
HIGHER-ORDER HAMILTONIAN MODEL FOR UNIDIRECTIONAL
WATER WAVES

J. L. BONA, X. CARVAJAL, M. PANTHEE, AND M. SCIALOM

Abstract. Formally second-order correct, mathematical descriptions of long-crested water

waves propagating mainly in one direction are derived. These equations are analogous to

the first-order approximations of KdV- or BBM-type. The advantage of these more complex

equations is that their solutions corresponding to physically relevant initial perturbations

of the rest state may be accurate on a much longer time scale. The initial-value problem

for the class of equations that emerges from our derivation is then considered. A local well-

posedness theory is straightforwardly established by way of a contraction mapping argument.

A subclass of these equations possess a special Hamiltonian structure that implies the local

theory can be continued indefinitely.

1. Introduction

Long-crested water waves propagating shoreward are commonplace in the shallow water

zone of large bodies of water. Waves of this general form are easily generated in laboratory

settings as well. If a standard xyz–coordinate system is adopted in which z increases in the

direction opposite to which gravity acts, such waves are often taken to propagate along the

x–axis, say in the direction of increasing values, and to be independent of the y-coordinate.

In this case, if dissipation and surface tension effects are ignored, the fluid assumed to be

incompressible and the motion irrotational, the standard representation of the velocity field

and the free surface is provided by the Euler equations for the motion of a perfect fluid with

the boundary behavior at the free surface determined by the Bernoulli condition. On typical

geophysical length scales, these equations provide reasonably good approximations of what
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is actually observed in nature. In detail, this system has the form

∆ϕ = 0, 0 < y < h0 + η(x, t),

∂yϕ = 0, y = 0,

∂tη = ∂yϕ− ∂xη · ∂xϕ, y = h0 + η(x, t),

∂tϕ = gη − 1
2
(∂xϕ)2 − 1

2
(∂yϕ)2, y = h0 + η(x, t).

(1.1)

Here, the bottom is taken to be flat, horizontal and located at z = 0, though theory with

a slowly varying bottom can easily be derived along the same lines (see [14]). The undis-

turbed depth is h0 while the dependent variable, η = η(x, t) is the deviation of the free

surface from its rest position (x, h0) at time t. Thus, the depth of the water column over

the spatial point (x, 0) on the bottom, at time t is h(x, t) = h0 + η(x, t). The dependent

variable φ = φ(x, y, t) is the velocity potential which is defined throughout the flow domain,

and whose existence owes to the fact that the fluid is incompressible and irrotational. Hence,

(u(x, z, t), v(x, z, t)) = ∇φ(x, z, t) is the velocity field at the point (x, z) in the flow domain at

time t. Here, ∇ connotes the gradient with respect to the spatial variables only. Of course,

for this formulation to make sense, it must be the case that the free surface remains a graph

over the bottom, a presumption that overlies the developments here. It deserves remark

that the system (1.1) can be rewritten in a Hamiltonian form, as Zakharov [49] pointed out

almost 50 years ago.

Beginning already in the first half of the 19th–century, simpler models have been posited,

in part because the approximation using (1.1) is both analytically and computationally

recalcitrant. Note in particular that the location of the free surface is part of the problem, so

that two boundary conditions at the free surface are needed for its determination. Observe

also that the temporal derivatives only appear in the boundary conditions, making the

problem further non-standard. Moreover, the precision one might hope for from using the

Euler equations is not always needed in practice. If the input data has significant error, there

may be little point in the higher accuracy afforded by the Euler system (1.1) as opposed to

cruder approximations.

The largest steps forward in the 19th century study of approximate models were taken by

Boussinesq in the 1870’s (see especially his opus [26]). The coupled systems of equations

which now bear his name are well known to theoreticians and they and their relatives find

frequent use in practical situations (see, e.g. [7], [14]). In addition to the presumption that

the wave motion is long-crested, so sensibly one-dimensional, they subsist on the assumption
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that the wave amplitudes and wavelengths encountered in the evolution are, respectively,

small and large relative to the undisturbed depth h0 of the liquid over the horizontal, fea-

tureless bottom. More precisely, their derivation needs that

α =
A

h0
� 1, β =

h20
l2
� 1, S =

α

β
=
Al2

h30
≈ 1. (1.2)

Here, A is a typical amplitude of the wave motion in question while l is a typical wavelength.

The assumption that the Stokes’ number S = α
β

is of order one effectively means that

nonlinear and dispersive effects are balanced. Boussinesq also derived a model, now called

the Korteweg–de Vries (KdV) equation, which was a specialization of the coupled systems,

formally valid for waves traveling only in one direction, say in the direction of increasing

values of x.

Almost a century later, Peregrine [44] and Benjamin et al. [6] returned to Boussinesq’s

unidirectional model

ηt + ηx +
3

2
ηηx +

1

6
ηxxx = 0 (1.3)

(the Korteweg-de Vries equation, commonly referred to as the KdV equation) and derived

an equivalent version known as the regularized long-wave equation (RLW-equation) or the

BBM-equation. In terms of the dependent variable η(x, t), this equation takes the form

ηt + ηx +
3

2
ηηx −

1

6
ηxxt = 0 (1.4)

in the unscaled, non-dimensional variables

x =
1

h0
x̄, t =

√
g

h0
t̄ and η =

1

h0
η̄.

Here, the constant g is the acceleration due to gravity while x̄, t̄ and η̄ are laboratory or field

variables, all measured in the unit of length consistent with the values of h0 and g.

Models like the BBM- and KdV-equation are known to provide good approximations of

unidirectional solutions of the full water wave problem (1.1) on the so-called Boussinesq time

scale, 1
β
≈ 1

α
(see [1], [17], [20]). They are also known to predict laboratory observations

with reasonable accuracy on similar time scales (see [19], [34], [35]).

In some applications, notably coastal engineering and ocean wave modeling, the waves

need to be followed on time scales longer than the Boussinesq time scale (for example, see

[7] and references therein). In such situations, a higher-order approximation to the water-

wave problem might prove to be useful as it would be formally valid on the square 1
β2 ≈ 1

α2

of the long, Boussinesq time scale. Such models have appeared in the literature before

(see [42, 43] for early examples). It is our purpose here to put forward a class of such
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higher-order correct, unidirectional evolution equations and to provide analysis relating to

the fundamental issue of Hadamard well-posedness for a subclass. Models will be isolated

that are not only a formally second-order correct approximation of the full, two-dimensional

water wave problem, but also possesses a Hamiltonian structure. As P. Olver pointed out in

his pioneering work [43], this helpful aspect is more difficult to attain in higher-order models

that formally are faithful to the overlying Euler equations than in the first-order correct

KdV or BBM models. Indeed, the fifth-order model appearing in [43] does not in fact have

a Hamiltonian structure, as Olver points out.

The notion of well-posedness which is featured here was put forward by Hadamard more

than a century ago in a lecture the well known French mathematician gave at Princeton

University (see [33]). In his conception, a problem is well-posed subject to given auxiliary

data when there corresponds a unique solution which depends continuously on variations in

the specified supplementary data. Hadamard points out that if the problem is lacking these

properties, it will probably be useless in practical applications. Auxiliary data brought from

real world situations typically features at least a small amount of error. If the model were

to respond discontinuously to these small perturbations, the reproducibility of the model

predictions in laboratory and field settings would be compromised and likewise their use in

real situations would be suspect.

To clarify the role of the size restrictions (1.2), it is often helpful to rescale the variables.

For example, in the context of equation (1.4), change variables by letting η ↪→ αη, and

(x, t) ↪→
√
β(x, t). In the new variables, η and its first few partial derivatives with respect

to x and t are presumed to be of order one and the equation takes the form

ηt + ηx +
3

2
αηηx −

1

6
βηxxt = 0. (1.5)

In this scaling, the role of the small parameters is more apparent. Moreover, the error term

made in the approximation, which is set to zero in (1.5), is quadratic in the small parameters

α and β. Because of this latter aspect, even though the solution and its derivatives remains

of order one, the ignored error can accumulate and have an order-one effect on the solution

on a time scale of size 1
α2 ≈ 1

β2 , hence the need for a higher-order correct model if longer

spatial distances are in question.

The starting point of our derivation of higher-order KdV-BBM-type equations is the pa-

per [11] (and see also the earlier note [14]) where a several-parameter variant of the classical

Boussinesq system of two coupled equations was derived. These Boussinesq systems are de-

rived without the assumption of one-way propagation and can therefore countenance long-

crested waves propagating in both directions. The theory in [11] assumes incompressibility,
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irrotationality, long-crestedness and the size conditions enunciated in (1.2). Boussinesq sys-

tems were formally derived at both first and second order in the small parameters α and

β. In dimensionless, scaled variables as appearing in (1.5), the family of formally first-order

correct systems has the formηt + wx + α(wη)x + β
(
awxxx − bηxxt

)
= 0,

wt + ηx + αwwx + β
(
cηxxx − dwxxt

)
= 0.

