
=0, then Ay = 0 and My 3 = (3b4 /b2 — 4(1 + 3b?)) /2. Moreover, from (2.27) and (2.28),
it is straightforward to check that for nonzero p, there are no A; that are either purely real
or purely imaginary, nor can they lie on the axis Re A\ = b. This implies that for nonzero 17

in R,

ReA <0, Im), #0, ReA; > b, Im ), >0, ReA; > b, ImA; < 0. (2.29)

Also, the three curves Aj = Aj(p) for p € R are symmetric about the real axis in the \- plane,
which is to say, Im ), (- p) = ~Im A\ (p) and Im A2(=p) = —Im A3(p).

Isolate the terms in (2. 26) contalmng hi(t), 7 = 1,2,3 as follows. Let Ajm(s,L) be
obtained from A. (8, L) by letting hm(s) = hk( )=0for k,m =1, 2,3, k # m. Then, the
solution u(z,t) in (2.26) can be rewritten as

u(z,t) = uy(z,t) + Up(,t) + ua(z,t) (2.30)

where u,,(z,t) only involves hm(t) and is defined by

3 .
§ : 1 e stAJ‘ m(é L) Aj(s)z i
el o 27”/0 Als, L) ¢ i de

st ) A8zt
+sz/ A( L 7 o (s)ds

1 0o ,O,L)
—ip3¢ J’m A :ch 3 2d
+Z /0 A () O )30 dp

=It+ I,; (2.31)

where At (p) = h,, (ip®) and A%, A%, are obtained from A, Ajm by replacing s with ip3 for
p = 0. Note that A~(p) = A+(p), Asm(0) = AT (o), 5=1,2,3 and b = b,

10



Lemma 2.3 For any p € R*, A+(p) # 0 and there is ¢ constant C, such that |A*(p)| <
C1|pletV3#P)2. Moreover, there is a constant C such that

V3 3
A+(P)=P<—2‘—§’L eV3R2 1+ AT (p)

where |AF (p)| < Clp| as p — +oo. The constants C and C; may be chosen to be independent
of L.

Proof: If A+(p) = A(ip®, L) = 0 for some p > 0, then there is a nontrivial solution of

ip*u + (1 + 3b%)ug — 3bugg + Ugze = 0, (2.32)
w(0) =0, u(L)=ug(L)=0.

Multiply (2.32) by @ and integrate it from 0 to L to obtain
L
/ (ip®|ul? + (1 + 30%)ust + 3b|ug|® — Uzels)dz = 0 (2.33)
0

where integration by parts has been used. The elementary identity

L i L
/ ugudz + / figudz = 0=2Re / UL BAT
0 0 0

implies that fOL uyidz is purely imaginary. Also,
L i
/ UgpUedT + / Uglez 0T = umﬂx|€ = —I'u,,,.(O)I2 .
0 0

which implies 2Re fOL Uggliedz = —|ug(0)]2. Therefore, the real part of (2.33) has to be of
the form

L 1
/ Bblusl?dz + 5 lua(0)1? =0
0

which yields uz = 0 or v = 0. This contradiction leaves only the conclusion A(ip®, L) # 0

for all p € R*. Moreover, it is straightforward to show that

A(s) =2 +23NL (N3(5) — Ap(s)) + (Aa(s) — Al(s))e(Al(s)_Aii(s))L
+ ()\1(8) - )\3(8))60\1(3)—)‘2(8))1‘ . (234)

As p — +o0, the A} (p) have the asymptotic forms

V3 1. V31 .
M(p) ~ =P = Pt M)~ 5p =50, A(p) ~btpt. (2.35)

11



Substitution of the asymptotic forms in (2.35) into (2.34) gives the asymptotic form of
A% (p, L), namely

. 3 i -y’—_} = pt —p1
AT (ip, L) = (%p - gpv,) e( Frtiei)L _ V3perit

! (% + 39@') L Ol = (ﬁ : 3) L5 ()

; VE
as p — +00. This implies that |A* (ip®, L)| < 01]p|c:( o)L and [Ad (p)| £ Cp, where C and
Cy can be chosen to be independent of L. Similar estimates hold for p < (). The proof is

complete. [

Remark 2.4 The proof of Lemma 2.8 is easily extended to show that A(s,L) # 0 for any
s=r+ip withr >0andp€ R

Next are recounted a couple of technical lemmas that will find frequent use in this section.

The proofs can be found in [13].

Lemma 2.5 For any f € Ly(0,+00), let K f be the function defined by

+00
Kf(z) = /0 097 £ (1) dp

where v(u) is a continuous, complez-valued function on (0, +00) satisfying
() SuPgcpcs ﬁ|R3V(N)| 2b>0,
(i) imyy poo (1) = e+ 1B with o + 2 # 0,
(1ii) Rev(u) # 0 for i > 0.
Then, there exists a constant C independent of L such that for all f € Ly(R™),

1 Fleato) < G (IR O8F Ol + 17 Ollzan)

Lemma 2.6 Let a > 0 be given. For any f € L,(0,a), let Gf be the function defined by

Gf(z) = / 409 £ (1) du

where £ 1s a continuous real-valued function defined on the interval [0,a] which is C' on the
open interval (0, a) and such that there is a constant Cy for which m <Cyfor0< pu < a.
Then there ezists a constant C' such that for all f € Ly(0, a),

”Gf“Lg(O,a) S C”f”£l2(°7”’)'
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The following propositions provide estimates for uy, u; and ug, respectively.

Proposition 2.7 There ezists a constant C independent of L but which may depend on b,
such that for all by € H3(R¥)

N s (s ) oo,y + N llzareizn oy < Clilall gy oy

and

le[tr,)L] (”aﬂ?ul(m’ ')lez(R"') + H’Uq(.'E, ')Hyll/a(pﬁ)) < C”hl”H;,(m) .

