Math 160 Discussion Notes

Brian Powers - TA - Fall 2011

2.5 The Gauss-Jordan Method of finding an inverse

Say we have matrix A, and a sequence of Row elementary row operations $E_{1}, E_{2}, \ldots E_{k}$ which will reduce A to I_{n}. It turns out that the same sequence of row operations will reduce I_{n} to A^{-1}.

An elementary row operation on an nxn matrix can be represented by an elementary matrix and performed with matrix multiplication. For example, the operation " $\mathrm{R}_{1} \leftrightarrow \mathrm{R}_{2}$ " can be performed by leftmultiplying by the matrix $\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$. The operation " $2 R_{1}+R_{3}=R_{3}$ " is represented by $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1\end{array}\right]$.
So the sequence of row operations $\mathrm{E}_{1}, \mathrm{E}_{2}, \ldots \mathrm{E}_{\mathrm{k}}$ on matrix A can be written
$\mathrm{E}_{1} \mathrm{E}_{2} \cdots \mathrm{E}_{\mathrm{k}} \mathrm{A} \quad=\mathrm{I} \quad$ If A^{-1} exists, then we can right-multiply both sides by A^{-1}
$\mathrm{E}_{1} \mathrm{E}_{2} \cdots \mathrm{E}_{\mathrm{k}} \mathrm{AA}^{-1}=\mathrm{IA}^{-1}$
$\mathrm{E}_{1} \mathrm{E}_{2} \cdots \mathrm{E}_{\mathrm{k}} \mathrm{I} \quad=\mathrm{A}^{-1}$
We can use this fact to develop a method to find the inverse of a matrix. To find the inverse of nxn matrix A, we augment with the Identity to form a nx2n matrix [A I]. We perform Gauss-Jordan reduction on the matrix and the result is $\left[\mathrm{I}^{-1}\right]$. If we cannot reduce A to I using row operations, then A has no inverse.

This is the Gauss-Jordan Method for finding the inverse of a matrix
ex) Find the inverse of $A=\left[\begin{array}{ll}7 & 3 \\ 5 & 2\end{array}\right]$
We augment the matrix to form $\left[\begin{array}{llll}7 & 3 & 1 & 0 \\ 5 & 2 & 0 & 1\end{array}\right]$ And perform row operations to reduce the left-side to the identity.

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
7 & 3 & 1 & 0 \\
5 & 2 & 0 & 1
\end{array}\right] \underset{\rightarrow}{\underset{7}{7} R_{1}}\left[\begin{array}{cccc}
1 & \frac{3}{7} & \frac{1}{7} & 0 \\
5 & 2 & 0 & 1
\end{array}\right]}
\end{aligned} \underset{\rightarrow}{\rightarrow-5 \mathrm{R}_{1}}\left[\begin{array}{ccc}
1 & 3 / 7 & 1 / 7 \\
0 & 5 & 0 \\
0
\end{array}\right] .
$$

So $\quad A^{-1}=\left[\begin{array}{cc}-2 & 3 \\ 5 & -7\end{array}\right]$
ex) Find the inverse of $B=\left[\begin{array}{ccc}1 & 2 & -2 \\ 1 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]$
We augment B to form $\left[\begin{array}{cccccc}1 & 2 & -2 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1\end{array}\right]$ which, after Gauss-Jordan elimination, we get

$$
\left[\begin{array}{cccccc}
1 & 0 & 0 & -1 & 2 & -4 \\
0 & 1 & 0 & 1 & -1 & 3 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \text {, so } \quad B^{-1}=\left[\begin{array}{ccc}
-1 & 2 & -4 \\
1 & -1 & 3 \\
0 & 0 & 1
\end{array}\right]
$$

ex) Find the inverse of $C=\left[\begin{array}{ccc}1 & 3 & 1 \\ -1 & 2 & 0 \\ 2 & 11 & 3\end{array}\right]$
The augmented matrix $\left[\begin{array}{cccccc}1 & 3 & 1 & 1 & 0 & 0 \\ -1 & 2 & 0 & 0 & 1 & 0 \\ 2 & 11 & 3 & 0 & 0 & 1\end{array}\right]$ reduces to $\left[\begin{array}{cccccc}1 & 0 & 2 / 5 & 0 & -11 / 15 & 2 / 15 \\ 0 & 1 & 1 / 5 & 0 & 2 / 15 & 1 / 15 \\ 0 & 0 & 0 & 1 & 1 / 3 & -1 / 3\end{array}\right]$.
Because we have the 3 zeroes in the first 3 columns of the last row, we can say that C has no inverse.
ex) Find a $2 x 2$ matrix D such that $D\left[\begin{array}{l}2 \\ 1\end{array}\right]=\left[\begin{array}{c}-1 \\ 4\end{array}\right]$ and $D\left[\begin{array}{l}5 \\ 3\end{array}\right]=\left[\begin{array}{l}0 \\ 2\end{array}\right]$
We can consider this problem as matrix D multiplied by 2×2 matrix $\left[\begin{array}{ll}2 & 5 \\ 1 & 3\end{array}\right]$ gives $\left[\begin{array}{cc}-1 & 0 \\ 4 & 2\end{array}\right]$ $D\left[\begin{array}{ll}2 & 5 \\ 1 & 3\end{array}\right]=\left[\begin{array}{cc}-1 & 0 \\ 4 & 2\end{array}\right]$. If we can find the inverse of $\left[\begin{array}{ll}2 & 5 \\ 1 & 3\end{array}\right]$ we can express $D=\left[\begin{array}{cc}-1 & 0 \\ 4 & 2\end{array}\right]\left[\begin{array}{ll}2 & 5 \\ 1 & 3\end{array}\right]^{-1}$. $\left[\begin{array}{ll}2 & 5 \\ 1 & 3\end{array}\right]^{-1}=\frac{1}{3(2)-5(1)}\left[\begin{array}{cc}3 & -5 \\ -1 & 2\end{array}\right]=\left[\begin{array}{cc}3 & -5 \\ -1 & 2\end{array}\right]$, so $D=\left[\begin{array}{cc}-1 & 0 \\ 4 & 2\end{array}\right]\left[\begin{array}{cc}3 & -5 \\ -1 & 2\end{array}\right]=\left[\begin{array}{cc}-1(3)+0(-1) & -1(-5)+0(2) \\ 4(3)+2(-1) & 4(-5)+2(2)\end{array}\right]=\left[\begin{array}{cc}-3 & 5 \\ 10 & -16\end{array}\right]$

