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Abstract

We consider some Boussinesq systems of water wave theory, which are of coupled KdV type. After a brief review
of the theory of existence-uniqueness of solutions of the associated initial-value problems, we turn to the numerical
solution of their initial- and periodic boundary-value problems by unconditionally stable, highly accurate methods
that use Galerkin/finite element type schemes with periodic splines for the spatial and the two-stage Gauss-
Legendre implicit Runge-Kutta method for the temporal discretization. These systems are shown to possess
generalized solitary wave solutions, wherein the main solitary wave pulse decays to small amplitude periodic
solutions. Solutions of this type are constructed and studied by numerical means.
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1. Introduction

The coupled Korteweg-de Vries (KdV) system of equations is a system of Boussinesq type, [4], that
models the one-dimensional, bidirectional propagation of surface water waves of small amplitude and
large wavelength when the Stokes number is O(1). In dimensionless, unscaled variables it is written for
x ∈ R, t > 0, as

ηt + ux + (ηu)x + 1
6uxxx = 0,

ut + ηx + uux + 1
6ηxxx = 0,

(1)
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where η = η(x, t) represents the elevation of the free surface and u = u(x, t) the horizontal velocity at
some depth. The initial-value problem of (1) with initial data η(x, 0) = η0(x), u(x, 0) = u0(x), x ∈ R,
is linearly well-posed for (η, u) ∈ Hs × Hs for s ≥ 0 but is ill-posed in Lp for p �= 2, cf. [4]. For the
nonlinear system, it was shown in [5] that if (η0, u0) ∈ Hs ×Hs for s > 3/4, then there exist T > 0 and
a unique solution of (1) such that (η, u) ∈ C(0, T ;Hs)2, (ηt, ut) ∈ C(0, T ;Hs−3)2. Moreover, it is readily
seen that the solution of (1) conserves the quantities I1 =

∫∞
−∞ udx, I2 =

∫∞
−∞ ηdx, I3 =

∫∞
−∞ uηdx, and

the Hamiltonian H =
∫∞
−∞

(
1
6η

2
x + 1

6u
2
x − η2 − u2 − u2η

)
dx.

Related to (1) is the so-called symmetric coupled KdV system, [6], which is written in the form

ηt + ux + 1
2 (ηu)x + 1

6uxxx = 0,

ut + ηx + 1
2ηηx + 3

2uux + 1
6ηxxx = 0,

(2)

and which reduces to a symmetric hyperbolic system when the dispersive terms (the third-order deriva-
tives) are dropped. A local existence-uniqueness theory holds for the initial-value problem for (2) as well.
Specifically, it is shown in [6] that for (η0, u0) ∈ Hs × Hs, s > 3/2, there exists T > 0 and a unique
solution of (2) such that (η, u) ∈ C(0, T ;Hs)2. Note that the (2) is L2 conservative, as the quantity∫∞
−∞

(
η2 + u2

)
dx is invariant.

Another related system is a more general version of (1), namely

ηt + ux + (ηu)x + 1
6uxxx = 0,

ut + ηx + uux + ( 1
6 − τ )ηxxx = 0,

(3)

which contains a surface tension parameter, the Bond number τ , see e.g. [9]. For τ < 1/6 this system has
a local existence-uniqueness theory similar to that of (1).

In this note we study (1)–(3) numerically. The initial- and periodic boundary-value problem for these
systems, when discretized in space (we use the standard Galerkin/finite element method with smooth
splines on a uniform mesh) yields highly stiff systems of ordinary differential equations. Hence, it is not
efficient to use explicit schemes for their temporal discretization. (The latter work well with the nonstiff
Bona-Smith and ‘classical’ Boussinesq systems, [1].) We resort instead to the two-stage implicit Runge-
Kutta scheme of the Gauss-Legendre type, which is of fourth order accuracy and possesses favorable
nonlinear stability properties. The resulting nonlinear system of equations is linearized at each time step
by Newton’s method coupled with appropriate “inner” iterative schemes for solving the attendant linear
systems efficiently, in the spirit of the analogous scheme for the scalar KdV equation in [7]. The fully
discrete scheme obtained in this way is unconditionally stable and highly accurate; its construction is
outlined in Section 2 and the scheme is tested for accuracy in Section 3.

As approximations to the Euler equations of water wave theory the systems (1)–(3) could have been
reasonably expected to possess solitary wave solutions. We show in Section 4, by appeal to Lombardi’s
theory, cf. [11] and the references therein, that (1) and (2) do not possess solitary wave solutions in
the usual sense but have generalized solitary waves , which, instead of decaying to zero as |x| → ∞, are
homoclinic to periodic solutions of small amplitude (ripples). Such generalized solitary waves have been
shown to exist in cases of gravity-capillary surface wave models and also for various other model equations
and systems arising in water wave theory; see e.g. [2], [10]–[12], [14], [15]. We construct generalized solitary
waves for (1)–(3) by solving numerically periodic boundary-value problems for the nonlinear o.d.e. systems
that travelling wave solutions of these systems satisfy. The resulting wave profiles are indeed of the above-
described form and travel with constant speed and shape when inserted as initial values to the evolution
code of Sections 2 and 3. The system (3) possesses solitary waves of the usual type (for 1

12 < τ < 1
6 ) and

also generalized solitary waves.
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The present paper is accompanied by a second one by the same authors, in which the evolution code
is used in a numerical study of the generation, interaction and stability of the generalized solitary waves
of (1) and (2).