Proof: First assume that hy(t) is smooth with compact support in R*. From the definitions
of As1, 1=1,2,3, 1t is determined that

Al,l el ()\3 - /\2)6(A2-+>‘3)L ’ A2,1 = ()\1 - )\3)3('\1“3)1' ) A3,1 = ()\2 - >\1)6('\1+>‘2)L .
Because of the asymptotic forms (2.35) of the A;, i =1,2,3, it thus follows readily that

Al l(p: L) &;] (P, L) ~ e_épL AT,I(ﬂ) L) = 6_\/§pL
A+H(p, L)~ A¥(p L) © At(p, L) ’

as p goes to +oo. Note that the coefficients of the highest order terms in these asymptotic

(2.36)

forms are independent of L. An application of Lemmas 2.5 and 2.6 yields a constant C

independent of L such that
A+1(p: L)

+ 2|4 2
|1 (%, a0 < Z/ At pL (eReAj(p)L+1> 'hf’(p)3p2\ dp

oo heo 400 )
: CZ/O ’h?(p)pz\ ap S C/ (14w /0 e hy (7)dr
0

< Ol g s, (2.37)

400

ap

The same argument can be used to obtain the inequality

M7 (2, )20y < Cllhl? 4

Y (R+)

where C is independent of L. Moreover, observe that

3
1 oo 18 '-*'51/39:A ( /8 L)
am_[i*'(gj’t) :Z%/O e tAj(Sl/a)exJ( ) AJ+1(51f3 L) h+(81/3)d
J=1

The Plancherel Theorem (with respect to t) implies that for any = € (0,L),

, 3 i +00
. i
1017 (2, MLy prry S ; o /0

2
AL (83, L) .
173y AT (st %)z Tt ? 1/3
AF (5173)e ) mh;(s/ )| s, (2.38)
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By Lemmas 2.5 and 2.6 and analysis analogous to that leading to (2.37), there obtains

+ 1/3 ;Ll( 1/3'[’) Rext(s1/3)L T4+7.1/3 ’
/naf ]rL2R+dz<cZ/ m(e ; +1)h1(s )| ds
oo o | [T 2
—iuT
<o a+n / ey (r)ar| du < Ol
In addition, (2.38) yields that for k = 0,1,
At (513 L) . 2
sup ||O5TF (z,-)||2, (r+) S CZ/ sup (31/3))ke’\f(sl/s)”’—”"‘ﬁ‘—)hﬂsl/s) ds

z€(0,L) z€|0, L] A+(S”3:L)

sC‘Z/ (1 )PP )Pl b
The same proof may be carried out for at%ff’(t, z). Since ); is independent of L for i = 1,2, 3,
the constant C' can be chosen independently of L.

For arbitrary h; € H %(R'*), a limiting process together with an application of Fatou’s
Lemma yields the advertised estimates, thereby completing the proof of the proposition. []

Similar arguments can be used to prove the following propositions; details for estimates

of this sort can also be found in [13].

Proposition 2.8 There exists a constant C independent of L but which may depend on b,
such that for all hy € H3(R"),

iR (uz(, )lrao,0) + llullo(rtsmro,z)) < C||h2HH§(R+)
and

o (G TR e/ A

Proposition 2.9 There ezists a constant C' independent of L, but which may depend on b,
such that for all hy € Ly(RT),

,Sup lus(, ) lLao,L) + sl ogrtsmo,y) < Cllhsliar+)
<t<oo

and
SUP] <||3wU3($: Wearey + lus(z, ')Hnﬁ‘(m)) < Cllhs|orr) -

z€[0,L

14



Let h(t) = (hi(t), ha(t), ha(t)) and write the solution of (2.14)-(2.16) symbolically as
u(t) = ur(t) + ug(t) + ua(t) = We(t)h.
With the notation
T2 — 2
1Bl = (I s, * I

Propositions 2.7-2.9 imply the following.

2 2
7% 0,1) U ”hSHH%(o.T)) ' (2.39)

Proposition 2.10 For all h(t) with ||R(t)||n, < 0o, the solution u(z,t) = Wy(t)h satisfies

sup |[u(, )l Lao,n)  Nullzorsmo,ny < ClibllE,
0<t<oo

and
oup. (10cua, ey + 1 + Vel ) < Gl

z€[0,L] 2 (RF)

where C 1is independent of L and K.

To study Wy (t)$, consider the pure initial-value problem

wrt (1 + 3% ug — 3bUgs + Uzee =0,  TER, >0, (2.40)
u(zr,0) = ¢*(z), T€E€R,

and denote its solution by v, so that
L AR ) CON—
v(z,t) = We(t)¢*(z) = o / (€5 —(14307)0)t= 307t ik / e~ e p* () dyde. (2.41)
T J-oo —o0
Let a function ¢ be defined on an finite interval [0, L] and let ¢* be an extension of ¢ to the

whole real line R. The mapping ¢ — ¢* can be organized so that it defines a bounded linear
operator B from H®(0, L) to H*(R) with

16" @)l or) = || Bo@)lmo(r) < Clld(z)llme0,0)

and C independent of L. (Indeed, the extension can be made so that supp{¢*} C [-1,L+1],
say, if we so desire.) Henceforth, ¢* = B¢ will refer to the result of such an extension
operator applied to ¢ € H*(0,L). Let v defined by (2.41) correspond to ¢* = B¢ for some
¢ € H0,L). If (t) = (v(0,t),v(L,t), vz(L,1)), then

vy = v3(, t) = Welt)7 (2.42)

is the corresponding solution of the non-homogeneous boundary-value problem (2.14)-(2.16)
with boundary condition h(t) = g(t) for t > 0. It is clear that for z € [0, L], the function
v(z,t) — vg(z,t) solves the IBVP (2.4)-(2.6), and this leads directly to a representation of
the semigroup Wy, in terms of W,(t) and Wr(t).

