Math 160 Discussion Notes
 Brian Powers - TA - Fall 2011

2.3 Matrix Operations

There are three operations we must define for working with matrices: Addition, Scalar Multiplication and Matrix Multiplication.

Matrix Addition

Given two Matrices A and B, both of which are of dimensions nxm, we have $A+B=C$, where C is also of dimensions nxm, and each entry of matrix C is $c_{i, j}=a_{i, j}+b_{i, j}$.
ex) $\left[\begin{array}{ccc}4 & 5 & 1 \\ 2 & 4 & -1\end{array}\right]+\left[\begin{array}{ccc}-1 & 4 & 2 \\ 1 & 3 & -3\end{array}\right]=\left[\begin{array}{ccc}4-1 & 5+4 & 1+2 \\ 2+1 & 4+3 & -1-3\end{array}\right]=\left[\begin{array}{ccc}3 & 9 & 3 \\ 3 & 7 & -4\end{array}\right]$
ex) $\left[\begin{array}{lll}3 & 8 & 9 \\ 3 & 4 & 5\end{array}\right]+\left[\begin{array}{cc}4 & 7 \\ 0 & 1 \\ 4 & -1\end{array}\right]$ is not defined because the two matrices have different dimensions.

Scalar Multiplication

Given a matrix A and a real number $c, c A=B$ where each entry of B is $b_{i, j}=c * a_{i, j}$. In other words, we multiply each entry of matrix A by the number c .
ex) $3\left[\begin{array}{ccc}4 & 5 & 1 \\ 2 & 4 & -1\end{array}\right]=\left[\begin{array}{lll}3(4) & 3(5) & 3(1) \\ 3(2) & 3(4) & 3(-1)\end{array}\right]=\left[\begin{array}{ccc}12 & 15 & 3 \\ 6 & 12 & -3\end{array}\right]$

Matrix Multiplication

Given a matrix A with dimensions nxm and B which is mxp, $A B=C$, where matrix C has dimensions nxp, and each entry of matrix C is $c_{i, j}=a_{i, 1} b_{1, j}+a_{i, 2} b_{2, j}+\ldots+a_{i, m} b_{m, j}$
In other words, for the entry in row i and column j of the product matrix, we take row i of matrix A and column j of matrix B , and take the sum of the products of each corresponding entry.
ex) $\left[\begin{array}{lll}3 & 8 & 9 \\ 3 & 4 & 5\end{array}\right]\left[\begin{array}{cc}4 & 7 \\ 0 & 1 \\ 4 & -1\end{array}\right]$
First of all, because we are multiplying a [2x3] and [3x2] matrix, this is allowed. The columns of the first must be the same as the rows of the second. The product will be a 2×2 matrix (the rows of the first and columns of the second).
Entry 1,1 of the product comes from row 1 of the first matrix and column 1 of the second matrix

$$
\left[\begin{array}{lll}
\mathbf{3} & \mathbf{8} & \mathbf{9} \\
3 & 4 & 5
\end{array}\right]\left[\begin{array}{cc}
\mathbf{4} & 7 \\
\mathbf{0} & 1 \\
\mathbf{4} & -1
\end{array}\right]=\left[\begin{array}{cc}
3(4)+8(0)+9(4) & ? \\
? & ?
\end{array}\right]
$$

The remaining entries are calculated accordingly
$=\left[\begin{array}{cc}48 & 3(7)+8(1)+9(-1) \\ 3(4)+4(0)+5(4) & 3(7)+4(1)+5(-1)\end{array}\right]=\left[\begin{array}{ll}48 & 20 \\ 22 & 20\end{array}\right]$
ex) $\left[\begin{array}{ccc}1 & 8 & -2 \\ 4 & 7 & 9 \\ -2 & 2 & 4\end{array}\right]\left[\begin{array}{ccc}2 & 4 & 3 \\ -1 & 2 & 4\end{array}\right]$ is not defined because the matrices are 3×3 and 2×3.