2. The numerical method

Let r ≥ 3 and consider the space Sh = Sr
h of periodic smooth splines of order r (degree r − 1) on

[a, b], on a uniform mesh with meshlength h = (b − a)/N . The standard Galerkin semidiscretization of
the initial-periodic value problem for (1) on [a, b] is a map (ηh, uh) : [0, T ] → Sh × Sh satisfying

(ηht, χ) = −(uhx + ηhxuh + ηhuhx, χ) + 1
6 (uhxx, χx), for all χ ∈ Sh,

(uht, ψ) = −(ηhx + uhxuh, ψ) + 1
6 (ηhxx, ψx), for all ψ ∈ Sh,

(4)

and for which ηh(0) = Πhη0 and uh(0) = Πhu0, where Πh denotes any one of the projections such as
interpolant, L2-projection, etc., such that for smooth, periodic v there holds that ‖Πhv − v‖ ≤ chr for
some constant c independent of h. Here (·, ·), ‖ · ‖ denote, respectively, the L2 inner product and norm
on [a, b]. Define F1, F2 : Sh × Sh → Sh by requiring that

(F1(η, u), χ) = −(ux + ηxu+ ηux, χ) + 1
6 (uxx, χx), for all χ ∈ Sh,

(F2(η, u), ψ) = −(ηx + uux, ψ) + 1
6 (ηxx, ψx), for all ψ ∈ Sh.

(5)

With this notation, the semidiscretization is a map (ηh, uh) : [0, T ] → Sh × Sh satisfying

ηht = F1(ηh, uh), uht = F2(ηh, uh), (6)

for all t ∈ [0, T ], and for which ηh(0) = Πhη0 and uh(0) = Πhu0.
We consider the map Q : Sh × Sh → Sh defined for v, w ∈ Sh as (Q(v, w), χ) = (vw, χ′), for all

χ ∈ Sh. We denote Q(v) = Q(v, v). Let Θ : Sh → Sh be the linear operator defined for v ∈ Sh by
(Θv, χ) = 1

6 (vxx, χ
′)− (vx, χ) for all χ ∈ Sh. Using this notation we may write the system (6) in the form

ηht = F1(ηh, uh) = Q(uh, ηh) + Θuh, uht = F2(ηh, uh) =
1
2
Q(uh) + Θηh. (7)

We shall discretize (7) in the temporal variable by the 2-stage Gauss-Legendre implicit Runge-Kutta
method, which corresponds to the table

a11 a12 τ1

a21 a22 τ2

b1 b2

=

1
4

1
4 − 1

2
√

3
1
2 − 1

2
√

3

1
4 + 1

2
√

3
1
4

1
2 + 1

2
√

3

1
2

1
2

.

Specifically, let tn = nk, n = 0, 1, . . . , J , where T = Jk. We seek Hn, Un, by way of the intermediate
stages Hn,i, Un,i in Sh, i = 1, 2, which are the solutions of the 2 × 2 system of nonlinear equations

Hn,i = Hn + k

2∑
j=1

aijF1(Hn,j , Un,j), Un,i = Un + k

2∑
j=1

aijF2(Hn,j , Un,j), i = 1, 2, (8)

using the formulas

Hn+1 = Hn +
2∑

j=1

bjF1(Hn,j , Un,j), Un+1 = Un +
2∑

j=1

bjF2(Hn,j , Un,j). (9)
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At each time step we solve the nonlinear system represented by (8) using Newton’s method as follows.
Given n � 0, let Hn,i

0 , Un,i
0 ∈ Sh, i = 1, 2, be an accurate enough initial guess for Hn,i, Un,i, respectively.

Then the iterates of Newton’s method for (8) (called the outer iterates) Hn,i
j , Un,i

j , j = 1, 2, . . ., satisfy
the linear system

Hn,i
j+1 −k∑2

m=1 aim

(
ΘUn,m

j+1 +Q(Hn,m
j+1 , U

n,m
j ) +Q(Hn,m

j , Un,m
j+1 )

)
= Hn − k

∑2
m=1 aimQ(Hn,m

j , Un,m
j ), i = 1, 2,

(10)

Un,i
j+1 − k

2∑
m=1

aim

(
ΘHn,m

j+1 +Q(Un,m
j+1 , U

n,m
j )

)
= Un − k

2∑
m=1

aim
1
2
Q(Un,m

j ), i = 1, 2. (11)

To solve efficiently the linear system represented by these equations, we add equation (10), i = 1 to (11),
i=1, and (10), i = 2 to (11), i=2. We also subtract equation (11), i = 1 from (10), i = 1, and equation
(11), i = 2 from (10), i = 2, producing four new equations which we write in operator form as a 2 × 2
block-diagonal linear system

⎛⎝A1 0

0 A2

⎞⎠
⎛⎜⎜⎜⎜⎜⎜⎝
Hn,1

j+1 + Un,1
j+1

Hn,2
j+1 + Un,2

j+1

Hn,1
j+1 − Un,1

j+1

Hn,2
j+1 − Un,2

j+1

⎞⎟⎟⎟⎟⎟⎟⎠+

⎛⎝ b

b

⎞⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
r1

r2

q1

q2

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where

A1 =

⎛⎝ I − ka11

(
Θ · +Q(·, Un,1

j )
)
−ka12

(
Θ · +Q(·, Un,2

j )
)