15



Proposition 2.11 For a given s and ¢ € H*(0, L), if ¢* is its extension to R as described

above, then Wi (t)¢ may be written in the form
Wi(t)¢ = Wr(t)$* — Wy(t)g (2.43)
Jor any z, t > 0, where the components of § are the traces of Wr(t)¢* at 0 and L and of
8, Wi(t)d* at L.
Next, attention is turned to the spatial trace of Wy(t)¢.

Proposition 2.12 Let s > 0 be given. There ezists a constant C depending only on s such
that

u s < ) 2.
iep HWR(t)Gb”Hr_g_l(R) < Clldllzscry (2.44)
Wr(t < S(R) 2.45
ilelp [0z Wr( )¢||H§<R) Cliglla (R) ( )

for any ¢ € H*(R).

Proof: We only provide the proof of (2.44). The proof of (2.45) is very similar and is
therefore omitted. For convenience, we take b = 1/3 so that 1 + 3b2 = 4/3. This choice
simplifies the formulas, but does not affect the result. Let u(z,t) = Wg(t)$. Then, the

change of variables €2 = ) reveals that

’LL(.'II,t) — %/00 eiz)\l/3ei(z\—p/\l/a)f.—/\z/at/\—2/3&(}\1/3)05)\

for t > 0. The proof of the following assertion will be given in the Appendix.

Claim: The linear mapping defined by
)= [ 0
is bounded from L?(R) to L%(R™).
Using this result, it follows that
(@, )llarry < CIAT2BIOY®) | y0my < Clidllr-1(ry
for any z € R. Note that

ue(z, ) = / " et O (6 ) _ ez

o0

16



Applying the aforementioned change of variables and the Claim yields

llw(z, Wmr < Cliéllar)
for any z € R. The inequality (2.44) then follows by interpolation.

By Proposition 2.12, it is known that 7 = (Wgr(t)¢*|z=0, Wr(t)¢*|s=L, Oz Wr(t)d*|z=L) €
H, satisfies

13110 < ClidllLao,n)
if ¢ € Ly(0,L). Therefore, by Proposition 2.10, u(z,t) = W(t)g satisfies

cup (100 M+ 1o Mo + e ) <Ol < Clliatr
z€(0,L] & (RT)
(2.46)

where C is independent of L. Combining (2.43) and (2.46) with Proposition 2.1 gives the
following result.

Proposition 2.13 For all ¢ € L2(R), the solution u(z,t) = Wi(t)¢ of (2.4)-(2.6) satisfies

sup [|u(,t)|lzary + llllzaet a0,y < Clléllzao.r)
0<t<oo

and

sup. (1100(2, aaaire) + 16053 ity + 165 Mydony) < Oéliaton

z€[0,L]

where C 1is independent of L.

Combining Propositions 2.2 and 2.13 leads to the following conclusion.

Proposition 2.14 For all f(z,t) € L1([0,T7, Lo4(0, L)), the aforementioned solution u(z,t) =
JEWL(t = 1) f(,7)dr of (2.8)-(2.10) satisfies

T
SUPT||U('>t)||L2(o,L) + llullzo oy 0,0y S Cfo [R{CEa AT

0<t<

and

T
sup (Hazu($7 ')“Lz.e(O,T) + HU(.’E, ')“Lz,e(O,T) .3 [Iu(w, .)HH%(O T)) < CA Hf('ﬂ')HLz(OyL)dT

z€[0,L]

where C is independent of L and T'.
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Proof: Observe that
w%w=3AXWQa—Tvonwdn=£T&wvmﬁ@u—ﬂfmﬂ)w

where

S (T) =

1 if 7€ (0,t)
0 of T >t

Applying the Minkowski integral inequality gives

llw(z, Merpm < /: (/{;TK(o,t)(T)WL(t - T)f(',T)[zdt) " dr

/ (/ Wit —1)f |dt>1/zdr.

Thus, invoking Proposition 2.13 yields

1/2
SUDge(0,L) |,U($,')||L2(0,T) _/ sup (/ (Wr(t—71)f )| dt) dr

0 z€(0,L)

i
sc/'wmﬂmmmm
0

where C' is independent of L and T. The proof is complete. [

3 Linear estimates for (1.13)
Consider now the linear IBVP

wt+(1+3b2)wm—3bwm+w$m=0, z>0, t>0, (3.1)
w(0,8) = h(t), w(z,0) = §(z), (3.2)

on R* = [0,+00). The estimates for (3.1)-(3.2) are very similar to those for (2.1)-(2.3).
Consequently, we only list the properties of the solutions of (3.1)-(3.2) and omit their proofs.

Denote the solution of the problem

U+ (1 + 30" )uy — BbUgy + Ugge =0, >0, ¢>0 (3.3)
u(0,t) =0, t>0, uw(z,0) =¢(z), >0 (3.4)

by u(t) = We(t)é.

18



Proposition 3.1 For any ¢ € Ly(R¥), u(t) = Weo(t)¢ satisfies

i
ot Dl + 80 [ [ witeridzar + [ 20,71 = i gnn

0

The solution u(t) = fot Weo(t — 7) f (-, 7)d7 of the inhomogeneous linear problem

wt(1 + 36%)tg — 3bUgy + Usee = f(2,t), >0, t>0, (3.5)
u(0,t)=0, t>0, u(z,0)=0, x>0, (3.6)
obeys the inequality in the following proposition.
Proposition 3.2 Forany f € Lijoe(R*; Log(RY)), the solution u(t) = f Wy (t—=7)f(:, 7)dT
of (3.5) and (8.6) satisfies

sup Jlu(-, )12, r+) +6bf / 2d$dt+/ w2(0,7)d7 < B\ F11Z, (orrsLa(r+))

te[0,T)

for any T > 0.

