Math 160 Discussion Notes
 Brian Powers - TA - Fall 2011

2.4 The Inverse of a Matrix

With real numbers we have a conecpt of the "multiplicitive identity" and "multiplicitive inverse". The multiplicitive identity is 1 , and for any number n, its multiplicitive inverse is $1 / n$, so that when the two are multiplied, the product is 1 .

With matrices this is not quite so simple. We first have to define an identity for matrices.

The Identity Matrix

The identity matrix is an nxn square matrix with 1 s along the main diagonal and 0 everywhere else. We denote it as I_{n} with n the dimensions, although we will omit the n when the dimension is clear from the context of the problem.
ex)

$$
I_{1}=[1], \quad I_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad I_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

For any square matrix $\mathrm{A}, \mathrm{IA}=\mathrm{AI}=\mathrm{A}$. That is to say, multiplying a matrix by the identity matrix doesn't change its value.

The Inverse of a matrix

For a square nxn matrix A, if there exists a matrix A^{-1} such that $A^{-1}=I$, then we say A^{-1} is the inverse of A, and we call it "A inverse". Note that A is the inverse of A^{-1} as well. Also, not every matrix has an inverse!
ex) Verify that $\left[\begin{array}{ll}7 & 2 \\ 3 & 1\end{array}\right]^{-1}=\left[\begin{array}{cc}1 & -2 \\ -3 & 7\end{array}\right]$
We can take the product:

$$
\left[\begin{array}{ll}
7 & 2 \\
3 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & -2 \\
-3 & 7
\end{array}\right]=\left[\begin{array}{ll}
7(1)+2(-3) & 7(-2)+2(7) \\
3(1)+1(-3) & 3(-2)+1(7)
\end{array}\right]=\left[\begin{array}{cc}
7-6 & -14+14 \\
3-3 & -6+7
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Finding the Inverse of a $\mathbf{2 x} \mathbf{2}$ Matrix

We have an easy way to find the inverse of a 2×2 matrix, if it exists. Consider $\mathrm{A}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$
The determinant of A , written $\operatorname{det} \mathrm{A}=\mathrm{ad}-\mathrm{bc}$. If $\operatorname{det} \mathrm{A} \neq 0$, then $\mathrm{A}^{-1}=\frac{1}{\operatorname{det} A}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$. If $\operatorname{det} \mathrm{A}=0$ then A has no inverse.
ex) Find the inverse of $\left[\begin{array}{ll}2 & 3 \\ 5 & 7\end{array}\right]$

$$
\left[\begin{array}{ll}
2 & 3 \\
5 & 7
\end{array}\right]^{-1}=\frac{1}{2(7)-3(5)}\left[\begin{array}{cc}
7 & -3 \\
-5 & 2
\end{array}\right]=-\left[\begin{array}{cc}
7 & -3 \\
-5 & 2
\end{array}\right]=\left[\begin{array}{cc}
-7 & 3 \\
5 & -2
\end{array}\right]
$$

ex) Find the inverse of $\left[\begin{array}{cc}3 & 7 \\ 5 & -2\end{array}\right]$
$\left[\begin{array}{cc}3 & 7 \\ 5 & -2\end{array}\right]^{-1}=\frac{1}{3(-2)-7(5)}\left[\begin{array}{cc}-2 & -7 \\ -5 & 7\end{array}\right]=\frac{1}{-41}\left[\begin{array}{cc}-2 & -7 \\ -5 & 7\end{array}\right]=\left[\begin{array}{cc}2 / 41 & 7 / 41 \\ 5 / 41 & -3 / 41\end{array}\right]$
ex) Find the inverse of $\left[\begin{array}{cc}4 & 2 \\ 10 & 5\end{array}\right]$
$\operatorname{det} A=4(5)-2(10)=20-20=0$, so this matrix has no inverse.

