Math 160, Finite Mathematics for Business

Chapter 6 Quiz Review - Discussion Notes
Brian Powers - TA - Fall 2011

1) Students in class are wearing 5 colored shirts: blue, red, yellow, white and green. The sample space of shirt colors is $\mathrm{b}, \mathrm{r}, \mathrm{y}, \mathrm{w}, \mathrm{g}$. If $\mathrm{P}(\mathrm{b})=.15, \mathrm{P}(\mathrm{r})=.17, \mathrm{P}(\mathrm{y})=.42$ and $\mathrm{P}(\mathrm{g})=.02$, what is the probability a student is wearing a white shirt?
Because the sum of all probabilities in a probability distribution must add up to $1, \operatorname{Pr}(w)=1-\operatorname{Pr}(b)-$ $\operatorname{Pr}(r)-\operatorname{Pr}(y)-\operatorname{Pr}(g)=1-.15-.17-.42-.02=.24$
2) I'm planning a skiing vacation to Colorado. I'll be spending 5 days in Aspen. If the forecast calls for a 50% chance of snow every day, what is the probability that I have 4 snowy days?
This can be calculated using the fact that the probability of an event is the number of outcomes in the event / the number of outcomes in the sample space. We need to calculate (a) the number of ways of having 4 out of 5 days snowy and (b) the total number of possible 5 -day weather patterns. Because there's an equally likely chance of snow or no-snow, this problem is akin to a coin-flipping problem.
There are $\binom{5}{4}=5$ ways that 4 of 5 days are snowy.
Because there are 2 possibilities for weather on each day, and 5 days, there are $2^{5}=32$
So $\operatorname{Pr}(4$ snowy days $)=\frac{5}{32}$
3) Considering two events \mathbf{E} and \mathbf{F}, it is given that: $\operatorname{Pr}(E)=.50 \operatorname{Pr}(F)=.30$ and \mathbf{E} and \mathbf{F} are independent. What is $\operatorname{Pr}\left((E \cup F)^{\prime}\right)$?
Because E and F are independent, $\operatorname{Pr}(E \cap F)=\operatorname{Pr}(E) \cdot \operatorname{Pr}(F)=.50 \cdot .30=.15$
Next we can use the Inclusion-Exclusion rule that $\operatorname{Pr}(E \cup F)=\operatorname{Pr}(E)+\operatorname{Pr}(F)-\operatorname{Pr}(E \cap F)=.50+.30-.15=$.65
Lastly, we can use the fact that the probability of the COMPLEMENT of an event is 1 minus the probability of that event. So $\operatorname{Pr}\left((E \cup F)^{\prime}\right)=1-\operatorname{Pr}(E \cap F)=1-.65=.35$
4) You've got a box with 34 screws and 13 nails. You need 2 nails. For each draw, you reach and take one out - if it is a nail you keep it on the table, if it is a screw you put it back in the box. Draw and label a tree diagram to answer the following questions:
a) Which is more likely: drawing a nail then a screw or a screw then a nail?
b) What is the probability of getting 2 nails in 2 draws?
c) What is the probability of getting 2 nails in 3 or fewer draws?
d) What is the probability that you don't get a single nail after $\mathbf{3}$ draws?

So the answer to the first question requires us to compare $\operatorname{Pr}(N S)$ and $\operatorname{Pr}(S N)$.
$\operatorname{Pr}(N S)=\frac{13}{47} \cdot \frac{34}{46} \approx .204$
$\operatorname{Pr}(S N)=\frac{34}{47} \cdot \frac{13}{47} \approx .200$
So It's more likely that you draw a nail THEN a screw.
As you can see from the tree, $\operatorname{Pr}(N N) \approx .072$
Probability of 2 nails in 3 or fewer draws is the sum of $\operatorname{Pr}(N N)+\operatorname{Pr}(N S N)+\operatorname{Pr}(S N N) \approx .072+$ $.053+.052=.177$

Probability of 3 screws in 3 draws is .379 , as you can see from the tree.