Next, consider the boundary-value problem

ug+(1 + 36%)ug — 3bUgg + Usee =0, >0, >0, (3.7)
u(0,t) = h(t), u(z,0)=0. (3.8)

By applying the Laplace transform to (3.7) with respect to t, the solution u may be written

as
N < BTN
u(z,t) = = e*th(s)eM)2ds = Wyph, (3.9)
where ), satisfies
s+ (1+3)A =322+ X =0 (3.10)

and Re)\; < 0 for s # 0. If s = ip, then for p small,

ip
A~ ——s 3.11
! 14 3b%° (811)
and for p > 0 large
V3 1
M (p) ~ =P =500 (3.12)

The proofs of the following propositions follow by the same arguments as for the analogous

results on [0, L], and so are omitted.
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Proposition 3.3 There ezists a constant C such that for all h € Hi(R*), u(z,t) = Wyh
satisfies

oS50 16y Ollzatrer + Nullzagre animey < Ol 4 s

and

0 (1000 Mascen + 1002, sy < Ol -

Using the properties of Wg(t)¢ that follow from the representation (2.41), the same proofs
as those appearing in support of Propositions 2.13 and 2.14 yield the following spatial trace
result for W, (t)¢.

Proposition 3.4 For all ¢ € Ly(R*), the solution u(z,t) = Wy (t)¢ of (3.3)-(3.4) satisfies

oS Nu(s Ol Larey + NullLamsm ey < ClldllLors)

and

sup {102 (2, )| mt) + 102, Mz arry + ulz, )|y < Cligllzarsy -
) Hy (RY)

z€[0,00

Proposition 3.5 For all f(z,t) € Li([0,T], Ly -(R*)), the solution

u(z,t) = /;Woo(t —7)f(,T)dr
of (3.5)-(8.6) satisfies

T
(502, 1 Dllaagesy + llagoianiaey < © [ 177 acurndr

and

sup. (1802 Moy + 16 Moy + 1 M ) SO [ 1ot

z€(RT)

where the constants C' are independent of T
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4 Local well-posedness

In this section, consideration is given to the full nonlinear IBVP

u, + (14 3b°)ug — 3bUss + Uses + by buyu = f(z,t) for (z,t) € [0,L] x RT,

(4.1)
’U,(O,t) = hl(t) ; U(L,t) = hz(t) ) Ux(L,t) = h3(t) ] t > 0, (42)
u(z,0) = $(z), 0<a<L. (4.3)

For any T > 0, let X, 17 be defined to be
143 149 s
Xsrr = Li([0,T); H*(0, L)) % H*(0,L)yx H'® (0,T) x Hs (0,T) x Hs3(0,T)
with its product topology and let Y, be the collection of
v € O([0,T}; H* (0, L)) N Lo((0, T}; H(0, L))

such that v € C([O,L];H%E(O,T)) and v, € C([0,L); H3(0,T)). A norm || [ly, .r OB the

space Y; .7 is the obvious one, namely,

”UH%',,L,T ::“’UHZC([O,T];H’(O,L)) + ”Ulliz([O,T];HH'*(O,L))

+ ol

2
C([U,L];HI_-F (0,7)) o “U"”“C((O,L);H%(O,T)) ' (4'4)

The space X, 1,7 Was used in [13] while Y, 1,7 was not defined before. However, it was shown
in [13] that the solutions obtained there have finite norms defined in (4.4). Here, because
of the KdV-Burgers nature of (4.1), we can derive the uniform estimates of solutions with
respect to L and prove the local well-posedness of the problem in a small time interval which
is independent of L. For notational convenience, write Xorr = XL,T and Yoo = Yr1- The

space Y; 7 possesses the following helpful property.

Lemma 4.1 Forany T > 0,5 >0 andu, v € Ys L1,

)

where the constant C is independent of T and L.

H*(0,L) dt < ¢ (T1/2 o T1/3> ”uHYs,L,T”U“Ya.L,T

Proof: The proof is exactly the same as the proof of Lemma 3.1 of [13] except that in this
earlier analysis, the dependence on the constant C on L was not examined. Thus, it remains
to be shown that the constant can be chosen independent of L. Elementary consideration
implies that

1 L
e (a0 < 3 [ (0 e 2 Dl Olason
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Thus, if L > 1, it follows that

Jax [u(, )] < Jlul Ollao.) + V2lul, O 1y lual, DI, 4,

and this is independent of L. The remainder of the proof is the same as that of Lemma 3.1
in [13] and is therefore omitted. OJ

The next step is to show that the IBVP (4.1)-(4.3) is locally well-posed in the space X r.

Proposition 4.2 Let T > 0 be given. For any (f,$,k) € Xy with h = (hy, hy, hs), there
is a T* € (0,T) depending only on ||(f, ¢, FL)”XL‘T such that the IBVP (4.1)-(4.8) admits
a unique solution u € Yppr.. Moreover, for any T' < I*, there is a neighborhood U of
(f, &,k h) such that the IBVP ({.1)-(4.8) admits a unique solution in the space Y, for any
(g,%, R 1) € U and the corresponding solution map from U to Yy 1 is Lipschitz continuous.

Proof: Write the IBVP (4.1)-(4.3) in its integral equation form, wviz.
¢
ut) = Wal)g+ Wi+ [ Wit —n){s(,7) — e, —bujubar,  (45)
0

where the operator W,(t) is as defined in Proposition 2.10 and the spatial variable is sup-
pressed throughout. For given (7, ¢, }_i) € Xpr, let 7 > 0 and @ > 0 be constants to be

determined and let
Sor={veYip: [vlly,, <7}
The set Sy, is a closed, bounded subset of the space Yy ¢ and is therefore a complete metric
space in the topology induced by that of Y7 6. Define a map I on Sy by
L(v) = Wi(t)d + W,()h + /Ot Wit —7){f - e(b'H’a)T_”(vm — bv)v}dr.