Using the Inverse to solve a system of linear equations

Revisiting the system of linear equations
$\left\{\begin{array}{c}a_{1,1} x_{1}+a_{1,2} x_{2}+\cdots+a_{1, m} x_{m}=b_{1} \\ a_{2,1} x_{1}+a_{2,2} x_{2}+\cdots+a_{2, m} x_{m}=b_{2} \\ \vdots \\ a_{n, 1} x_{1}+a_{n, 2} x_{2}+\cdots+a_{n, m} x_{m}=b_{n}\end{array}\right.$
We can represent this as a matrix equation

$$
\left[\begin{array}{cccc}
a_{1,1} & a_{1,2} & \cdots & a_{1, m} \\
a_{2,1} & a_{2,2} & \cdots & a_{2, m} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n, 1} & a_{n, 2} & \cdots & a_{n, m}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{m}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right] \text { or } \mathrm{AX}=\mathrm{B} .
$$

If A has an inverse A^{-1}, then we can pre-multiply both sides of the equation by A^{-1} to get: $A^{-1} X=A^{-1} B \rightarrow A^{-1} A X=A^{-1} B \rightarrow I X=A^{-1} B \rightarrow X=A^{-1} B$.
ex) Given that $\left[\begin{array}{lll}1 & 2 & 2 \\ 1 & 3 & 2 \\ 1 & 2 & 3\end{array}\right]^{-1}=\left[\begin{array}{ccc}5 & -2 & -2 \\ -1 & 1 & 0 \\ -1 & 0 & 1\end{array}\right]$, solve $\left\{\begin{array}{l}x+2 y+2 z=1 \\ x+3 y+2 z=0 \\ x+2 y+3 z=-1\end{array}\right.$
The system can be expressed as $\left[\begin{array}{lll}1 & 2 & 2 \\ 1 & 3 & 2 \\ 1 & 2 & 3\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]$, so

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{lll}
1 & 2 & 2 \\
1 & 3 & 2 \\
1 & 2 & 3
\end{array}\right]^{-1}\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]=\left[\begin{array}{ccc}
5 & -2 & -2 \\
-1 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]=\left[\begin{array}{c}
5(1)-2(0)-2(-1) \\
-1(1)+1(0)+0(-1) \\
-1(1)+0(0)+1(-1)
\end{array}\right]=\left[\begin{array}{c}
7 \\
-1 \\
-2
\end{array}\right] \text {, so } \mathrm{x}=7, \mathrm{y}=-1 \text {, and }
$$

$\mathrm{z}=-2$
ex) In a particular town of 48,000 , a disease is causing illness. From one week to the next, $1 / 4$ of the well people get sick and $2 / 3$ of the sick people get well. If this week 13,000 people are sick, how many were sick the previous week? What if 14,000 people are sick this week?
If we say $x=\#$ people sick this week, $y=\#$ people well this week, $s=\#$ sick people next week and $w=\# w e l l$ people next week we get this system:

$$
\begin{aligned}
& \frac{1}{3} x+\frac{1}{4} y=s \\
& \frac{2}{3} x+\frac{3}{4} y=w
\end{aligned} \text {, so in the form of } \mathrm{AX}=\mathrm{B} \text {, we have }\left[\begin{array}{ll}
1 / 3 & 1 / 4 \\
2 / 3 & 3 / 4
\end{array}\right]\left[\begin{array}{c}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
s \\
w
\end{array}\right] \text {, so } \operatorname{det} \mathrm{A}=
$$

Thus $\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{cc}9 & -3 \\ -8 & 4\end{array}\right]\left[\begin{array}{c}s \\ w\end{array}\right] . \mathrm{x}=9 \mathrm{~s}-3 \mathrm{w}$. If $\mathrm{s}=13,000$ then $\mathrm{w}=35,000$ and $\mathrm{x}=9(13000)-3(35000)=12000$ If $s=14000 w=34000$ and $x=9(14000)-3(34000)=24,000$.