−ka21

(
Θ · +Q(·, Un,1

j )
)

I − ka22

(
Θ · +Q(·, Un,2

j )
)
⎞⎠ ,

A2 =

⎛⎝ I − ka11

(
−Θ · +Q(·, Un,1

j )
)
−ka12

(
−Θ · +Q(·, Un,2

j )
)

−ka21

(
−Θ · +Q(·, Un,1

j )
)

I − ka22

(
−Θ · +Q(·, Un,2

j )
)
⎞⎠ ,

b =

⎛⎝−ka11Q(Hn,1
j , Un,1

j+1) − ka12Q(Hn,2
j , Un,2

j+1)

−ka21Q(Hn,1
j , Un,1

j+1) − ka22Q(Hn,2
j , Un,2

j+1)

⎞⎠ ,

ri = Hn + Un − k
2∑

m=1

aim

(
Q(Hn,m

j , Un,m
j ) +

1
2
Q(Un,m

j )
)
, i = 1, 2

qi = Hn − Un − k

2∑
m=1

aim

(
Q(Hn,m

j , Un,m
j ) − 1

2
Q(Un,m

j )
)
, i = 1, 2

The above system is split into two 2 × 2 linear systems of equations given by⎛⎝ I − ka11J1(U
n,1
j ) −ka12J1(U

n,2
j )

−ka21J1(U
n,1
j ) I − ka22J1(U

n,2
j )

⎞⎠⎛⎝ vn,1
j+1

vn,2
j+1

⎞⎠+ b =

⎛⎝ r1

r2

⎞⎠ , (12)

and ⎛⎝ I − ka11J2(U
n,1
j ) −ka12J2(U

n,2
j )

−ka21J2(U
n,1
j ) I − ka22J2(U

n,2
j )

⎞⎠⎛⎝wn,1
j+1

wn,2
j+1

⎞⎠+ b =

⎛⎝ q1

q2

⎞⎠ , (13)
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where J1(φ)ψ = Θψ + Q(ψ, φ), J2(φ)ψ = −Θψ + Q(ψ, φ), and vn,i
j = Hn,i

j + Un,i
j , wn,i

j = Hn,i
j − Un,i

j ,
i = 1, 2.

Upon choosing a basis for Sh, it becomes apparent that (12), (13) represent two 2N×2N (N = dimSh)
linear systems for the coefficients of the Newton iterates. The following device was used to uncouple the
two operator equations in each system. Evaluating all four entries on the matrices A1, A2 at a point
U∗ ∈ Sh defined by U∗ = 1

2 (Un,1
0 + Un,2

0 ) (which makes the operators in the entries of these elements
independent of j and allows them to commute with each other), we may then write (12) and (13),
respectively as⎛⎝ I − ka11J1(U∗) −ka12J1(U∗)

−ka21J1(U∗) I − ka22J1(U∗)

⎞⎠⎛⎝ vn,1
j+1

vn,2
j+1

⎞⎠ = r̃ − b, (14)

and ⎛⎝ I − ka11J2(U∗) −ka12J2(U∗)

−ka21J2(U∗) I − ka22J2(U∗)

⎞⎠⎛⎝wn,1
j+1

wn,2
j+1

⎞⎠ = q̃ − b, (15)

where

r̃ =

⎛⎝Hn + Un

Hn + Un

⎞⎠− k

⎛⎝ a11 a12

a21 a22

⎞⎠⎛⎝Q(Hn,1
j , Un,1

j ) + 1
2Q(Un,1

j )

Q(Hn,2
j , Un,2

j ) + 1
2Q(Un,2

j )

⎞⎠
−k
⎛⎝ a11 a12

a21 a22

⎞⎠⎛⎝ J1(U∗) − J1(U
n,1
j ) 0

0 J1(U∗) − J1(U
n,2
j )

⎞⎠⎛⎝ vn,1
j+1

vn,2
j+1

⎞⎠ ,

and

q̃ =

⎛⎝Hn − Un

Hn − Un

⎞⎠− k

⎛⎝ a11 a12

a21 a22

⎞⎠⎛⎝Q(Hn,1
j , Un,1

j ) − 1
2Q(Un,1

j )

Q(Hn,2
j , Un,2

j ) − 1
2Q(Un,2

j )

⎞⎠
−k
⎛⎝ a11 a12

a21 a22

⎞⎠⎛⎝ J2(U∗) − J2(U
n,1
j ) 0

0 J2(U∗) − J2(U
n,2
j )

⎞⎠⎛⎝wn,1
j+1

wn,2
j+1

⎞⎠ ,

for j � 0. This form immediately suggests an iterative scheme for approximating vn,i
j+1 and wn,i

j+1, i = 1, 2.
This scheme generates inner iterates denoted by vn,i,�

j+1 = Hn,i,�
j+1 + Un,i,�

j+1 and wn,i,�
j+1 = Hn,i,�

j+1 − Un,i,�
j+1 for

given n, i, j and � = 0, 1, 2, . . ., (here vn,i,�
j+1 and wn,i,�

j+1 approximate vn,i
j+1 and wn,i

j+1 respectively) that are
found recursively from the equations⎛⎝ I − ka11J1(U∗) −ka12J1(U∗)