For any v € Sy,
IT@lvee < Colllllzawoay + l1Bllm,)

+C /09 (Hf(',T)“Lz(o,L) + O (||vvg (-, 7)| oo,z + ”bv2('>T)HLz(o,L))) o

S (Cot QOIS 8 Rl r + Coc®™? (612 4 61%) o2, |

where Cy, Cy and C, are constants independent of L and 7. As the norm on Yy g has three
parts, this amounts to three inequalities, all of which follow immediately from the linear
estimates in Section 2 and in Lemma 4.1. Choosing r > 0 and 8 > 0 so that

= 2(00 + Cl)”(fa ¢, ]_7:)”/‘(1,,7‘:
(4.6)
026(b+b3)o (91/2 ok 91/3) r< i’
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or, what is the same,
1
< = ;
8C2(Co+ C)II(f, ¢, )l xz.r

(b+82)0 (91/2 m 91/3) (4.7)

then
IT(W)lyee <7

for any v € Sp,. Thus, with such a choice of r and 6, T’ maps Sy, into Sp,. The same type
of estimates allow one to deduce that for r and ¢ chosen as in (4.6) and (4.7),

1
T (v1) — T(w2)llyze < 5“01 — v2|lyz

for any vy, vz € Sp,r. In other words, the map T is a contraction mapping of Sy . Its fixed
point u = I'(u) is the unique solution of the integral equation (4.5) in Sp,. The Lipschitz
continuity follows directly from the contraction mapping principle. The local well-posedness
of (4.1)-(4.3) is thereby established. U

Next, attention is given to the local well-posedness of the associated quarter-plane prob-
lem, which is the IBVP

w1 + 3b*)ug — 3btigy + Ugas + Oty by = f(z,t), z>0, t>0, (48)
u(0,t) = h(t), t>0, u(z,0) = ¢(z), = >0. (4.9)

For any T > 0, let X, o denote the space
X,y oom = L1([0,T]; H*(0,00)) x H*(0,00) x H3*(0,T)
with its product topology and let Y; e be the collection of

v € C([0,T]; H*(0, 00)) N Ly ([0, T}; H'**(0,00))

with v € C([0, 00); H**(0,T)) and v, € C([0,00); H5(0,T)). A norm Il - on the space

Y; cor is defined by

Ys.oo,T

||U||§;‘°°,T ::”UHZC([O,T];HS(R'*) + ||U||%2([0,T];H1+3(R+))

2 2
i HU“c(R”f;A‘Il‘iai(o,T)) v Hv”"HC(I‘”;H%(O,T)) ’ (1)

These spaces have not been defined previously for the solutions of KdV equation and can
only be introduced for solutions of KdV equation with exponential decay at positive infinity.
Again, denote Xo,co,r = Xeor and Yoo = Yoo,r- In this context, Lemma 4.1 also holds,

thereby yielding the following proposition about local well-posedness, whose proof is omitted.
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Proposition 4.3 Let T > 0 be given. For any (f,é,h) € Xoo,rs there is a T* € (0,T)
depending only on ||(f, ¢, h)||x.. » such that the IBVP (4.8)-(4.9) admits a unique solution
U € Yoo, Moreover, for any T' < T*, there is a neighborhood U of (f,$, h) such that the
IBVP (4.8)-(4.9) admits a unique solution in the space Yo, v for any (g, v, hy) € U and the

corresponding solution map from U to Yoo is Lipschitz continuous.

Next, consider the forced linear problem

ug + (1 4 36%)ug — 3bUgy + Ugee = f(z,8), 2z €[0,L], t>0, (4.11)
U(O,t) =h (t) , U(L,t) = hg(t) , ux(L, t) = h3(t) , t>0, (412)
u(z,0) = ¢(x), z €[0,L]. . (4.13)

If (f, ¢, E) € Xp,r, then the linear estimates derived in Section 2 imply the corresponding
solution u of (4.11)-(4.13) belongs to the space Y, 1 and satisfies

Yir S ClI(f, ¢ }_7:) (4.14)

”u XL,

for a constant C independent of L. The next lemma gives an estimate on solutions of
(4.11)-(4.13) in the space Y, 1 7 with s in the range 0 < s < 3.

Lemma 4.4 For given T > 0 and s in the range [0, 3], let there be given (f, /—i) € XoLT

satisfying the compatibility conditions

¢(0) = h1(0), &(L) = h(0), if 3<s<3§, o0r
(4.15)
¢(0) it hl (O)a ¢(L) = h’2(0); ¢I(L) = hg(O) y ’Lf % < s < 3
Then (4.11)-(4.13) admits o unique solution u € Y, L v and
[|u Yorr < Cli(f, ¢, E) XoL,T (4.16)

for a constant C > 0 independent of f, §, h and L.

Proof: The proof is provided for s = 3. The result for other values of s can be established
by interpolation using (4.14). For the solution u of (4.11) with f = 0, let v = u,. Then the

function v is a solution of the linear problem

v+ (1 + 3b%)vy — 3bvgg + Vgge =0, ze€[0,L], t>0, (4.17)
v(0,t) = hy,(¢), v(L,t) = hy(t), vz(L,t) = ha(t), t>0, (4.18)
0(2,0) = —(1+ 30")bs + 3baz — buos = d1(z), z € [0,L]. (4.19)
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Applying (4.14) to v in (4.18)-(4.19) yields that

”’U”YL,T < CH(O7 ¢1a }:"-;)”XL.T'

Define the function u by

Then u(z,0) = ¢(z) and

u(0,) = /t v(0,7)dr + ¢(0) = /0 By (7)dr + $(0) = ha(t) — h1(0) + $(0) = M (t)-

0

Similarly, u(L,t) = hy(t) and uz(L,t) = hs (t). Furthermore, it is easily verified that u(z,t)
satisfies (4.11) with f = 0. Thus, u solves the IBVP (4.11)-(4.13) with f = 0. Since