(1.6)

The variable η is proportional to the deviation of the free surface from its rest position at

the point x at time t, as it was in (1.4), while w = w(x, t) is proportional to the horizontal

velocity at a certain depth z0, say, at the point (x, z0, t) in the flow domain. (The velocity w

is scaled by
√
gh0 to make it non-dimensional, and then by α to make it of order one.) The

constants a, b, c and d are not arbitrary. They satisfy the relationsa = 1
2

(
θ2 − 1

3

)
λ, b = 1

2

(
θ2 − 1

3

)
(1− λ),

c = 1
2
(1− θ2)µ, d = 1

2
(1− θ2)(1− µ),

(1.7)

so that a+ b+ c+ d = 1
3
. In the same, order-one, independent and dependent variables, the

second-order correct systems are

ηt + wx + β
(
awxxx − bηxxt

)
+ β2

(
a1wxxxxx + b1ηxxxxt

)
= −α(ηw)x + αβ

(
b(ηw)xxx − (a+ b− 1

3
)(ηwxx)x

)
,

wt + ηx + β
(
cηxxx − dwxxt

)
+ β2

(
c1ηxxxxx + d1wxxxxt

)
= −αwwx+αβ

(
(c+d)wwxxx−c(wwx)xx −(ηηxx)x+(c+d−1)wxwxx

)
,

(1.8)

where the additional constants a1, b1, c1, d1 are

a1 = −1

4

(
θ2 − 1

3

)2
(1− λ) +

5

24

(
θ2 − 1

5

)2
λ1,

b1 = − 5

24

(
θ2 − 1

5

)2
(1− λ1),

c1 =
5

24
(1− θ2)

(
θ2 − 1

5

)
(1− µ1),

d1 = −1

4

(
1− θ2

)2
µ− 5

24
(1− θ2)

(
θ2 − 1

5

)
µ1.

(1.9)

The parameter θ has physical significance. It is determined by the height above the bottom

at which the horizontal velocity is specified initially and whose evolution is being followed.

In the earlier notation, θ = 1−z0. Because the vertical variable is scaled by the undisturbed

depth h0 in these descriptions, θ must lie in the interval [0, 1]. The other values, λ, µ, λ1 and

µ1 are modeling parameters and can in principle take any real value. Thus the coefficients
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appearing in the higher-order Boussinesq systems form a restricted, eight-parameter family.

Notice that if terms quadratic in α and β are dropped, the second-order system (1.8) reduces

to the first-order system (1.6).

The velocity field in the rest of the flow is determined by an associated approximation of

the velocity potential in the flow-domain. The latter is derived from a knowledge of w (see

[11], [16]).

Local in time well-posedness of the Cauchy problem for the systems (1.6) and (1.8) was

studied in [11] and [12]. Not all of these systems are even linearly well-posed. Indeed, the

recent foray [4] shows that many of those not linearly well-posed are in fact not locally

well-posed when the nonlinearity is taken into account. The fact that some of the fam-

ily is ill-posed has the advantage of eliminating them from consideration when real-world

approximation is the goal.

These systems were further extended in [17] to include waves that are fully three-dimensional,

and not just long-crested motions. Rigorous estimates were also provided for the difference

between solutions of the full water-wave problem and solutions of the first-order models.

A further extension of [17] is given in [38], where Boussinesq systems in the Kadomtsev-

Petviashvili (KP) scaling are derived. The latter situation is intermediate between the long-

crested regime where transverse motion is ignored entirely and three-dimensional Boussinesq

systems that allow strong transverse disturbance; a regime that is often referred to as allow-

ing for weakly transverse long waves. A detailed survey of results of this sort can be found

in J.-C. Saut’s lecture notes [45] or the recent monograph of Lannes [37].

As hinted already, when long-crested waves are essentially moving in only one direction,

one might prefer to use a unidirectional model because less auxiliary data is needed to initiate

it. Theory developed in [1] has shown rigorously that predictions of first-order Boussinesq

systems and those of their unidirectional counterpart (1.4) are the same to the neglected

order, provided the wave motion is initiated unidirectionally. This gives rigorous credence

to the utility of such unidirectional models since the bidirectional models are known to be a

good approximation of solutions of the full Euler system in the Boussinesq regime of small

amplitude and long wavelength.

We stress that while the higher-order, unidirectional models put forward here are formally

correct on the square of the Boussinesq time scale, no proof of this exists. Indeed, considering

the difficulty encountered in showing the first-order correct, Boussinesq systems are faithful

to the full, inviscid water wave problem (1.1) on the Boussinesq time scale and showing

the KdV-BBM approximations (1.3)-(1.4) is true to their overlying Boussinesq system, a
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rigorous result for the systems derived here on the square of the Boussinesq time scale is

likely to be challenging. One can show that the higher-order terms do not do damage to the

original KdV-BBM approximation of the full water-wave problem on the Boussinesq time

scale, provided sufficiently smooth initial data are countenanced. This point is not addressed

here as it would take us afield of the main developments. It is also the case that one can show

directly and rigorously that the linearized, higher-order, unidirectional model is faithful to

the linearized Boussinsq system on this very long time scale, again, provided the initial data

has enough regularity. However, these results are far from what one would like to have in

hand.

The present contribution proceeds as follows. In the next section, we derive formally from

the second-order Boussinesq equations a class of second-order KdV-BBM-type equations.

Also in the next section, function class notation is introduced and our main results about

the higher-order, unidirectional models are stated. Section 3 provides proofs of the results

stated in Section 2.2, while Section 4 features commentary about the choice of the parameters

θ, λ, µ, λ1, µ1 and another parameter ρ to be introduced presently. Section 5 is devoted to

a discussion of the linear dispersion relation. Finally, in Section 6 some concluding remarks

are recorded.

2. Derivation of the Models and the Main Results

The formal derivation of a class of higher-order, unidirectional equations, together with a

precise statement of results about their well-posedness is the topic of this section.

2.1. Model Equations. The starting point is the collection (1.8) of higher-order Boussinesq

systems derived in [11]. The parameters a, b, · · · c1, d1 are those presented in (1.7) and (1.9).

As we are working in the Boussinesq regime where the Stokes’ number S = α
β
≈ 1, the two

small parameters α and β are treated on an equal footing. Thus, O(α) = O(β), O(αβ) =

O(β2), etc.

In case the wave motion is essentially in one direction, say in the direction of increasing

values of x, we will show how to reduce such Boussinesq systems to the single, fifth-order

model,

ηt + ηx − βγ1ηxxt+βγ2ηxxx + β2δ1ηxxxxt + β2δ2ηxxxxx + α
3

4
(η2)x

+ αβ
(
γ(η2)xxx −

7

48
(η2x)x

)
− α21

8
(η3)x = 0.

(2.10)

The constants γ1, γ2, δ1, δ2 and γ depend upon the parameters a, b, · · · in (1.8) and will be

displayed presently.
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Passage from the Boussinesq systems (1.8) to the unidirectional models (2.10) follows the

same line of argument as did the passage from the first-order system (1.6) to the mixed

KdV–BBM equations

ηt + ηx +
3

2
αηηx + νβηxxx −

(1

6
− ν
)
βηxxt = 0, (2.11)

where ν = 1
2
(a+ c) = 1

4

[
θ2(λ− µ)− 1

3
λ+ µ

]
depends upon θ, λ and µ and can formally take

any real value. (See [1], [28] and, in the internal wave context, [29]. A special case of this

model may be found in [24] for a moving boundary problem.)

As described in [8], at the lowest order of approximation wherein the parameters are small

enough that even the first-order terms in α and β may be dropped, the system (1.8) becomes

the one-dimensional wave equation, viz.ηt + wx = 0, wt + ηx = 0,

η(x, 0) = f(x), w(x, 0) = g(x),
(2.12)

where f(x) and g(x) are the initial disturbances of the surface and the horizontal velocity,

respectively. The solution to (2.12) is
η(x, t) =

1

2

[
f(x+ t) + f(x− t)

]
− 1

2

[
g(x+ t)− g(x− t)

]
,

w(x, t) =
1

2

[
g(x+ t) + g(x− t)

]
− 1

2

[
f(x+ t)− f(x− t)

]
.

(2.13)

For the left-propagating component to vanish, one must have f = g, in which case η(x, t) =

f(x− t),

ηt + ηx = 0 and w = η.

Notice in particular that in the Boussinesq regime, when most of the propagation is to the

right, it appears that

ηt = −ηx +O(α, β), as α, β → 0, (2.14)

a point that will play a significant role in what follows.

At the next order when one keeps terms of first order in α and β, the standard ansatz

used in [1] was that

w = η + αA+ βB (2.15)

where A = A(η, · · · ) and B = B(ηxx, ηxt, · · · ) turn out to be simple polynomial functions of

η and its first few partial derivatives. Indeed, substituting (2.15) into the first-order system
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(1.6) and dropping all terms of quadratic order in the small parameters α and β leads to the

pair

{
ηt + ηx + αAx + βBx + α(η2)x + β

(
aηxxx − bηxxt

)
= 0,

ηt + αAt + βBt + ηx + αwwx + β
(
cηxxx − dηxxt

)
= 0,

(2.16)

of equations. Demanding that these be consistent, and making use of the fact derived from

(2.14) that At = −Ax +O(α, β) and similarly for B, it is determined that

A = −1

4
η2 and B =

1

2

(
(c− a)ηxx + (b− d)ηxt

)
. (2.17)

Using these relations in either of the equations in (2.16) leads to the KdV–BBM equations

(2.11) with ν as advertised above.

If one now again makes use of the low-order relation (2.14) between ∂x and ∂t, the equation

(2.11) can be reduced further to the pure BBM-equation (1.5). (The same equation can also

be obtained by particular choices of θ, λ and µ.)

It was shown in [1] that not only does this procedure lead formally to KdV–BBM-type

equations of the form displayed in (2.11), but that if the Boussinesq system is initiated with

data (η0, w0) that satisfies (2.15), then its solution (η, w) has η well approximated by the

solution ηBBM of (1.5), initiated with η0, and the velocity w that the Boussinesq system

generates is shown to be well approximated by using the BBM-amplitude ηBBM and the

formula (2.15) to define a BBM-horizontal velocity wBBM .

If a higher-order approximation is needed, then it is natural to posit the higher-order

ansatz

w = η + αA+ βB + αβC + β2D + α2E (2.18)

analogous to (2.15) (see, for example, [30], [37]). The functions A,B,C,D and E will again

turn out to be polynomial functions of η and its partial derivatives. It deserves remark that

the presumption (2.18) was already persued in [42] and in subsequent publications, but the

fifth-order partial differential equations that emerged do not have a Hamiltonian structure.