−ka21J1(U∗) I − ka22J1(U∗)

⎞⎠⎛⎝ vn,1,�+1
j+1

vn,2,�+1
j+1

⎞⎠ =

⎛⎝ rn,1,�
j+1

rn,2,�
j+1

⎞⎠ , (16)

and ⎛⎝ I − ka11J2(U∗) −ka12J2(U∗)

−ka21J2(U∗) I − ka22J2(U∗)

⎞⎠⎛⎝wn,1,�+1
j+1

wn,2,�+1
j+1

⎞⎠ =

⎛⎝ qn,1,�
j+1

qn,2,�
j+1

⎞⎠ , (17)

for � � 1, where, for i = 1, 2

rn,i,�
j+1 = Hn + Un − k

2∑
m=1

aim

(
Q(Hn,i

j , Un,i
j − Un,i,�

j+1 ) +
1
2
Q(Un,i

j ) +
(
J1(U∗) − J1(U

n,i
j )
)
vn,i,�

j+1

)
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qn,i,�
j+1 = Hn − Un − k

2∑
m=1

aim

(
Q(Hn,i

j , Un,i
j − Un,i,�

j+1 ) − 1
2
Q(Un,i

j ) +
(
J2(U∗) − J2(U

n,i
j )
)
wn,i,�

j+1

)
.

The linear systems (16), (17) can be solved efficiently as follows: Since a12a21 < 0, it is possible, upon
scaling the matrix on the left-hand sides by a diagonal similarity transformation, to write them as⎛⎝ I − 1

4kJ1(U∗) kJ1(U∗)/4
√

3

−kJ1(U∗)/4
√

3 I − 1
4kJ1(U∗)

⎞⎠⎛⎝ vn,1,�+1
j+1

µvn,2,�+1
j+1

⎞⎠ =

⎛⎝ rn,1,�
j+1

µrn,2,�
j+1

⎞⎠ , (18)

and ⎛⎝ I − 1
4kJ2(U∗) kJ2(U∗)/4

√
3

−kJ2(U∗)/4
√

3 I − 1
4kJ2(U∗)

⎞⎠⎛⎝ wn,1,�+1
j+1

µwn,2,�+1
j+1

⎞⎠ =

⎛⎝ qn,1,�
j+1

µqn,2,�
j+1

⎞⎠ , (19)

where µ = 2 −√
3. These systems are equivalent to the two uncoupled complex N ×N systems

(I − kβJi(U∗))Zi = Ri, i = 1, 2, (20)

where β = 1
4 + i/4

√
3, and where Zi and Ri are complex-valued functions with real and imaginary parts

in Sh, depending upon n, � and j, defined by Z1 = vn,1,�+1
j+1 + iµvn,2,�+1

j+1 , R1 = rn,1,�
j+1 + iµrn,2,�

j+1 and
Z2 = wn,1,�+1

j+1 + iµwn,2,�+1
j+1 , R2 = qn,1,�

j+1 + iµqn,2,�
j+1 .

In practice, only a finite number of outer and inner iterates are computed at each time step. Specifically,
for i = 1, 2, n � 0, we compute approximations to the outer iterates vn,i

j , wn,i
j for j = 1, . . . , Jout, for

some small positive integer Jout. For each j, 0 � j � Jout−1, vn,i
j+1 and wn,i

j+1 are approximated by the last
inner iterates vn,i,Jinn

j+1 , wn,i,Jinn
j+1 of the sequences of inner iterates vn,i,�

j+1 , wn,i,�
j+1 that satisfy linear systems

of the form (20). In practice, Jinn and Jout are such that(
2∑

k=1

(
‖Un,k,�+1

j+1 − Un,k,�
j+1 ‖2

�2 + ‖Hn,k,�+1
j+1 −Hn,k,�

j+1 ‖2
�2

))1/2

� ε,

and (
2∑

k=1

(
‖Un,k

j+1 − Un,k
j ‖2

�2 + ‖Hn,k
j+1 −Hn,k

j ‖2
�2

))1/2

� ε,

where ‖v‖�2 denotes the Euclidean norm of the coefficients of v ∈ Sh with respect to the basis of Sh, and
ε is usually taken to be 10−14 or 10−13.

Given Hn, Un, the required starting values Hn,i
0 , Un,i

0 for the (outer) Newton iteration are computed
by extrapolation from previous values as Hn,i

0 =
∑3

µ=0 αµ,iH
n−µ and Un,i

0 =
∑3

µ=0 βµ,iU
n−µ for i = 1, 2,

where the coefficients αj,i, βj,i are such that Hn,1
0 and Un,1

0 are the values at t = tn,i of the Lagrange
interpolating polynomial of degree at most 3 in t that interpolates to the data Hn−j and Un−j at the four
points tn−j , 0 � j � 3 respectively. (If 0 � n � 2, we use the same linear combination, putting U j = U0

and Hj = H0 if j < 0. Here, U0 = Πhu0, H0 = Πhη0).
Analogous numerical schemes may be readily derived for the coupled KdV systems (2) and (3) as well.