Uges = —V — (14 3b?)ug + 3buss,

it follows that u € Y3 1 r and satisfies (4.11) with s = 3. Therefore, for 0 < s < 3, it follows
that

Wi ()8lly,. .o < CNO, &, O)llxs -
Next, consider the solution of (4.11)-(4.13) with h = ¢ = 0. The corresponding solution is

u(z,t) = /0 Wyt — 1) (-, T)dr

By a proof similar to that of Proposition 2.14, there obtains the inequalities

T
”u(:l")t)”YS,L,T SC/O ”g(O,t) ('r)VVL(.‘t - T)f('v T)ll}rs,L'TdT

Xoz2d7 < ClI(£,0,0)

Xa.L.T “

0
<c [ 105,70
0
The proof of the Lemma is complete. O

Theorem 4.5 Let T > 0 and let s in the range 0 < s < 3 be given. Suppose that (f, o, H) €
X1 satisfies the compatibility conditions appearing in Lemma 4.4. Then, there ezists @
T* € (0,T) depending only on ||(f, ¢, )| x, .- such that (4.1)- (4.8) admit a unique solution
u € Y, r+. Moreover, for any T' < T*, there is a neighborhood U of (f, ¢, h) such that the
IBVP (4.1)-(4.8) admits a unique solution in the space Ys 1 for any (g, ¢, hi) € U and the

corresponding solution map is Lipschitz continuous.
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Proof : For given (f, ¢, f_i) € X, o satisfying the compatibility conditions in Lemma 4.4,
let 7 > 0 and > 0 be given and let Sp, be the collection of functions v € Y, L such that

“2e < 7. Then, arguing as in the proof of Proposition 4.2 and using Lemmas 4.1 and

4.4, one shows using a suitable choice of r and 6, that the contraction mapping principle

[[v
applies and gives a solution of (4.1)-(4.3) in Y, ;, 7v. The Lipschitz continuity follows directly
from the contraction mapping principle. The proof is complete. [J

Similar properties hold for the problem posed on RY, viz.

ut + (14 36%)ug ~ Bbugy + Uger = f(z,t), z >0 , t>0, (4.20)
w(0,8) =h(t), t>0, u(z,0)=q¢(z), 20k (4.21)

For (f,¢,h) € Xer, the corresponding solution u of (4.20)-(4.21) belongs to the space Yoor

and satisfies

”u Yoo, < C”(fy ¢a h)”Xoo,T (4'22)

for some constant C.

Lemma 4.6 For given T > 0 and s in the range [0, 3], let there be given (f, ¢, h) € Xs 00T
satisfying the compatibility conditions

¢(0) =h(0), if L<s<3. (4.23)
Then (4.20)-(4.21) admits a unique solution u € Y, 00,1 and

”u“Ys,oo,T < C”(fa ¢7 h)”Xs,oo,T (4'24)
for some constant C > 0 independent of f, ¢, h.

Theorem 4.7 Let there be given T > 0 and s with 0 < s < 3. Suppose that (f,$, h) €
Xsco,r Satisfies the compatibility conditions stated in Lemma 4.6. Then there exists a T* ¢
(0,T] depending only on ||(f,#, h)| Xooor SUCh that ({.8)-(4.9) admits a unique solution
U € Yy oo+ Moreover, for any T' < T*, there is a neighborhood U of (f, ¢, h) such that the
IBVP ({.8)-(4.9) admits a unique solution in the space Ys o1 for any (9,9, k) € U and the

corresponding solution map 1s Lipschitz continuous.

5 Global well-posedness

The results presented in Theorems 4.5 and 4.7 are local in the sense that the time inter-
val (0,7") on which the solution exists depends on ||(f, ¢, ]_-':)HXs,L,T or ||(f,é,h)|lx, 0 r In
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general, the larger (/s &, h)“XsLT or H(f,¢ R)|lx, c0.s the smaller will be T*. However, if
T* = T no matter what the size of ||(f, ¢, )HX.;LT or ||(f, ¢, h)||x, oo the IBVP (4.1)-(4. 3)
or (4.8)-(4.9) is said to be globally well-posed. In this section we study global well-posedness

of these problems. To simplify the exposition, we only consider the IBVP’s

g+ (1 + 30%)uy — 3bUgs + Usgs + ety by =0, z€[0,L], t>0, (51)

w(0,t) = h(t),  u(L,t)=us(L,1)=0, t>0, (5.2)
u(z,0)=¢(z), c€[0,L], (5.3)

and
wp-(1 + 3b%)ug — 3btgg + Usazs + ey _b)u=0, z>0, t>0, (5.4)
u(0,t) = h(t), t>0, u(z,0) = ¢(z), z>0. (5.5)

First, to study the global well-posedness, it is helpful to introduce some additional Banach

spaces. For s in the interval 0 < s < 3, let
ZSLT—H(OL)XH (OT)

and
ZW,T—HS(O oo)xH (0 T),

where ¢ is any fixed small positive constant. The compatibility conditions

$(0) = h(0), ¢(L)=0 if J<s<$,or
(5.6)
#(0) = h(0), ¢(L)=0, ¢(L)=0 if 3<s<3,
are imposed for (¢, k) € Z,,1,7, Whilst it is insisted that
#(0) = h(0), if 3 <s<3, (5.7)

for (¢, 1) € Zyporr -

Theorem 5.1 Let T > 0 and s be such that 0 < s < 3. For any (¢, h) € Z, L1 satisfying
(5.6), the IBVP (5.1)-(5.8) admats a unique solution u € Y, 1 7. Moreover, the corresponding

solution map is locally Lipschitz continuous.