10 J. L. BONA, X. CARVAJAL, M. PANTHEE, AND M. SCIALOM

Substituting (2.18) into the system (1.8) and ignoring terms that are at least cubic in the

small parameters α and β leads to the pair of equations

ηt = −ηx − αAx − βBx − αβCx − β2Dx − α2Ex + bβηxxt − b1β2ηxxxxt − aβηxxx
− aαβAxxx − aβ2Bxxx − a1β2ηxxxxx − (αη2 + α2Aη + αβBη)x

+ bαβ(η2)xxx − (a+ b− 1

3
)αβ(ηηxx)x,

ηt = −ηx − αAt − βBt − αβCt − β2Dt − α2Et + dβηxxt + dαβAxxt + dβ2Bxxt

− d1β2ηxxxxt − cβηxxx − c1β2ηxxxxx − αηηx − α2(ηA)x − αβ(ηB)x

− cαβ(ηηx)xx + (c+ d)αβηηxxx − αβ(ηηxx)x + (c+ d− 1)αβηxηxx.

(2.19)

Demanding that these two equations be consistent (at the first order) leads to the formulas

(2.17) for A and B at order α and β, respectively, as one would expect. Our goal is to derive

a fifth-order, one-way model which, in addition to being Hamiltonian, has a linear dispersion

relation which matches that of the full water-wave system (1.1) up to and including the order

β2 terms, so presenting an error which is formally of order β3 (recall that α ≈ β in the present

development). The laboratory experiments reported in [20] make it clear that the error in

the phase velocity dominates the overall error, at least for moderately sized waves. Hence,

getting the dispersion relation right to the order we are working seems important. Indeed,

if the dispersion relation is not correct to order β2, the model definitely is not second-order

correct in the limit of very small values of α (e.g. linear theory).

It will be helpful to introduce an auxiliary parameter ρ, viz.

B =
1

2
(c− a+ ρ)ηxx +

1

2
(b− d+ ρ)ηxt. (2.20)

Of course, at the first order, this is equivalent to the version with ρ = 0, but at the next

order, ρ can be chosen so that the resulting second order, one-way model has certain, desirable

properties. This will be discussed in more detail in Section 4. Of special interest will be the

value

ρ = b+ d− 1

6
. (2.21)

This will turn out to be perspicuous, though we do not insist on it for the nonce.

With this value of B, the mixed KdV–BBM equation (2.11) resulting from the first-order

approximation turns out to be

ηt + ηx +
3

2
αηηx + ν̃βηxxx −

(1

6
− ν̃
)
βηxxt = 0, (2.22)
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where ν̃ = 1
2
(a+ c+ρ). Notice that if (2.21) holds, then ν̃ = 1

12
. To insist on the consistency

of the two equations in (2.19) at the second order in α and β, we use the approximation

ηt = −ηx −
3

2
αηηx − ν̃βηxxx +

(1

6
− ν̃
)
βηxxt +O(α2, β2, αβ), as α, β → 0. (2.23)

If one uses the forms of A and B given respectively in (2.17) and (2.20) in the system (2.19)

and the approximation (2.23), there appear more terms involving order αβ, β2 and α2. With

this in mind, equating the terms of order αβ in (2.19) leads to the equation

C =
[1

8
(a+ 4b+ 2c− d) +

3

16
(a+ b− c− d) +

3

8
ρ
]
(η2)xx +

13

24
ηηxx +

11

48
η2x. (2.24)

Likewise, equating the terms containing β2 in (2.19) yields

D =−
[1

2
(b1 − d1) +

1

4
(b− d+ ρ)

(
a− d+

1

6

)
+

1

4
d(c− a+ ρ)

]
ηxxxt

−
[1

2
(a1 − c1) +

1

4
(c− a+ ρ)

(
a+

1

6

)
− 1

12
ρ
]
ηxxxx.

(2.25)

Finally, balancing the terms containing α2 in the system (2.19), one obtains

E =
1

8
η3. (2.26)

Putting the expressions for A, B, C, D and E in either equation in (2.19), using the

relation (2.23) and taking note of the formula ηηxxx = 1
2
(η2)xxx − 3

2
(η2x)x, there appears the

evolution equation

ηt + ηx − γ1βηxxt + γ2βηxxx + δ1β
2ηxxxxt + δ2β

2ηxxxxx

+
3

2
αηηx + αβ

(
γ(η2)xxx −

7

48
(η2x)x

)
− 1

8
α2(η3)x = 0,

(2.27)

where 

γ1 = 1
2
(b+ d− ρ),

γ2 = 1
2
(a+ c+ ρ),

δ1 = 1
4

[
2(b1 + d1)− (b− d+ ρ)

(
1
6
− a− d

)
− d(c− a+ ρ)

]
,

δ2 = 1
4

[
2(a1 + c1)− (c− a+ ρ)

(
1
6
− a
)

+ 1
3
ρ
]
,

γ = 1
24

[
5− 9(b+ d) + 9ρ

]
.

(2.28)

Remark 2.1. As our analysis so far has been predicated on the abcd-system (1.8), the

relation a + b + c + d = 1
3

has been used while calculating C and D, and consequently the

values of the parameters introduced in (2.28). In this situation, one readily obtains that

γ1 + γ2 = 1
6
, γ = 1

24
(5 − 18γ1) and δ2 − δ1 = 19

360
− 1

6
γ1 (see (4.86) below). Thus, equation

(2.27) effectively has only two free parameters, namely γ1 and δ1. This aspect plays no
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particular role in the well-posedness theory to follow. However, it does become important

when the issue of insuring the system is Hamiltonian is addressed. Detailed discussion of

these issues may be found in Sections 4 and 5.

If instead, one were to relax the relation a + b + c + d = 1
3

when computing C, D and

elsewhere, the resulting model would be

ηt + ηx − γ1βηxxt + γ2βηxxx + δ1β
2ηxxxxt + δ2β

2ηxxxxx

+
3

2
αηηx + αβ

(
σ1(η

2)xxx − σ2(η2x)x
)
− 1

8
α2(η3)x = 0,

(2.29)

where γ1, γ2 are as in (2.28), δ1, δ2 satisfy the relation

δ2 − δ1 =
1

4
ρ(a+ b+ c+ d) +

1

8

[
(b− d)2 − (a− c)2

]
+

1

2
(a1 − b1 + c1 − d1) (2.30)

and σ1, σ2 are given by σ1 = 1
24

[
4 + 3(a− 2b+ c− 2d) + 9ρ

]
,

σ2 = 1
48

[
4 + 9(a+ b+ c+ d)

]
.

(2.31)

Note that the more general equation (2.29) reduces to (2.27) when a + b + c + d = 1
3
.

An in-depth analysis of the general model (2.29) could be interesting. Such a more general

model might arise if surface tension effects were taken into account in the original Boussinesq

system. Depending upon the undisturbed depth, another small parameter may arise in this

situation and one must deal with its relation to α and β. What the corresponding second-order

correct model looks like would depend upon how these parameters compare to one another.

This potentially interesting project is not pursued here. Our focus remains upon the one-way

model (2.27) corresponding the the second-order water wave system (1.8) for which dispersion

considerations mentioned earlier demand that a+ b+ c+ d = 1
3
.

While the derivation is formal, we expect the equation (2.27) to have the same sort of

properties that its first-order correct analog (1.5) does as regards approximating unidirec-

tional solutions of the second-order Boussinesq system (1.8) and, consequently, solutions of

the full water wave problem. However, as already mentioned, rigorous theory to this effect

is not available as it is at first order.

Models like (2.27) have appeared in the literature before (cf. [30] when the surface tension

is set to 0 and the wide ranging article [36] together with the references contained in these

articles). For example, the equation (2.19) in [30], in the zero surface tension regime, appears

in our class of equations (see the discussion in Sections 4 and 5).
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It is also worth note that if α = O(β
1
2 ) instead of α = O(β), then a Camassa-Holm type

equation emerges, namely

ηt + ηx − γ1βηxxt + γ2βηxxx

+
3

2
αηηx + αβ

(
γ(η2)xxx −

7

48
(η2x)x

)
− 1

8
α2(η3)x = 0.

The two higher-order, linear, dispersive terms drop off because they are now negligible

compared to the remaining terms. However, as one would expect for models where the

nonlinear effects are more dominant, the formal temporal range of validity for this model, in

terms of the wavelength parameter β, is only of order O(β−1). That is to say, the formal error

between the model predictions and those of the full water wave problem is of order O(β2t).

If the two fifth-order dispersive terms are left in place, then higher-order nonlinear terms

deserve keeping as well to maintain a uniform level of approximation. On the other hand,

insofar as the largest part of the error resides in incorrect phase speeds, keeping these terms

could be useful in practical situations, even in this more nonlinear situation. After all, the

experiments in [20] show that BBM-type equations maintain engineering level approximation

in the long-wave regime, even for Stokes numbers in the mid-20’s, which is to say α/β ≈ 25.

For the analysis that follows, the small parameters α and β are not relevant. Reverting to

non-dimensional, but unscaled variables, which are denoted surmounted with a tilde, namely

η̃(x̃, t̃) = α−1η(β
1
2 x̃, β

1
2 t̃) and then dropping the tildes yields the fifth-order, KdV–BBM-type

equation

ηt+ηx−γ1ηxxt+γ2ηxxx+δ1ηxxxxt+δ2ηxxxxx+
3

4
(η2)x+γ(η2)xxx−

7

48
(η2x)x−

1

8
(η3)x = 0. (2.32)

In many circumstances, boundary-value problems may be the most practically interesting.

However, one usually starts with the pure initial-value problem to get an idea of what

may be true for more complicated problems. This latter problem, wherein we search for a

solution of (2.32) subject to η(x, 0) being specified for all x ∈ R will be the subject of further

mathematical consideration.