3. Errors of the numerical method

Since a rigorous error analysis of the fully discrete scheme (8)–(9) approximating the coupled KdV
system is still lacking, we performed an experimental investigation of its orders of convergence. We
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compared the numerical solution with an exact travelling wave solution of (1) derived in [8], valid for
x ∈ R and given, for ρ > 0, by

η(x, t) = −1
2 (1 + 1

6ρ) + 1
4ρsech

2
(

1
2

√
ρ(x− cst)

)
,

u(x, t) = −
√

2
2 (1 + 1

6ρ) + cs + 1
2
√

2
ρsech2

(
1
2

√
ρ(x− cst)

)
.

(21)

In (21) we took cs = 1 and ρ = 30 and solved numerically the initial-periodic boundary value problem for
(1) on the spatial interval [−5, 5] taking (21) for t = 0 as initial condition; both η and u differ from their
constant, large |x| asymptotic value by an amount of O(10−11) at the endpoints x = ±5 of the interval
and may be used as approximately periodic initial data. We integrated the system using cubic and quintic
splines on a uniform mesh with h = 10/N up to t = 1 with time step k = 1/M . In these computations,
in the case of cubic splines, we observed that the error tolerances mentioned in Section 2 were met if
we took Jout = 2, and Jinn = 4 or 5 for the first and Jinn = 1 for the second outer iteration. (More
outer and inner iterations were needed in the first three time steps due to lack of backward steps for the
extrapolations (26)). For quintic splines we observed that it was necessary to use Jout = 2 or 3 (mostly 2)
coupled with Jinn = 4–5 for the first, Jinn = 1–3 for the second, and Jinn = 1 for the third outer iteration.
We computed the discrete maximum error at t = 1 for η as MEη = maxi |HM (xi) − η(xi, 1)| and the
normalized L2 error as LEη(tn) = ‖Hn − η(·, tn)‖/‖η(·, 0)‖ for tn = 1, with analogous formulas for u.

In order to investigate the spatial order of convergence of the scheme we took sufficiently small
timesteps (large enough M) and computed as usual experimental values of the rate of convergence as
log(Ei/Ei−1)/ log(hi/hi−1), where Ei was the error obtained with spatial meshlength hi. The results, for
cubic and quintic splines, are shown in Tables 1 and 2, respectively.

Table 1
Spatial rates of convergence (Cubic Splines)

N M MEη(tn) Rate LEη(tn) Rate MEu(tn) Rate LEu(tn) Rate

160 500 1.782e-4 7.193e-6 2.498e-4 8.341e-6

200 500 6.737e-5 4.36 2.464e-6 4.80 9.480e-5 4.34 2.949e-6 4.66

320 500 9.439e-6 4.18 3.196e-7 4.35 1.332e-5 4.18 3.940e-7 4.28

400 500 3.789e-6 4.09 1.273e-7 4.13 5.354e-6 4.09 1.576e-7 4.11

640 1600 5.663e-7 4.04 1.895e-8 4.05 8.005e-7 4.04 2.352e-8 4.05

800 3200 2.308e-7 4.02 7.726e-9 4.02 3.263e-7 4.02 9.590e-9 4.02

1024 3200 8.557e-8 4.02 2.869e-9 4.01 1.210e-7 4.02 3.561e-9 4.01

Table 2
Spatial rates of convergence (Quintic Splines)

N M MEη(tn) Rate LEη(tn) Rate MEu(tn) Rate LEu(tn) Rate

100 800 9.269e-5 3.533e-6 1.339e-4 4.329e-6

160 800 2.671e-6 7.55 9.906e-8 7.60 3.779e-6 7.59 1.230e-7 7.58

200 800 5.924e-7 6.75 2.155e-8 6.84 8.383e-7 6.75 2.675e-8 6.84

250 800 1.396e-7 6.48 4.966e-9 6.58 1.978e-7 6.47 6.165e-9 6.58

320 800 2.918e-8 6.34 1.027e-9 6.39 4.167e-8 6.31 1.274e-9 6.39

400 1600 7.462e-9 6.11 2.544e-10 6.25 1.058e-8 6.14 3.156e-10 6.26

500 1600 1.888e-9 6.16 6.533e-11 6.09 2.701e-9 6.12 7.985e-11 6.16
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The tables confirm the expected theoretical spatial rate of convergence r = 4 for cubic and r = 6
for quintic splines. To investigate experimentally the temporal order of convergence, whose expected
theoretical value is of course four, we computed with quintic splines taking h = 10

N with values of N
shown in Table 3, and k = h/2. In this range of parameters h6 is about three orders of magnitude smaller
than k4 and we expect the temporal component of the error to be the dominant one. We approximated
the temporal rate as log(Ei/Ei−1)/ log(ki/ki−1). The results of Table 3 yield approximately the expected
theoretical value 4.

Table 3

Time rates of convergence (Quintic Splines)

N MEη(tn) Rate LEη(tn) Rate MEu(tn) Rate LEu(tn) Rate

500 4.240e-5 4.124e-4 1.235e-7 1.805e-6

1000 2.320e-6 4.19 2.384e-5 4.11 7.829e-9 3.98 1.093e-7 4.05

1250 9.507e-7 4.00 9.650e-6 4.05 2.874e-9 4.49 4.002e-8 4.50

1500 4.580e-7 4.01 4.597e-6 4.07 1.432e-9 3.82 2.007e-8 3.79

2000 1.445e-7 4.01 1.487e-6 3.92 4.305e-10 4.18 5.624e-9 4.42

In the case of the symmetric coupled KdV system (2), the conservation of the L2 × L2 norm of the
solution allows the rigorous derivation of optimal-order L2 error estimates using the periodic spline quasi-
interpolant as was done for the KdV equation in [7]. The proofs appear in [13]. Numerical experiments
confirm optimal-order errors of O(k4 + hr) in this case as well.