Proof: In the context of an established local well-posedness result, it suffices to prove the
following global a priori H*-estimate for smooth solutions of the IBVP (5.1)-(5.3).
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Lemma 5.2 For given T > 0, there ezists a continuous and non-decreasing function vy :
R* — R*, independent of L such that for any smooth solution u of (5. 1)-(5.8),

sup “U’(a t)”H’(O,L) < 7(”(¢a h)”Zs,L,T) .
0<t<T

Proof of Lemma: For a smooth solution u of the IBVP (5.1)-(5.3), write u = w + v, where

v solves
vy + (1 + 36%)vg — 3bvgg + Vgge =0, ze€l0,L], t>0,
v(t,0) = h(t), v(t,L) =0, vg(t, L) =0, t>0,
v(0,2) = h(0)e™®, =z €][0,L],

and w solves

w + (1 &l 3b2)wx - 3bwrnm + Wezg + e(b+b3)t((6_bm(v + w))ﬁ(v + w)) =0 )

for z€[0,L],t>0, (5.8)
w(0,8) =0, w(Lt)=0, ug(Lt)=0, ¢>0, (5.9)
w(z,0) = ¢(z) — h(0)e™*, =z €[0,1], (5.10)

if 7(0) is well-defined (otherwise, set h(0) = 0). By Lemma 4.4, it transpires that

[vlivre < ClIR| (5.11)

14
HTE(0,T).

Multiply both sides of the equation in (5.8) by w and integrate over [0, L] with respect to z.
Integration by parts leads to

d

E”w("t),l%z(O,L) T 6b/0 wi(-,t)da: <C A e_bm(v('at) + w(':t))(v('at)w(" t) == wz(')t))mdw

L
< C/ e (J0*(, t)w(, )] + v, t)va(, )w(-, B)]
0
+ w0 (joa (0] + [l )] + o, 1) + w(, 1)) da. (5.12)
As was shown in [14], for any T'> 0 and s > —3, there is a constant C such that

< ClIh) 152,

”U”Lg((O,T);H”'%(O,L)) - H™¥ (0,L) (5.13)

for any h € HS 0, L). Of course, 4(z,t) = e~ (v(z,t)+w(z,t)) is a solution of the original
g

IBVP (1.7)-(1.9) for the KdV equation with g(t) = e*+*)*h(t) and u(z) = e~**¢(z). In

consequence of the results in [13, 14], it is the case that

@z, )llv,zr < alll(vo, 9z, z.r) (5.14)
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where o : Rt — R7 is a nondecreasing continuous function. Also observe that the right-hand
side of (5.12) is less than or equal to the quantity

C( sup [v(z, 1)] [0, )l ampllw( D)llzaeny + 5P [o(@: )l IlvaC Loy llw, Dz

z€0,L) z€(0,L]
+ sup [w(z, &) [[w( t)l| s, [ve( D) lliao,n + sup_lo(z, w20,
z€(0,L) z€[0,L]

+ sup_ w(z, )] a0, )llzon el Dllen)
z€[0,L]
< ¢ (o D1z 0.0 (o Do,z + (D o)

+ (e, ) lza0.0) + el Ol za)lw(: Dllzse.n (1va(, Bl zao.r) + ”'&("t)HLz(O,L))>

< Ol sy U Do+ e Dl )
+ w2 50,0 N5 )| mago,0) + 1EC B)llzaco,0)) + B/ O)llwa (s D)oo,y
+ Cullws D10y (1os - Dlzatoy + 156 D 202 -
Thus, because of (5.12)-(5.13) and the preceding inequality,

d L
Do+ 8 | w2t < Ol up et s

+ w20,z (10 D e,z + 126 Ollzaep) (v )l m e + 186 a0 + 1))
In consequence, one has that
d 2
v Dllzaor) < C(llv(, )0,z
Flw, B)llan (o Ol + N8 )l (v Ollmezy + 1EC Dlize + 1))

for any t > 0. The estimate in the Lemma with s = 0 then follows by applying the Gronwall
Lemma and (5.13)-(5.14). The proofs for s = 3 and then for 0 < 5 < 3 follow in the same

way as do the analogous inequalities in [13]. O

In a similar manner, one establishes the following theorem for the quarter-plane case.

Theorem 5.2 Let T > 0 and let s be so that 0 < s < 3. For any (¢, h) € Zs o satisfying
(5.7), the IBVP (5.4)-(5.5) admits a unique solution u € Yy co- Moreover, the corresponding
solution map for the IBVP (5.4)-(5.5) is Lipschitz continuous.
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6 Comparison

In this section, the solutions of the KdV equation in a quarter plane and on a finite spatial
domain are directly compared.
Let ur(z,t) be the solution of

Utz + Uy + Uggy = 0, z€[0,L], t>0, (6.1)
w(0,t) = g(t), w(L,t) =uz(L,t)=0, (6.2)
u(wﬁ O) = UU(‘T) ) (63)

and ux(z,t) be the solution of

UgFUg + UlUg + Ugge = 0, z €[0,00), t>0, (6.4)
u(0,t) =g(t),  u(z,0) = ue(z), (6.5)

where ug and g satisfy

9y 7 + Ie® o) sy < 00 (6.6)
or
gt tegts 7, + 200 (z) sy < 0 (6.7)

for some s with 0 < s < 3, where it is assumed that the compatibility conditions (5.6) or
(5.7) hold. By the previously developed existence theorems using the weight function e~2%
for the z-variable (i.e. b — 2b in the transformation and theorems), the solution u., =
e(2048°)t=2by, and uy = e N-202y, exist and satisfy we, € Y00, and wy, € Yy 7. In

particular, for all L > 1,
oo (L, M 142 7y + € la(Ls Mg 079 < C (68)

where C is independent of L, but may depend on T, g(t) and uy(z).
Let z(z,t) = voo(z,t) — ur(,t) for z € [0, L]. Then, w(z,t) satisfies

bz faee 3 (oo Fur)2)s =0 z€(0,Z], te0,T), (6.9)
20,) =0, 2(Lyt) = teo(Ly8), 2za(Lrt) = tens(L, 1), (6.10)
2(z,0)=0. (6.11)
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Defining v by v(z,t) = e~ (b+0%)ttbe 5 (1 1) it follows that v satisfies the IBVP