We conclude this sub-section with the observation that approximate models like the one

displayed in (2.32) can be derived by expanding the Dirichlet-Neumann operator in the

Zakharov-Craig-Sulem formulation (see, for example, [37] and the references therein). An

approach using the Dirichlet to Neumann operator does have as a component the rigorous

theory pertaining to this operator. And if one is expanding the Hamiltonian rather than

the dependent variables themselves, one is guaranteed a Hamiltonian equation. However,

it does not guarantee that the dispersion relation so obtained fits the full dispersion to the

order of the terms being kept. Nor does it guarantee that the resulting equation provides
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a well-posed problem. A good example of what can go wrong appears in [2] and [3], where

this technique was applied to a deep-water situation. Similar problems arise for the Kaup-

Boussinesq system, which is formally Hamiltonian, but is ill-posed even in smooth function

classes (see [4]).

The classical expansion used here allows for choices of parameters that guarantees both

well-posedness and, in a special case, Hamiltonian structure. It also has the advantage of

producing a model that behaves well with respect to the imposition of non-trivial boundary

conditions (see [27]).

2.2. Mathematical Theory. The equations (2.32) above formally describes the propaga-

tion of uni-directional waves. Naturally, one would like to have a theory that shows solutions

of this system closely track associated solutions of the higher-order Boussinesq systems (1.8)

on the longer time scale O
(

1
β2

)
. Logically prior to such a result is the fundamental issue

of the well-posedness of the Cauchy problem associated to (2.32). It is to this latter issue

that attention is now turned. To be useful in comparing the unidirectional model with its

overlying bi-directional analog, one naturally needs a well-posedness theory that is valid at

least on the longer time scale O( 1
β2 ). Better still would be a global well-posedness theory so

that issues of finite time singularity formation do not intrude upon the practical use of such

models.

As mentioned earlier, the notion of well-posedness used is the standard one. We say that

the Cauchy problem for an equation is locally well-posed in a Banach space X of functions

of the spatial variable if corresponding to given initial data in X there exists a non-trivial

time interval [0, T ] and a unique continuous curve in X, defined at least for t ∈ [0, T ] that

solves the equation in an appropriate sense. It is also demanded that this solution varies

continuously with variations of the initial data. If the above properties are true for any

bounded time interval, we say that the Cauchy problem is globally well-posed in X.

For the local well-posedness theory, it is important that the coefficients γ1 and δ1 appearing

respectively in front of the ηxxt and ηxxxxt–terms be non-negative. The problem is linearly

ill-posed if this is not the case, as one can see by taking the linear part of equation (3.34)

in the next section. (The special cases where δ1 = 0 is also locally well-posed, but will not

be considered here.) It will be presumed henceforth that γ1 ≥ 0 and δ1 > 0 to be the case.

Discussion of concrete conditions for this to be the case are forthcoming in Section 4. Indeed,

it will be shown that there are plenty of choices of the fundamental parameters θ, λ, µ, λ1,

µ1 and ρ for which γ1, δ1 are positive.
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Local well-posedness will be obtained by using multilinear estimates combined with a

contraction mapping argument. The local theory does not depend upon special choices of

the parameters in the problem other than the positivity of γ1 and δ1. In general, equation

(2.32) does not have an obvious Hamiltonian structure. However, by suitably choosing the

parameters, it can be put into Hamiltonian form. The Hamiltonian structure allows one to

infer bounds on solutions that lead to global well-posedness. As seen in the recent simulations

of solutions of some of the first-order systems [15], lack of Hamiltonian structure often seems

to go along with lack of global well-posedness.

While solutions of the system (2.32) will not approximate solutions of the full water wave

problem (1.1) without considerable smoothness (see [17]), a modern thrust in the analysis

of dispersive partial differential equations is to provide local and global well-posedness the-

ory in relatively large function classes. While mostly of mathematical interest, theory in

such low-regularity classes can be useful in the analysis of numerical schemes for approx-

imating solutions of such equations, especially when the lower-order norms can be given

time-independent bounds.

To obtain a global well-posedness result for initial data with lower order Sobolev regularity,

we use a high-low frequency splitting technique. Such splitting methods have roots at least

as far back as the work of M. Schonbek and her collaborators (see [5], [47] for example). In

the context of BBM-type equations, it was applied in [9] and [23] to obtain sharper well-

posedness results. More subtle splitting appears in the work of Bourgain (see, e.g. [25] and

the references therein, as well as the further developments in [31], [32] for example.)

Before announcing the main results, the mostly standard notation that will be used

throughout is recorded. If f is a function defined on the real line R, then f̂ denotes its

Fourier transform, namely

f̂(ξ) =
1√
2π

∫
R
e−ixξf(x)dx.

The space of square-integrable, measurable functions defined on a measurable subset Ω of

Euclidean space will be denoted L2(Ω). In fact, throughout, Ω will always be an interval

in the real line R or a Cartesian product of two such intervals in R2. The L2(R)-based

Sobolev space of order s ∈ R will be denoted by Hs = Hs(R) = (1 −∆)−s/2L2 as usual. If

f : R× [0, T ]→ R, the mixed LqTL
p
x-norm of f is

‖f‖Lq
TL

p
x

=

(∫ T

0

(∫
R
|f(x, t)|p dx

)q/p
dt

)1/q

,
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with the usual modification when p or q is ∞. An analogous definition is used for the other

mixed norms LpxL
q
T , with the order of integration in time and space interchanged. In the

notation LpxL
q
T or LpTL

q
x, T is replaced by t when the interval [0, T ] is instead the whole real

line R. For T > 0 and s ∈ R, C([0, T ];Hs) denotes the space of continuous maps from [0, T ]

to Hs with its usual norm, ‖u‖C([0,T ];Hs) := supt∈[0,T ] ‖u(x, ·)‖Hs .

We use c or C to denote various space- and time-independent constants whose exact values

may vary from one line to the next. The notation A . B connotes an estimate of the form

A ≤ cB for some c, while A ∼ B means A . B and B . A. The notation a+ stands for

a+ ε for any ε > 0, no matter how small.

Here are the main results. The first one is about the local well-posedness in Hs(R), s ≥ 1.

Theorem 2.2. Assume γ1, δ1 > 0. For any s ≥ 1 and for given η0 ∈ Hs(R), there exist a

time T = T (‖η0‖Hs) and a unique function η ∈ C([0, T ];Hs) which is a solution of the IVP

for (2.32), posed with initial data η0. The solution η varies continuously in C([0, T ];Hs) as

η0 varies in Hs.

With more regularity and a further restriction on the coefficients of the equation, global

well-posedness holds, as the next theorem attests.

Theorem 2.3. Assume γ1, δ1 > 0. Let s ≥ 3
2

and γ = 7
48

. Then the solution to the IVP

associated to (2.32) given by Theorem 2.2 can be extended to arbitrarily large time intervals

[0, T ]. Hence the problem is globally well-posed in this case.

3. Well-posedness Theory in Hs, s ≥ 1

Local well-posedness will be established using multilinear estimates combined with a con-

traction mapping argument. Global well-posedness in the spaces Hs with s ≥ 2 is obtained

via energy-type arguments together with the local theory. For values of s below 2, the global

theory results from splitting the initial data into a small, rough part and a smooth part and

writing evolution equations for each of these in such a way that the sum of the results of the

separate evolutions provides a solution of the original problem.

3.1. Local well-posedness. This section will focus upon local well-posedness issues for the

Cauchy problem associated to (2.32) for given data η(x, 0) = η0(x) in Hs(R). The first step

is to write (2.32) in an equivalent integral equation format. Taking the Fourier transform of

equation (2.32) with respect to the spatial variable yields

η̂t + iξη̂ + γ1ξ
2η̂t − iγ2ξ3η̂ + δ1ξ

4η̂t + δ2iξ
5η̂ +

3

4
iξη̂2 − γiξ3η̂2 − 1

8
iξη̂3 − 7

48
iξη̂2x = 0, (3.33)
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or what is the same,(
1 + γ1ξ

2 + δ1ξ
4
)
iη̂t = ξ(1− γ2ξ2 + δ2ξ

4)η̂ +
1

4
(3ξ − 4γξ3)η̂2 − 1

8
ξη̂3 − 7

48
ξη̂2x. (3.34)

Because γ1, δ1 are taken to be positive, the fourth-order polynomial

ϕ(ξ) := 1 + γ1ξ
2 + δ1ξ

4, (3.35)

is strictly positive. Define the three Fourier multiplier operators φ(∂x), ψ(∂x) and τ(∂x) via

their symbols, viz.

φ̂(∂x)f(ξ) := φ(ξ)f̂(ξ), ψ̂(∂x)f(ξ) := ψ(ξ)f̂(ξ) and τ̂(∂x)f(ξ) := τ(ξ)f̂(ξ), (3.36)

where

φ(ξ) =
ξ(1− γ2ξ2 + δ2ξ

4)

ϕ(ξ)
, ψ(ξ) =

ξ

ϕ(ξ)
and τ(ξ) =

3ξ − 4γξ3

4ϕ(ξ)
. (3.37)

With this notation, the Cauchy problem associated to equation (2.32) can be written in

the form iηt = φ(∂x)η + τ(∂x)η
2 − 1

8
ψ(∂x)η

3 − 7
48
ψ(∂x)η

2
x ,

η(x, 0) = η0(x).
(3.38)

Consider first the linear IVP iηt = φ(∂x)η,

η(x, 0) = η0(x),
(3.39)

whose solution is given by η(t) = S(t)η0, where Ŝ(t)η0 = e−iφ(ξ)tη̂0 is defined via its Fourier

transform. Clearly, S(t) is a unitary operator on Hs for any s ∈ R, so that

‖S(t)η0‖Hs = ‖η0‖Hs , (3.40)

for all t > 0. Duhamel’s formula allows us to write the IVP (3.38) in the equivalent integral

equation form,

η(x, t) = S(t)η0 − i
∫ t

0

S(t− t′)
(
τ(∂x)η

2 − 1

8
ψ(∂x)η

3 − 7

48
ψ(∂x)η

2
x

)
(x, t′)dt′. (3.41)

In what follows, a short-time solution of (3.41) will be obtained via the contraction map-

ping principle in the space C([0, T ];Hs). This will provide a proof of Theorem 2.2.
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3.1.1. Multilinear Estimates. Various multilinear estimates are now established that will be

useful in the proof of the local well-posedness result. First, we record the following “sharp”

bilinear estimate obtained in [23].