Although the exact solution (21) is not a solitary wave, it may be used for testing the accuracy
of numerical solutions of problems with solitary-wave type solutions. To this effect, we computed the
numerical solution of the initial-periodic boundary value problem for (1) using h = 10−2, k = 10−3,
and (21) with ρ = 30, cs = 1 on [−5, 5] as before as an exact solution. In addition to the normalized
L2 error defined previously, we computed some other types of error indicators that are pertinent to the
approximation of solitary waves, [7]. Specifically, at t = tn, we computed the (normalized) amplitude error
AEη(tn) =

∣∣∣ηmax−Hn(x∗)
ηmax

∣∣∣, where ηmax is the maximum value of the η profile (equal to 4.5 in our case)
and x∗ is the point where Hn achieves its maximum. This point is found by applying Newton’s method
to the equation d

dxH
n(x) = 0 using a few iterations, and, as initial value, the quadrature node where Hn

has a maximum. We also define an L2 based, (normalized) shape error as SEη(tn) = infτ
‖Hn−η(·,τ)‖

‖η(·,0)‖ , by
first computing τ∗ as the point near tn where d

dτ ξ
2(τ∗) = 0, with ξ(τ ) = ‖Hn − η(·, τ )‖/‖η(·, 0)‖, using

Newton’s method with a few iterations and τ0 = tn−k as initial guess. We then set SEη(tn) = ξ(τ∗); the
associated phase error is PEη(tn) = τ∗ − tn. We define the corresponding errors of u similarly. Tables 4
and 5 show the evolution of these errors up to tn = 6 for cubic and quintic splines, respectively.

Table 4
Amplitude, L2, Shape and Phase errors (Cubic Splines)

tn AEη(tn) AEu(tn) LEη(tn) LEu(tn) SEη(tn) SEu(tn) PEη(tn) PEu(tn)

2 2.080e-8 1.797e-8 3.159e-9 1.795e-8 3.159e-9 3.917e-9 2.628e-12 -1.898e-11

4 2.133e-8 1.847e-8 4.802e-9 2.520e-8 4.680e-9 4.082e-9 -7.704e-10 -5.525e-10

6 4.992e-8 4.243e-8 7.710e-8 5.656e-8 7.677e-8 2.530e-8 -5.103e-9 8.489e-10

It should be noted that for this problem the numerical solution degenerates for larger values of t. For
example, the L2 errors increase with time and become O(1) at about t = 15.1 for cubic splines and at
about t = 15.9 for quintic. (The invariants I1, I2, I3 and the Hamiltonian H remain constant to 9 digits
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Table 5
Amplitude, L2, Shape and Phase errors (Quintic Splines)

tn AEη(tn) AEu(tn) LEη(tn) LEu(tn) SEη(tn) SEu(tn) PEη(tn) PEu(tn)

2 8.398e-11 4.122e-11 7.497e-11 1.763e-10 5.057e-11 2.990e-11 -3.970e-11 -3.692e-11

4 3.243e-11 4.598e-11 8.797e-10 8.986e-10 8.637e-10 3.086e-10 -1.197e-10 -9.344e-11

6 3.884e-9 1.455e-9 1.988e-8 1.515e-8 1.969e-8 6.934e-9 2.000e-9 1.313e-9

up to about t = 17 for cubic splines and up to t = 18 for quintic). This is a large amplitude problem and
it is not clear whether this loss of accuracy of the numerical solution is due to accumulation of temporal
error due to some type of weak long-time instability or due to an instability or blow-up of the solution
of the system. As we shall see in the sequel, this phenomenon was not observed in simulations of small
amplitude solutions; these remained accurate for very large time spans.

4. Generalized solitary waves

Using the numerical scheme described in the previous two sections we performed many numerical
experiments, the results of some of which appear in the companion paper II. In the course of some early
experiments the initial-periodic boundary value problem for (1) was solved numerically with initial values
η(x, 0) = 0.3e−(x+100)2/25, u(x, 0) = 0 on [−150, 150]. As expected, this initial profile was resolved in two
wave trains moving to opposite directions and led by solitary-like pulses. We tried to isolate a solitary
wave (moving to the right) by iterative ‘cleaning’, cf. [3], i.e. by truncating the leading pulse, using it
as new initial value, letting it propagate and distance itself from the trailing dispersive tail, truncate it
again etc. (This will be described in more detail in paper II.) After seven such iterations a ‘clean’ at first
sight solitary wave was produced, used as a new initial condition and allowed to evolve. At t = 160 the
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 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18
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-150 -100 -50  0  50  100  150
-0.0001

-5e-005

 0

 5e-005

 0.0001

-150 -100 -50  0  50  100  150

Fig. 1. Evolution of η-solitary wave of (1) produced (after 7 iterations) by iterative cleaning, t = 160. The figure on the
right is a magnification of the one on the left.

profile of the solution is shown in Figure 1. In the magnified picture we observe that small amplitude
oscillations have been produced and accompany the main pulse. These oscillations are not an artifact of
the numerical scheme; they prove to be invariant under changes in (small enough) k and h, the choice
of spline spaces and the time stepping method. A similar phenomenon was observed in the case of the
symmetric system (2).