1 1
_(—uooz—uLx—i—buoo—i—buL)v— §(u°o—|—u,;)vx,

2
e[0,L], telo,T7, (6.12)
0(0,1) =0, v(L,t) = e (e ue(L, ))—hg(t) (6.13)
ve(L,t) = e~ O (Pl (L, 1)) = ha(t),  v(z,0)=0. (6.14)

v+(1 + 362)vg — 3bUag + Vggr =

Here, we note that from (6.7)-(6.8), z(z, t) decays like e~ at infinity and the transformation
from the KdV type equation for z to the KdV-Burgers type equation for v needs a factor
e~ Thus, v still has the decay rate of e —bz which is the reason for the weight function
e~2% imposed on ug(z) in (6.6)-(6.7). If R(t) = (0, ha(t), hs(t)) and vi(z,t) = W(t)h defined
in (2.42), then by Lemma 4.4 and (6.8), it is deduced that

”'Ul (.73, t)HYs,L.T < CHEI

m,on < Ce™* (6.15)

where the space Hj is defined in (2.39) and C is independent of L. On the other hand, the
function 9(z,t) = v(z,t) — vi(z,t) satisfies the IBVP

1

B4+ (1 + 3b?) 0y — 3bUgg + Vzez = 5 ( — Upop — ULz + DlUoo + buL) (D + ) (6.16)
1

— §(u°° +ur)(@+w)s, z€[0,L], tel0,T], (6.17)

50,0) =0, ©(L,t)=0(L,H)=0, #z,0)=0. (6.18)

Lemmas 4.1 and 4.4, applied as in the proof of Theorem 4.5, show that there is a 7% > 0
such that the solution ¥(z,t) of (6.16)-(6.18) exists in ¥;,z,7- and obeys the inequality

1y, ppe < C(Il(oo + ur)viellromyae o,y + | (|tco,e + Ur,ol + |too + wr)o || 1o,y Eeo,L))
—<— C(“uLHYa,L,T + ”uoo”ys,oo.T)”vln)s L,T S Ce—bL (6'19)

where C is independent of L. To establish that (6.19) holds for ¢ in the interval [0, 71, it is
only necessary to obtain a global estimate of 9. This is accomplished by a standard energy-

type argument as follows. Multiply both sides of (6.16) by ¥ and integrate the result from 0
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to L. Integration by parts yields

d

L L
d_t”ij("t)”%g[o,L] + 6b/0 175(';75)(155 < C</0 (Iuoo,:c + uL,zl + 'uoo + ULI)'Dde

L
+ / ([t + ULz| + U0 + ur|)v15 + ( 1o + uL[)vlymf))dz)
0

<C(sup |il|uc + urllmi(o,)ll9l| o0,y + sUP |v1|ltieo + || r1(0,0)1T]] La(o,r)
z€[0,L] z€(0,L

+ sup oo+ ucl el Flan)

Te|0,

SC((l + oo + ur || 0,0 Jtioo + ullmr o,y 18117, 0,y + SUP] |vi|l|ueo + wrll a0, 9]l Lo (0, 1)

z€(0,L

+ 908 [t + ualloralzaon o ) + el

z&|0,

where the inequalities

sup |5 < C(I[5(, )] Lo,y + 1192 (- )| oo, 19)
2€[0,L]

and
T2 (s D)l oo,y oo Funll o, 19 ago.ry < O115(, )12, 0,00+ (46) ™ ltooturllFrn 0,0 111250,

have been used with C' independent of L and § > 0 small. Then, the Gronwall Lemma and
(6.15) give

19( )l af0,21 <Collvall oo 0,0 1eo + uLllLoqo,ry (0,0

x exp(C([[ueo + urllZ, o,y 0.0y + oo + vrlli,orymno,0y)) < Ce™®L,

where C' is independent of L, but may depend upon T. The estimates of i for s = 1,2,3
can be obtained similarly, while those for non-integer s can be derived using interpolation.

(Here, note the equation for ¢ is linear). Finally, for ¢ € [0, T},

oo (1) = ur (s )0,y = 12y )l o,y < Cllv(, )L,z
< C”Ul('7t) + 5(') t)””"(oa[') < Ce—bL’

where C' is independent of L but may depend upon T and b. Thus, the proof of Theorem
1.1 is completed.
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Appendix

Here, a demonstration is offered of the point left open in the proof of Proposition 2.12.
Proof of the Claim: Let F,[£(g)](k) denote the Fourier cosine transform of Lg, viz.

[o o] o0
FIL(g))(k) = / cos kt / giA=PN o (3 ids,
0 —00
Since

1£(9) )22ty < CIFL(E) Lz ()

it is sufficient to estimate appropriately the quantities

LY = o (K + A — pAI/B) — X2

Direct consideration is given only to

[1(9)](k) = /°° - p)\l}qa();) k) — A2/3 dA

—oo b

as the other case follows by making the change of variables £k — —k in the relevant integral.
Break [I(g)](k) into real and imaginary parts thusly;

[1(9))(k) = ~[11(g)I(k) — il2(9)](K)

with
©0 A\2/3
N (= phBE — k)Y

(9)](k) = / ()

and

0 oN1/8
B@I0 = [ s e

To show that ||I;(9)]lzar) < CllgllLa(ry, it suffices to show that

o0

ess—sup,\/ |K (A k)| dk < C, ess—supk/ |K()\ k)| dx < C

—o0 —co

where

}\2/3
K()\k) = M3 4 (A — pAl3 — k)2’
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