Lemma 3.1. For s ≥ 0, there is a constant C = Cs for which

‖ω(∂x)(uv)‖Hs ≤ C‖u‖Hs‖v‖Hs (3.42)

where ω(∂x) is the Fourier multiplier operator with symbol

ω(ξ) =
|ξ|

1 + ξ2
. (3.43)

It is worth noting that there is a counterexample in [23] showing that the inequality (3.42)

is false if s < 0.

Corollary 3.2. For any s ≥ 0, there is a constant C = Cs such that the inequality

‖τ(∂x)η
2‖Hs ≤ C‖η‖2Hs (3.44)

holds, where the operator τ(∂x) is defined in (3.36).

Proof. Since δ1 > 0, it follows that τ(ξ) ≤ Cω(ξ) for some constant C > 0. The proof of the

estimate (3.44) thus follows from Lemma 3.1. �

Proposition 3.3. For s ≥ 1
6
, there is a constant C = Cs such that

‖ψ(∂x)η
3‖Hs ≤ C‖η‖3Hs . (3.45)

Proof. Consider first when 1
6
≤ s < 5

2
. In this case, it appears that∣∣∣(1 + |ξ|)s ψ(ξ)

∣∣∣ =
∣∣∣ (1 + |ξ|)sξ
(1 + γ1ξ2 + δ1ξ4)

∣∣∣ ≤ C
1

(1 + |ξ|)3−s
. (3.46)

The last inequality implies that

‖ψ(∂x)η
3‖Hs = ‖(1 + |ξ|)s ψ(ξ)η̂3(ξ)‖L2 ≤ C

∥∥∥∥ 1

(1 + |ξ|)3−s
η̂3(ξ)

∥∥∥∥
L2

≤ C

∥∥∥∥ 1

(1 + |ξ|)3−s

∥∥∥∥
L2

‖η̂3‖L∞ ≤ C‖η‖3L3 .

(3.47)

In one dimension, the Sobolev embedding theorem states in part that H
1
6 is embedded in

L3, so

‖η‖L3 ≤ C‖η‖
H

1
6
, (3.48)

whence

‖ψ(∂x)η
3‖Hs ≤ C‖η‖3Hs



HIGHER-ORDER HAMILTONIAN MODEL 19

whenever 1
6
≤ s < 5

2
.

On the other hand, if s > 1/2, the Sobolev space Hs is a Banach algebra. Since |ψ(ξ)| ≤
Cω(ξ), Lemma 3.1 implies that

‖ψ(∂x)(ηη
2)‖Hs ≤ C‖η‖Hs‖η2‖Hs ≤ C‖η‖3Hs , (3.49)

which completes the proof of Proposition 3.3. �

Remark 3.4. The reader will appreciate presently that this result is only used in case s > 1
2
,

so the full power of the last proposition is not needed in our theory. We thought it interesting

that the result holds down to s = 1
6

and note that the inequality useful at this level could be

in the setting of internal waves in the deep ocean. This point will be investigated in future

research.

Lemma 3.5. For s ≥ 1, the inequality

‖ψ(∂x)η
2
x‖Hs ≤ C‖η‖2Hs (3.50)

holds.

Proof. Observe that

ψ(ξ) ≤ Cω(ξ)
1

1 + |ξ|
.

The inequality (3.42) then allows the conclusion

‖ψ(∂x)η
2
x‖Hs ≤ C‖ω(∂x)η

2
x‖Hs−1 ≤ C‖ηx‖Hs−1‖ηx‖Hs−1 ≤ C‖η‖2Hs , (3.51)

since s− 1 ≥ 0. �

The preceding ingredients are assembled to provide a proof of the local well-posedness

theorem.

Proof of Theorem 2.2. Define a mapping

Ψη(x, t) = S(t)η0 − i
∫ t

0

S(t− t′)
(
τ(Dx)η

2 − 1

4
ψ(∂x)η

3 − 7

48
ψ(∂x)η

2
x

)
(x, t′)dt′. (3.52)

The immediate goal is to show that this mapping is a contraction on a closed ball Br with

radius r > 0 and center at the origin in C([0, T ];Hs).

As remarked earlier, S(t) is a unitary group in Hs(R) (see (3.40)), and therefore

‖Ψη‖Hs ≤ ‖η0‖Hs + CT
[∥∥τ(∂x)η

2 − 1

8
ψ(∂x)η

3 − 7

48
ψ(∂x)η

2
x

∥∥
C([0,T ];Hs)

]
. (3.53)

The inequalities (3.44), (3.45) and (3.50) lead immediately to

‖Ψη‖Hs ≤ ‖η0‖Hs + CT
[∥∥η∥∥2

C([0,T ];Hs)
+
∥∥η∥∥3

C([0,T ];Hs)
+
∥∥η∥∥2

C([0,T ];Hs)

]
. (3.54)
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If, in fact, η ∈ Br, then (3.54) yields

‖Ψη‖Hs ≤ ‖η0‖Hs + CT
[
2r + r2

]
r. (3.55)

If we choose r = 2‖η0‖Hs and T = 1
2Cr(2+r)

, then ‖Ψη‖Hs ≤ r, showing that Ψ maps the

closed ball Br in C([0, T ];Hs) onto itself. With the same choice of r and T and the same sort

of estimates, one discovers that Ψ is a contraction on Br with contraction constant equal to
1
2

as it happens. The rest of the proof is standard. �

Remark 3.6. The following points follow immediately from the proof of the Theorem 2.2:

(1) The maximal existence time T = Ts of the solution satisfies

T ≥ T̄ =
1

8Cs‖η0‖Hs(1 + ‖η0‖Hs)
, (3.56)

where the constant Cs depends only on s.

(2) The solution cannot grow too much, which is to say,

‖η(·, t)‖Hs ≤ r = 2‖η0‖Hs (3.57)

for all t ∈ [0, T̄ ] where T̄ is as above in (3.56).

3.2. Global well-posedness. In this section, a priori deduced bounds are obtained with

an eye toward extending the local well-posedness just established. The present theory coun-

tenances the spaces Hs(R), s ≥ 3
2
. However, we begin with a global well-posedness result in

Hs(R) for s ≥ 2.

3.2.1. Global well-posedness in H2. The aim here is to derive an a priori estimate in H2(R),

subject to certain restrictions on the parameters that appear in (2.32). Multiplying the

equation (2.32) by η, integrating over the spatial domain R and integrating by parts yields

1

2

d

dt

∫
R

(
η2 + γ1η

2
x + δ1η

2
xx

)
dx+ γ

∫
R
(η2)xxx η dx−

7

48

∫
R
(η2x)x η dx = 0. (3.58)

Further integrations by parts gives

1

2

d

dt

∫
R

(
η2 + γ1η

2
x + δ1η

2
xx

)
dx =

(
γ − 7

48

)∫
R
η3x dx. (3.59)

Of course, these calculations involve derivatives of higher order than are guaranteed to exist

by assuming the initial data lies only in H2. Moreover the term on the right-hand side

of (3.59) does not converge if the function η only lies in H2. However, one can make the

calculations using smoother solutions and then pass to the limit of rougher data making use

of the continuous dependence result. The idea is standard and we pass over the details (cf.

[18]).
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From (3.59) it is clear that an a priori estimate obtains when γ = 7
48

. That such a

condition can be imposed while respecting the other mathematical limitations γ1 > 0 and

δ1 > 0 will be discussed in Section 4. For the time being, we presume that θ, λ, µ, λ1, µ1 and

ρ have been chosen so that γ = 7
48

and γ1, δ1 > 0 still holds. In this case, the equation (2.32)

becomes

ηt+ηx−γ1ηxxt+γ2ηxxx+δ1ηxxxxt+δ2ηxxxxx+
3

4
(η2)x+γ

(
η2
)
xxx
−γ
(
η2x
)
x
− 1

8

(
η3
)
x

= 0. (3.60)

In this form, it has the conserved quantity

E(η(·, t)) :=
1

2

∫
R
η2 + γ1(ηx)

2 + δ1(ηxx)
2 dx = E(η0). (3.61)

Remark 3.7. In fact, with the restriction γ = 7
48

, the equation is Hamiltonian, for there is

a second conserved quantity, namely

Θ(η) =
1

2

∫
R

(
−η2 − 1

2
η3 +

1

16
η4 +

7

24
ηη2x + γ2η

2
x − δ2η2xx

)
dx. (3.62)

The system itself may be written in the Hamiltonian format

∂

∂t
∇E(η) =

∂

∂x
∇Θ(η) (3.63)

where ∇E is the Euler derivative of E and similarly ∇Θ the Euler derivative of Θ.

The conservation law (3.61), which is essentially the H2–norm, immediately points to the

following global well-posedness result.

Theorem 3.8. Let s ≥ 2 and suppose γ1, δ1 > 0 and γ = 7
48

. Then the IVP for equation

(2.32) is globally well-posed in Hs(R).