Such observation led us to ask whether these systems possess generalized solitary wave solutions, i.e.
solitary wave pulses homoclinic to small amplitude oscillatory solutions. Such solutions are known to
exist for the full Euler equations with small surface tension and other model nonlinear dispersive wave
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equations, cf. e.g. [2], [10]–[12], [14], [15]. It turns out that the answer is affirmative since the vector field
in R4 that defines the o.d.e. system corresponding to travelling wave solutions for (1)–(2) admits a 02+iω
resonance, [11].

We consider the system (1), and following the notation and terminology of [11], we seek travelling wave
solutions of the form η(x, t) = η(ξ), u(x, t) = u(ξ), ξ = x − cst, where we write cs = c + 1. Substituting
into (1), integrating once, setting the integration constants equal to zero and putting u1 = η, u2 = η′,
u3 = u, u4 = u′,

(
′ = d

dξ

)
we may write the resulting equations as a dynamical system on R4 for

U = (u1, u2, u3, u4)T (ξ), in the form U ′ = V (U, c), i.e. as

u′1 = u2,

u′2 = −6u1 + 6(c+ 1)u3 − 3u2
3,

u′3 = u4,

u′4 = 6(c+ 1)u1 − 6u3 − 6u1u3.

(22)

Hence U ′ = V (U, c) ≡ L(c)U +R(U), where

L(c) =

⎛⎜⎜⎜⎜⎜⎜⎝
0 1 0 0

−6 0 6(c+ 1) 0

0 0 0 1

6(c+ 1) 0 −6 0

⎞⎟⎟⎟⎟⎟⎟⎠ and R(U) =

⎛⎜⎜⎜⎜⎜⎜⎝
0

−3u2
3

0

−6u1u3

⎞⎟⎟⎟⎟⎟⎟⎠ .

It is easily seen that the spectrum of L(c), is the set
{−√

6
√−2 − c,

√
6
√−2 − c,−√

6
√
c,
√

6
√
c
}
. In

addition, the vector field V has the following properties:
(i) V (0, c) = 0 for all c. (U = 0 is a ‘fixed’ point of the system U ′ = V (U, c)).
(ii) SV (U, c) = −V (SU, c), where S = diag{1,−1, 1,−1}. (V is ‘reversible’).
(iii) The spectrum of L(0) is {0,±iω}, ω = 2

√
3. The eigenvalue 0 is double and non-semisimple. The

corresponding basis of C
4 is given by

φ0 = (1, 0, 1, 0)T , φ1 = (0, 1, 0, 1)T , φ+ = (
i

2
√

3
,−1,− i

2
√

3
, 1)T , φ− = (− i

2
√

3
,−1,

i
2
√

3
, 1)T ,

where φ0, φ± are eigenvectors corresponding to the eigenvalues 0,±iω, respectively, and φ1 is a
generalized eigenvector of 0.

(iv) Sφ0 = φ0.
(v) Denoting by

{
φ∗0, φ

∗
1, φ

∗
+, φ

∗
−
}

the corresponding dual basis, (so that e.g. φ∗1 = (0, 1/2, 0, 1/2)T ) we
have that c10 := 〈φ∗1, D2

cuV (0, 0)φ0〉 > 0 and c20 := 1
2 〈φ∗1, D2

uuV (0, 0)[φ0, φ0]〉 �= 0. (For (1) c10 = 6
and c20 = −9/2).

By Theorem 7.1.1 of [11] we may infer from these properties that there exist constants σ, κ3, κ2, κ1, κ0 > 0,
such that, for c > 0 small enough, the vector field V (U, c) admits near U = 0:

(a) A one parameter family of periodic orbits pκ,c of arbitrary small amplitude κ ∈ [0, κ3c].

(b) For every κ ∈ [κ1 c e
−ω(π−σ(c10c)3/10)√

c10c , κ2c], a pair of reversible (i.e. such that U(ξ) = SU(−ξ)) homo-
clinic connections to pκ,c with one loop.

(c) No reversible homoclinic connections to pκ,c with one loop if κ ∈ [0, κ0 c e
−πω√
c10c ).

We will call generalized solitary waves the profiles that are homoclinic to small amplitude periodic solu-
tions. It is not hard to see that the symmetric system (2) also satisfies conditions (i)–(v) (with c20 = −6).
We conclude that both systems possess generalized solitary waves of small amplitude and speed cs = 1+c,
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c > 0 small, which decay to exponentially small oscillatory solutions; there is a critical size of the ampli-
tude of the latter, below of which there exist no generalized solitary waves.

In order to construct numerically such generalized solitary waves we solve the o.d.e. system (22) in
the case of (1) (and the analogous system for (2)) imposing periodic boundary conditions on ui at the
end points of the interval [−L,L] for several L, given c > 0 small. Starting from an initial guess and
using continuation we employ as a solver the MATLAB� function bvp4c, which implements a collocation
method based on the 3-stage Lobatto IIIa quadrature rule. The mesh selection and the error control of
the function are based on the residuals of the C1 numerical solution that it provides.