Proof. Following a standard argument, the global well-posedness in H2(R) is a consequence

of the local theory and the a priori bound implied by the conserved quantity (3.61). To

prove global well-posedness in Hk, where k ≥ 3 is an integer, proceed by induction on k.

Assume that η0 lies in H3. The local well-posedness theory then delivers a solution in

C([0, T ];H3) for some T > 0. If a priori bounds on the H3–norm of η which are finite on

finite time intervals holds, then the local theory can be iterated and a global solution results.

Differentiate equation (3.60) with respect to the spatial variable, multiply the resulting

equation by ηx and integrate over R. After integrations by parts in the spatial variable, there

obtains

1

2

d

dt

∫
R

(
η2x + γ1η

2
xx + δ1η

2
xxx

)
dx+

3

4

∫
R
η3x dx

−3γ

∫
R
η2xxηx dx−

3

8

∫
R
η3x η dx = 0.

(3.64)
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Standard Sobolev embedding results show that for any time t for which the solution exists,

‖η‖2L2
x
≤ 2E0, ‖ηx‖2L2

x
≤ 2

γ1
E0, ‖ηxx‖2L2

x
≤ 2

δ1
E0,

‖η‖2L∞x ≤
4
√
γ1
E0, ‖ηx‖2L∞x ≤

4√
δ1γ1

E0,
(3.65)

where E0 = E(η0). After integrating (3.64) with respect to time over the interval [0, t],

making elementary estimates of all the terms not involving a third derivative and using

(3.65) systematically, there obtains the inequality

δ1

∫
R
η2xxx dx ≤

∫
R

(
(η0x)

2 + γ1(η0xx)
2 + δ1(η0xxx)

2
)
dx

+C

∫ t

0

‖ηx‖L∞x
(
‖ηx‖2L2

x
+ ‖ηxx‖2L2

x
+ ‖ηx‖2L2

x
‖η‖L∞x

)
dx

≤ δ1

∫
R
(η0xxx)

2 dx+ CE0 + CE
3/2
0

(
1 + E

1/2
0

)
t,

from which the desired H3–bound follows.

Assuming there are in hand Hk bounds, an entirely similar energy-type calculation reveals

that the solution η has Hk+1–bounds as soon as the initial data η0 lies in Hk+1. We pass

over the details.

To obtain global well-posedness in the fractional-order Sobolev spaces Hs, s ≥ 2 not an

integer, a straightforward application of nonlinear interpolation theory (see [22], [13]) may

be applied, thereby completing the proof of the theorem. �

3.2.2. Global well-posedness in Hs, s ≥ 3
2
. The object of this subsection is to prove the

second main result, Theorem 2.3. To establish well-posedness below the level where a priori

bounds obtain, a Fourier splitting technique will be employed wherein the data η0 is decom-

posed into a small, rough part and a smooth part. As already mentioned, such decomposi-

tions are commonplace in various contexts in the theory of partial differential equations.

Let there be given initial data η0 ∈ Hs where 1 ≤ s < 2 and a T > 0. As advertised, the

data η0 is decomposed into a small part and a smooth part, viz.

η0 = w0 + v0 where w0 ∈ H∞ and v0 ∈ Hs (3.66)

is small. Such a decomposition can be effected in many ways. One that is especially helpful in

what follows is the one-parameter family {wε0}ε>0 defined by way of their Fourier transforms

to be

ŵε0 = ζ(εξ)η̂0(ξ) (3.67)
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where ζ is an even, C∞–function defined on R, 0 ≤ ζ ≤ 1, ζ(0) = 1 and such that 1−ζ(ξ) has

a zero of infinite order at ξ = 0 while ζ decays exponentially to 0 as |ξ| → ∞. (For example,

ζ could be a cut-off function which is identically equal to 1 on the interval [−1, 1] and has

support in [−2, 2].) It follows by a straightforward computation in the Fourier transformed

variables that if η0 ∈ Hs, then for r ≥ 0,

‖wε0‖Hs+r = O
(
ε−r
)

and ‖η0 − wε0‖Hs−r = o (εr) (3.68)

as ε ↓ 0 (see, for example, Lemma 5 in [21]). Define v0 = vε0 = η0−wε0. For the moment, the

dependence of both v0 and w0 upon ε will be suppressed. The values of ε will be appropriately

limited presently.

By choosing ε small enough so that ‖v0‖Hs ≤ 1 and ‖v0‖Hs ≤ 1
12CsT

, the local well-

posedness theory adduced in Theorem 2.2 assures us that if we pose v0 as initial data for

our evolution equation (3.60), then the solution v emanating from it will lie in C([0, T ];Hs)

and it will not be larger than 2‖v0‖Hs over the entire time interval [0, T ] (see Remark 3.6).

We can also insure that

‖v(·, t)‖H1 ≤ 2‖v0‖H1 for all t ∈ [0, T ], (3.69)

simply by imposing the further restriction ‖v0‖H1 ≤ 1
12C1T

. This follows since the integral

operator Ψ in (3.52) will simultaneously satisfy (3.56) and (3.57) for both the Sobolev indices

s and 1. The solutions, which are the fixed points of Ψ in the two spaces, must be the same

by uniqueness in the larger space.

Once v is fixed and known to exist on the entire time interval [0, T ], the smooth part w0

of the initial data is evolved according to the variable coefficient IVPwt + wx − γ1wxxt + γ2wxxx + δ1wxxxxt + δ2wxxxxx +G(v, w) = 0,

w(x, 0) = w0(x),
(3.70)

where

G(v, w) :=
3

2
(vw)x +

3

4
(w2)x + 2γ(vw)xxx + γ(w2)xxx (3.71)

−2γ(vxwx)x − γ(w2
x)x −

3

8
(v2w)x −

3

8
(vw2)x −

1

8
(w3)x.

If a solution w exists in C([0, T ];Hs), then v +w provides a solution on the time interval

[0, T ] of the original problem for the equation (3.60) with initial value η0. As T was arbitrary,

global existence is thereby concluded. Well-posedness then follows from the local theory.

That is, the continuous dependence of the solution on the initial data and the uniqueness of

solutions within the function class C([0, T ];Hs) derive from the previously elucidated local
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well-posedness results. Thus, Theorem 2.3 will be established as soon as (3.70) is shown to

have a solution in C([0, T ];Hs).

Proof of Theorem 2.3. As already discussed, the variable coefficient v appearing in the non-

linearity (3.71) lies in C([0, T ];Hs) ⊂ C([0, T ];H1). As a first step, it is important to show

that the IVP (3.70) for w is locally well-posed in H2 and not just in Hs. To this end, write

the IVP (3.70) in the equivalent, integral equation form


w(x, t) = S(t)w0 − i

∫ t
0
S(t− t′)

(
τ(∂x)w

2 + 2τ(∂x)wv − 1
8
ψ(∂x)w

3

−3
8
ψ(∂x)w

2v − 3
8
ψ(∂x)wv

2 − γψ(∂x)w
2
x − 2γψ(∂x)wxvx

)
(x, t′)dt′

= Φ(w)(x, t),

(3.72)

where the Fourier multiplier operators ψ(∂x) and τ(∂x) are as defined already in (3.36) and

the unitary family S(t) is the solution group for the linear equation (3.39).

This integral equation is studied in C([0, T ];H2) when the variable coefficient v lies in

C([0, T ];Hs). As w0 lies in H∞, it is clear that S(t)w0 lies in C(R;H2). Just as in the

earlier analysis of the integral equation (3.41), the argument proceeds by showing that the

mapping w 7→ Φ(w) defined by the right-hand side of (3.72) is a contraction on a ball Br of

radius r about 0 in the space C([0, T0];H
2) for r large enough and T0 small enough. This

will establish the local well-posedness needed for the next step in the analysis.

The summands in the integral equation that only feature w may be handled just as before

and suitable estimates are forthcoming since we are working in H2 (see the proof of Theorem

2.2). The following lemma provides the extra information needed to complete the argument

in favor of Φ being a contraction mapping on Br ⊂ C([0, T0];H
2) for suitable T0 and r.

Lemma 3.9. Suppose 1 ≤ s < 2. Then for f ∈ Hs and g ∈ H2, there are constants C

depending only on s such that

‖τ(∂x)fg‖H2 ≤ C‖f‖Hs‖g‖H2 , ‖ψ(∂x)f
2g‖H2 ≤ C‖f‖2Hs‖g‖H2 ,

‖ψ(∂x)fg
2‖H2 ≤ C‖f‖Hs‖g‖2H2 , ‖ψ(∂x)fxgx‖H2 ≤ C‖f‖Hs‖g‖H2 .

(3.73)

Proof. As τ(∂x) is a bounded map from Hr to Hr+1, it follows that

‖τ(∂x)fg‖H2 ≤ C‖fg‖H1 ≤ C‖f‖H1‖g‖H1 ≤ C‖f‖Hs‖g‖H2.
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The operator ψ(∂x) maps Hr to Hr+3. Consequently, we have

‖ψ(∂x)f
2g‖H2 ≤ C‖f 2g‖H1 ≤ C‖f‖2H1‖g‖H1 ≤ C‖f‖2Hs‖g‖H2 ,

‖ψ(∂x)fg
2‖H2 ≤ C‖fg2‖H1 ≤ C‖f‖H1‖g‖2H1 ≤ C‖f‖Hs‖g‖2H2 ,

‖ψ(∂x)fxgx‖H2 ≤ C‖fxgx‖L2 ≤ C‖fx‖L2‖gx‖L∞ ≤ C‖f‖Hs‖g‖H2 ,

and the results are established. �

It is straightforward to use the smoothing estimates (3.73) to show that the mapping Φ is

a contraction on a suitably chosen ball about the origin in C([0, T0];H
2) for T0 small enough,

which is the content of the following proposition.

Proposition 3.10. The IVP (3.70) is locally well-posed in H2.

It remains only to show that the local in time solution w of (3.70) can be continued to the

entire time interval [0, T ]. This in turn will be settled as soon as a priori bounds on w in

H2 are provided which are valid on [0, T ]. To see such a bound obtains, multiply equation

(3.70) by w, integrate over R and integrate by parts in the spatial variable to obtain

1

2

∂

∂t

∫
R

(
w2 + γ1w

2
x + δ1w

2
xx

)
dx =

3

2

∫
R
vwwxdx− 2γ

∫
R
(vw)xwxx dx

− 2γ

∫
R
vx(wx)

2 dx− 3

8

∫
R
v2wwx dx−

3

8

∫
R
v w2wx dx.

(3.74)

The intermediate computations are justified as before by use of the continuous dependence

results in H2 for w and H1 for v. Let X(t) :=
∫
R (w2 + γ1w

2
x + δ1w

2
xx ) dx. Then, X(t) is

equivalent to the square of the H2–norm of w(·, t).
The next task is to obtain an upper bound on the right-hand side of (3.74) in terms

of ‖w‖H2 and ‖v‖H1 . The fact that ‖w‖L∞ and ‖wx‖L∞ are both bounded by ‖w‖H2 and

elementary estimates imply that

∂X(t)

∂t
≤ C

((
‖v‖H1 + ‖v‖2H1

)
‖w‖2H2 + ‖v‖H1‖w‖3H2

)
≤ C

((
‖v‖H1 + ‖v‖2H1

)
X(t) + ‖v‖H1X(t)

3
2

)
.

(3.75)

Recall that ‖v(·, t)‖H1 ≤ 2‖v0‖H1 on the entire interval [0, T ]. In consequence, (3.75) can be

extended thusly;
∂X(t)

∂t
≤ 2C‖v0‖H1

(
X(t) + X(t)

3
2

)
. (3.76)

Notice that, because of (3.68),

‖v0‖H1 = o(εs−1) = ν(ε)εs−1 where ν(ε)→ 0 as ε→ 0. (3.77)
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If Σ(t) is the solution of

dΣ

dt
= 2C‖v0‖H1

(
Σ(t) + Σ(t)

3
2

)
(3.78)

with Σ(0) = X(0), then a Gronwall-type argument implies that X(t) ≤ Σ(t) for all t for

which Σ is finite. The solution of (3.78) is

σ(t) =
σ(0)eCt‖v0‖H1

1− σ(0)
(
eCt‖v0‖H1 − 1

) ≤ σ(0)eCT‖v0‖H1

1− σ(0)
(
eCT‖v0‖H1 − 1

) , (3.79)

provided the right-hand side is positive and finite, where σ(t)2 = Σ(t). Of course, as long as

0 ≤ y ≤ 1, say, then ey − 1 ≤ ey. Since T is fixed and ‖v0‖H1 is small for small values of ε,

the right-hand side of (3.79) may be bounded above by

σ(0)eCT‖v0‖H1

1− CTeσ(0)‖v0‖H1

. (3.80)

The latter will provide the desired upper bound needed to continue the solution w to the

entire time interval [0, T ] as soon as

σ(0)‖v0‖H1 <
1

CeT
. (3.81)

As σ(0) is equivalent to the H2–norm of w0, (3.68) implies that σ(0) ≤ Cεs−2. Combining

this with (3.77), it is seen that

σ(0)‖v0‖H1 = o
(
ε2s−3

)
as ε ↓ 0.

Consequently, if s ≥ 3
2

and ε small enough, (3.81) is valid and the result is proved. �

4. Parameter Restrictions

The class of partial differential equations (2.32) are all formally equivalent models for

long-crested, small amplitude, long waves on the surface of an ideal fluid over a flat bottom.

The hope is that they approximate solutions of the full water-wave problem for an ideal fluid

with an error that is of order O (β3t) over a time scale at least of order O (β−2). Rigorous

theory to this effect, but only on the shorter, Boussinesq time scale O (β−1), is available for

the lower order, unidirectional models (2.11) by combining results in [1], [17] and [20].

It deserves remark that various models already existing in the literature are specializations

of the class of models displayed in (2.27). For example, the model derived in [30] in it’s

zero surface tension limit, and see also [36] and [41], appears by taking ρ = b + d and an

appropriate choice of λ1. As will be clear momentarily, this model, like the one in [43], is

not Hamiltonian.
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Despite the fact that the models are formally equivalent, they may have very different

mathematical properties. When it comes time to choose one of the models for use in a

real-world situation, one naturally wants to have good mathematical properties at hand.

This was discussed in some detail in [11] and [12] in the context of the lower-order system

(1.6)–(1.7).

In the present account, theory has been developed that implies the local well-posedness of

the initial-value problem for a subclass of our unidirectional models. Local well-posedness

is a minimal requirement for the use of such models in practice. We also found an addi-

tional condition which allows the local theory to be continued indefinitely. It is especially

noteworthy that this condition implies the equation to have a Hamiltonian structure. The

full water wave model also has a Hamiltonian structure, and experience indicates that main-

taining such a Hamiltonian arrangement in approximate models is likely to lead to better

qualitative agreement with the full model. Hence, our recommendation is to use the special

versions of our equation displayed in (3.60).

Interest is now turned to specifying conditions under which the various restrictions on the

coefficients γ1, δ1 and γ that cropped up during our analysis are valid. Recall that these

conditions were

γ1 > 0, δ1 > 0 and γ =
7

48
(4.82)

(see Theorem 3.8). The models satisfying these three conditions appear to have a more

satisfactory mathematical theory. It is worth reiterating that comparison results indicating

that such models approximate solutions of the full water-wave problem rely upon smoothness

(see [1], [17] and [37], for example). The fact that, with the restrictions (4.82), the model is

globally well-posed in smooth function classes is therefore potentially very useful.

4.1. Hamiltonian Structure. The Hamiltonian structure displayed in Remark 3.7 is the key

to our global well-posedness results. It also engenders other good features in the model

which are not entered upon here.

So far, the condition γ = 7
48

is the only one for which we know existence of a Hamiltonian

structure. Looking at the formula for γ given in (2.28) and demanding that γ = 7
48

implies

that
1

24

[
5− 9(b+ d) + 9ρ

]
=

7

48
. (4.83)

Thus, the Hamiltonian structure is guaranteed if one chooses ρ by the formula

ρ = b+ d− 1

6
, (4.84)
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which is exactly the one advertised in (2.21). In terms of the fundamental parameters θ, λ

and µ, ρ given in (4.84) is written as

ρ =
1

6

[
1−

(
θ2 − 1

3

)
λ− 3

(
1− θ2)µ

]
=

1

6
− (a+ c), (4.85)

where the relation a+ b+ c+ d = 1
3

has been used.

4.2. Well-Posedness. As mentioned already, equation (2.32) is easily seen to be linearly ill-

posed in Sobolev classes unless the parameters γ1 and δ1 are positive. These are the more

important of the three restrictions in (4.82) as far as well-posedness is concerned. We fix the

value of ρ = b+ d− 1
6

given by (4.84) for which γ1 = γ2 = 1
12

. In particular, γ1 > 0, so that

condition is met. In what follows, we discuss the condition δ1 > 0.

As noted in Remark 2.1, a straightforward calculation reveals that

δ2 − δ1 +
1

6
γ1 =

19

360
, (4.86)

regardless of the choice of the various fundamental parameters. As γ1 = 1/12, it is further

deduced that

δ2 = δ1 +
7

180
. (4.87)

Thus, the condition γ = 7/48 implies (4.84). This in turn yields (4.87). So, any value of

δ1 > 0 may be specified as long as it is consistent with choices of θ, λ, µ, λ1 and µ1.

Using the formula (2.28) for δ1 together with the formulas (1.7) and (1.9) for the coefficients

a, b, · · · , c1, d1 and (4.84) for ρ, a little algebra shows that in terms of the fundamental

parameters θ, λ, µ, λ1 and µ1,

δ1 = δ1(θ, λ, µ, λ1, µ1) =
1

2
(b1 + d1)−

1

4

(
2b− 1

6

)(1

6
− a− d

)
− 1

4
d
(1

6
− 2a

)
= − 5

48

(
θ2 − 1

5

)[(
θ2 − 1

5

)
(1− λ1) + (1− θ2)µ1

]
− 1

4

[(
θ2 − 1

3

)
(1− λ)− 1

6

][1

6
− 1

2

(
θ2 − 1

3

)
λ− 1

2
(1− θ2)(1− µ)

]
− 1

8
(1− θ2)(1− µ)

[1

6
−
(
θ2 − 1

3

)
λ
]

=
5

48

(
θ2 − 1

5

)2
λ1 −

5

48

(
θ2 − 1

5

)
(1− θ2)µ1 + P (θ, λ, µ),

(4.88)

where

P (θ, λ, µ) = −(3θ2 − 1)2

72
λ2 +

(3θ2 − 1)(6θ2 − 1)

144
λ− (1− θ2)

24
µ− (5θ4 − 30θ2 + 14)

240
,

(4.89)
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is a polynomial in θ, λ and µ. A study of (4.88) reveals that there are two separate cases to

consider.

Case 1: θ ∈ [0, 1] \ { 1√
5
}. In this case δ1 > 0 if and only if

λ1 >
(1− θ2)µ1(
θ2 − 1

5

) − 48

5

P (θ, λ, µ)(
θ2 − 1

5

)2 =: H(θ, λ, µ, µ1). (4.90)

Since H(θ, λ, µ, µ1) is finite for any given values of θ, λ, µ and µ1, it is always possible to

choose an appropriate λ1 such that the inequality (4.90) holds true. Indeed, there are many

choices that work.

Case 2: θ = 1√
5
. In this case

δ1

( 1√
5
, λ, µ, λ1, µ1

)
= P

( 1√
5
, λ, µ

)
= − 1

450
λ2 − 1

1800
λ− 1

30
µ− 41

1200
.