In the case of (1), if we take c = 0.2 and initial guess sech2-profiles for ui and a specific L, we observe
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Fig. 2. Profile of the η-generalized solitary wave for the system (1) with ripples with minimum amplitude min α = 0.000860,

L = 15.2.

that the numerical method is able to converge, with residuals of O(10−7) or better, to the η-profile shown
in Figure 2. (The u-profile has a similar form). In Figure 2 the generalized solitary wave consists of a
main ‘solitary’ pulse connected to a small amplitude periodic profile (ripples). The amplitude of the small
oscillations varies with L as Figure 3 shows. In Figure 3 we have plotted, for c = 0.2, the amplitude of

8.5 9 9.5 10 10.5 11
0
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0.08

0.1

0.12

L/λ
0

α

Fig. 3. Amplitude of the oscillations α vs L/λ0. The first ’◦’ corresponds to the solution plotted in Figure 2. (System (1))

the small oscillations versus L/λ0, where λ0 = 2π/k is the wavelength corresponding to the wave number
k =

√
6(cs + 1) =

√
6(c+ 2) obtained from the dispersion relation for the linearized system (1). For

c = 0.2 this gives λ0
∼= 1.72939. (We have solved the o.d.e. system for L = 15 + 0.05i, i = 0, . . . , 100 and

computed the amplitude of the associated ripples.) The minimum amplitude minα occurs approximately
at L

λ0
= n

2 + 1
4 , n = 17, 18, . . ., and is constant to six decimal digits and equal to 0.000860. (Figure

2 corresponds to L = 15.2, i.e. to the value where minα first occurs. Computing with different L’s
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corresponding to the minimum amplitude ripples – denoted by small circles in Figure 3 – will produce
again Figure 2 extended with ripples to the right and left.) The wavelength of the ripples in Figure 2 is
equal to about λ ∼= 1.73, which is a good approximation of the wavelength λ0 of the linearized problem.
The maximum values of the amplitude occur near the values L

λ0
= n+1

2 , n = 17, 18, . . .; the o.d.e. code
loses accuracy near these points and the maximum values of α shown in Figure 3 are not trustworthy.
(Similar observations have been previously made by Michallet and Dias, [12], in their numerical study of
generalized solitary waves of a two-fluid system.)

The analogous o.d.e. system that corresponds to the symmetric system (2) is much easier to solve
numerically as evidenced by the smaller residuals (of O(10−8) or better) that bvp4c returns. In this case,
we were able to compute generalized solitary waves with c = 0.2 and c = 0.3 and observed that the
amplitude of the ripples increases with c: When c = 0.2 we obtained minα = 0.0012265, while when
c = 0.3, minα = 0.0074614. The maximum values also increase.

In Figure 4 we compare the amplitude of the ripples for c = 0.2 and the profile of the generalized
solitary wave with minimum ripple amplitude for the two coupled KdV systems (1) and (2).
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Fig. 4. Comparison of generalized solitary waves of systems (1) (solid line) and (2) (dotted line) for c = 0.2. Left: amplitude
of ripples vs L/λ0. Right: η-generalized solitary waves with the minimum ripples.

As a further test of the accuracy of the bvp4c function and the evolution code described in Sections 2
and 3, we took generalized solitary waves as initial data and let them evolve in time numerically using
the evolution code. The results were quite satisfactory. Figure 5 shows the η-generalized solitary wave of
the system (2) with c=0.2 in [−15, 15] at t = 0 and at t = 170. During this run (with h = 0.1, k = 0.01,
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Fig. 5. Numerical integration in time of the generalized solitary wave with c = 0.2 for the system (2). The η-components of
the solution is shown at t = 0 (left) and at t = 170 (right).
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r = 4 up to T = 200) the invariant quantity
∫ L

−L
(η2 +u2)dx had the value 0.73237518000 maintaining the

eleven digits shown, while the quantities max η = 0.367190, maxu = 0.414506, cs = 1.199999 conserved
six digits.

The analogous numerical integration in time for the system (1) was also quite accurate: Up to T = 200
and with h = 0.1, k = 0.01, r = 4 the invariant quantities max η = 0.434972, maxu = 0.385334,
cs = 1.199999, I1 = 1.5702595987, I2 = 1.4681669211, I3 = 0.41614398659, H = −0.93347587389 were
conserved to the digits shown.

Let us also mention that using two or more sech2-type, sufficiently separated pulses as initial guesses
and integrating the o.d.e. system with bvp4c will gave multi-humped generalized solitary waves as Figure
6 shows for the system (1). (Similarly for the system (2)).
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Fig. 6. η-component of generalized solitary waves with two and three humps, c = 0.2, for the system (1).

We finally remark that the general coupled KdV system (3) has exact solitary waves at least for 1
12 <

τ < 1
6 . For this range of Bond number, it has been found, cf. [9], that (3) has exact solitary waves of the

form η(ξ) = η0sech2(λξ), u(ξ) = Bη(ξ), where ξ = x+ x0 − cst, η0 = 3−36τ
−2+12τ , λ =

√
η0, B =

√
2 − 12τ ,

cs = 2−B2

B . For other values of τ and cs we found numerically (by solving the associated o.d.e. system
with periodic boundary conditions using bvp4c), other types of travelling wave solutions shown in Figure
7.
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Fig. 7. η-component of travelling wave solutions for system (3). (a): Solitary wave, τ = 1/8, cs = 3
√

0.5, (b): Generalized

solitary wave, τ = 0.01, cs = 1.95, (c): Travelling wave (kink), τ = 0.9, cs = 2.9.
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