(4.91)

Observe that the quadratic equation

P
( 1√

5
, λ, µ

)
= 0, (4.92)

defines a parabola facing downward. The region in λ−µ space where δ1 = P
(

1√
5
, λ, µ

)
> 0

is the shaded region inside the parabola shown in the Figure 1, viz.

Figure 1. The region where P
(

1√
5
, λ, µ

)
> 0 is shaded.

5. The Dispersion Relation

The models derived here depend upon choices of six parameters, which have been de-

noted λ, λ1, µ, µ1, θ and ρ. The parameter θ has physical significance whereas the others are

modeling parameters and in principle, can take any real value.
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As will be seen in a moment, the linearized dispersion relation for the class of models

derived here always matches that of the full water-wave problem through second order in

the small parameter β. More precisely, if any of these models are linearized about the rest

state, the resulting linear partial differential equation has a dispersion relation relating phase

speed c to wave number k. A brief calculation shows this to be

cmodel(k) = 1−
(
γ1 + γ2

)
k2 +

(
δ2 − δ1 + γ21 + γ1γ2

)
k4 + Fk6 (5.93)

where k is the wave number and the coefficient F is

F = F(θ, λ, µ, λ1, µ1, ρ) = −γ1δ2 − γ2(−δ1 + γ21) + 2γ1δ1 − γ31 . (5.94)

As γ1 + γ2 = 1/6 holds independently of the choice of parameters, the second and third

terms simplify, viz.

cmodel(k) = 1− 1

6
k2 +

(
δ2 − δ1 +

1

6
γ1

)
k4 + Fk6, (5.95)

where the coefficient F will be displayed presently. Making use of (4.87) leads to the final

result

cmodel(k) = 1− 1

6
k2 +

(
19

360

)
k4 + Fk6, (5.96)

regardless of the choice of the various parameters.

For the two-dimensional water wave problem displayed in (1.1), the linearized dispersion

relationship is exactly

cEuler(k) = ±
√

tanh(k)

k
. (5.97)

For waves moving to the right, the +–sign is appropriate. One recognizes that the Taylor

expansion of the function of the right-hand side of (5.97) in the long wave regime (small

wavenumber k) is

cEuler(k) = 1− 1

6
k2 +

19

360
k4 − 55

3024
k6 +O(k8).

In consequence, all the models put forward here are seen to satisfy the full, linear dispersion

relation through order k4. Of course, if the derivation is done correctly, this has to be the

case. If one rescales the variables so the long wavelength assumption is measured by β as

in the formalities of the derivation, then one sees that the error in the linear part of the

approximation is at least of order β3.

It is tempting to choose the parameters θ, λ, µ, λ1, µ1 and ρ so that F matches the next

order in the dispersion relation exactly, as was done at the lower order in [10]. Hence, if the
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auxiliary parameters are chosen so that

F(θ, λ, µ, λ1, µ1, ρ) = − 55

3024
, (5.98)

then the linear dispersion in the model would match that of the linear water wave problem

up to and including order β3. Such a choice could have a salutory effect on the detailed

accuracy of the model, though it does not improve the overall formal level of approximation.

Of course, one needs that the criteria for local well posedness continue to hold in the light

of this choice. A study of the formula (5.94) for F shows that

F = −γ1δ2 − γ2
(
− δ1 + γ21

)
+ 2γ1δ1 − γ31

= −γ1δ2 + δ1
(
γ2 + 2γ1

)
− γ21

(
γ1 + γ2

)
= −γ1δ2 + δ1

(
γ1 +

1

6

)
− 1

6
γ21

= γ1

(
δ1 − δ2 −

1

6
γ1

)
+

1

6
δ1

= − 19

360
γ1 +

1

6
δ1,

(5.99)

where the facts that γ1 +γ2 = 1/6 and the relation (4.86) have been used. It is interesting to

know whether or not the relation (5.98), which implies the model dispersion relation agrees

with the exact linear dispersion relation up to order k6, is consistent with the conditions

δ1 > 0, γ1 > 0 and γ = 7
48

implying global well posedness. The condition γ = 7
48

requires

that ρ = b+ d− 1
6

as in (4.84). This in turns implies that γ1 = 1
12
> 0. That the parameters

can be chosen so that (5.98) holds is clear upon consulting the formula (4.88) for δ1, which

already presumes that ρ = b + d − 1
6
. For example, choose θ2 ∈ (1

5
, 1), and fix λ, µ and µ1.

Then δ1 is seen to have the form

δ1 = M +Nλ1

where N > 0. Clearly any value of δ1 can be achieved by a suitable choice of λ1 and so any

value of F can be achieved under the restriction ρ = b+ d− 1
6
. However, notice that (5.99)

and (5.98) yield

δ1 = 6

(
19

360

1

12
− 55

3024

)
= − 139

1680
< 0. (5.100)

Hence, the requirement of Hamiltonian structure together with local well-posedness are not

consistent with the model approximating the dispersion relation at the next order without

considering O(α2, β2, αβ) terms in (2.23) and a new correction parameter like ρ.
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6. Concluding Remarks

Derived here is a class of unidirectional models for long-crested water waves that are

formally second-order correct. Basic analysis of the pure initial-value problem for our models

has been developed. A local well-posedness theory in relatively weak spaces is established

under conditions on the two parameters δ1 and γ1 that appear in the model, and which

depend upon the other parameters. Global well-posedness is only established in case the

equation has a special, Hamiltonian structure. Conditions under which both aspects obtain

are given.

A comment is deserved about the focus maintained throughout on unidirectional models.

Boussinesq himself understood that his one-way model was simpler than the coupled pair

of two-way models that he first derived. It was also simpler than a second-order in time,

unidirectional model equation he had derived earlier. In both these instances, a modern

perspective on this issue is that the undirectional model can be posed with half the auxil-

iary data needed to initiate the coupled system. However, unidirectionality places a severe

limitation on the wave motion when it is posed as an initial-value problem. More precisely,

a strict relationship between the initial wave profile and the velocity field is implied. On

the other hand, it is known that for Boussinesq-type systems, if the initial disturbance is

suitably localized and small, then on certain temporal scales, the disturbance will decom-

pose into a left- and a right-going wave, each of which satisfy approximately a unidirectional

equation (see [46], [17]). Finally, it is worth noting that even fairly steep beaches do not

reflect all that much energy (see [40]). For very gently shelving beaches such as obtain in

many nearshore zones, the reflection is negligible as regards its effect on shaping and erosive

processes. Hence, unidirectional models seem to suffice in such circumstances.

Finallly, we remark that when choosing the depth parameter θ, it is a good idea if it

is taken well inside the interval [0, 1]. While the horizontal velocity does not appear in

the unidirectional model, a formal corollary of its derivation is a prediction of the horizontal

velocity at the depth 1−θ2. This is comprised of the formula (2.18) expressing the horizontal

velocity in terms of the functions A,B,C,D and E together with the forms (2.17) determined

for A and B and those for C,D and E. It is hard to measure the horizontal velocity very

close to the free surface, while in actual fact, there is no velocity on the bottom because of

the viscous boundary layer. Typical velocity measurements in laboratory and field situations

are made somewhere in the middle of the water column.
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[16] J. L. Bona, T. Colin and C. Guillopé; Propagation of long-crested water waves, Discrete Contin.

Dyn. Syst. 33 (2013) 599–628.

[17] J. L. Bona, T. Colin and D. Lannes; Long Wave Approximations for Water Waves, Arch.

Rational Mech. Anal. 178 (2005) 373–410.

[18] J. L. Bona and H. Kalisch; Models for internal waves in deep water, Discrete Contin. Dyn.

Syst. 6 (2000) 1–20.

[19] J. L. Bona, W. G. Pritchard and L. R. Scott; An Evaluation of a Model Equation for Water

Waves, Philos. Trans. Royal Soc. London Series A. 302 (1981) 457–510.

[20] J. L. Bona, W. G. Pritchard and L. R. Scott; A comparison of solutions of two model equations

for long waves, In Lectures in Applied Mathematics 20 (ed. N. Lebovitz) American Mathe-

matical Society: Providence (1983) 235–267.

[21] J. L. Bona and R. Smith; The initial-value problem for the Korteweg-de Vries equation, Philos.

Trans. Royal Soc. London, Series A, 278 (1975) 555–601.

[22] J. L. Bona and L. R. Scott; The Korteweg-de Vries equation in fractional order Sobolev spaces,

Duke Math. J. 43 (1976) 87–99.

[23] J. L. Bona and N. Tzvetkov; Sharp well-posedness results for the BBM equation, Discrete

Contin. Dyn. Syst. 23 (2009) 1241–1252.

[24] J. L. Bona and V. Varlmov; Wave generation by a moving boundary, In Nonlinear partial

differential equations and related analysis, Contemporary Math. 371 (2005) (ed. G.-Q. Chen,

G. Gasper and J. Jerome) American Math. Soc., Providence, RI, pp. 41–71.



HIGHER-ORDER HAMILTONIAN MODEL 35

[25] J. Bourgain; Refinements of Strichartz inequality and applications to 2D-NLS with critical

nonlinearity, IMRN 5 (1998) 253–283.

[26] J. Boussinesq; Essai sur la theorie des eaux courantes, Memoires presentes par divers savants,

l ’Acad. des Sci. Inst. Nat. France, XXIII (1877) 1-680.

[27] H. Chen; Well-posedness for a higher-order, nonlinear, dispersive equation on a quarter plane,

submitted.

[28] A. Constantin, D. Lannes; The hydrodynamical relevance of the Camassa-Holm and Degasperis-

Processi equations, Arch. Rational Mech. Anal. 192 (2009) 165–186.
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