Math 160, Finite Mathematics for Business

Section 7.2: Frequency and Probability Distributions - Discussion Notes
Brian Powers - TA - Fall 2011
Recall that the frequency is the number of observations of a specific outcome. The relative frequency is a proportion of all observations (frequency / total observations)

A frequency distribution or relative frequency distribution is a way of displaying observed samples from experiments, whereas a probability distribution is a theoretical model for an experiment.

For example, let's say we have 100 students flip a penny 7 times, each one records the number of heads observed. The observations are put in the following table:

\# Heads	Frequency	Relative Frequency
0	0	0
1	7	0.07
2	14	0.14
3	29	0.29
4	27	0.27
5	18	0.18
6	3	0.03
7	2	0.02

Incidentally, the theoretical probability distribution for this experiment (we will see how this is constructed in section 7.3) is:

$\#$ Heads	Probability
0	0.0078
1	0.0547
2	0.1641
3	0.2734
4	0.2734
5	0.1641
6	0.0547
7	0.0078

We can create a histogram for our relative frequency distribution as follows:

Observed Data

Theoretical Probability Distr.

You can see that the two histograms are similar.
ex) An urn contains 3 red balls and 4 white balls. You sample 3 balls and observe the number of red balls. Make a histogram for the probability distribution.
Let X be the random variable representing the number of red balls observed after sampling from the urn. Because there are 3 reds in the urn and we are sampling three at a time, it is possible that the number of red balls can be $0,1,2$ or 3 .
The number of possible outcomes is $\binom{7}{3}=35$
The number of ways of getting 0 red $=\#$ ways of getting 0 red and 3 white $=\binom{3}{0} \cdot\binom{4}{3}=4$
The probability distribution and histograms can be created as follows:

k	$\operatorname{Pr}(\mathrm{X}=\mathrm{k})$
0	$\frac{\binom{3}{0} \cdot\binom{4}{3}}{35}=\frac{4}{35} \approx .11$
1	$\frac{\binom{3}{1} \cdot\binom{4}{2}}{35}=\frac{18}{35} \approx .51$
2	$\frac{\binom{3}{2} \cdot\binom{4}{1}}{35}=\frac{12}{35} \approx .34$
3	$\frac{\binom{3}{3} \cdot\binom{4}{0}}{35}=\frac{1}{35} \approx .03$

Probabilit Distr. Histogram

ex) Given the following probability distributions, answer the questions:

k	$\operatorname{Pr}(\mathrm{X}=\mathrm{k})$	$\operatorname{Pr}(\mathbf{Y}=\mathrm{k})$
1	0.3	0.2
2	0.4	0.2
3	0.2	0.2
4	0.1	0.4

a) $\operatorname{Pr}(\mathbf{X}=\mathbf{2}$ or $\mathbf{3})=\operatorname{Pr}(\mathrm{X}=2)+\operatorname{Pr}(\mathrm{X}=3)$ because these are disjoint events

$$
=0.4+0.2=0.6
$$

b) $\operatorname{Pr}(\mathbf{Y}=\mathbf{2}$ or $\mathbf{3})=\operatorname{Pr}(\mathrm{Y}=2)+\operatorname{Pr}(\mathrm{Y}=3)$ because these are disjoint

$$
=0.2+0.2=0.4
$$

c) $\operatorname{Pr}(\mathbf{X} \geq \mathbf{2})=\operatorname{Pr}(\mathrm{X}=2$ or $\mathrm{X}=3$ or $\mathrm{X}=4)=0.4+0.2+0.1=0.7$
d) Probability that $X+3$ is at least 5
$=\operatorname{Pr}(\mathrm{X}+3 \geq 5)$
$=\operatorname{Pr}(\mathrm{X} \geq 2)$ by subtracting 3 from both sides of the inequality
$=0.7$ from part c
e) Probability that \mathbf{Y}^{2} is at most 9
$=\operatorname{Pr}\left(\mathrm{Y}^{2} \leq 9\right)$
$=\operatorname{Pr}(\mathrm{Y} \leq 3)$ by taking the square root of both sides of the inequality
$=0.2+0.2+0.2=0.6$
f) Make a probability distribution for $(\mathbf{Y}+\mathbf{2})^{\mathbf{2}}$

Because Y can take values $1,2,3$ or $4, \mathrm{Y}+2$ can take values $3,4,5$ or 6 . Then $(\mathrm{Y}+2)^{2}$ can take values 9 , 16,25 or 36 . The probabilities correspond:

k	$\operatorname{Pr}\left((\mathrm{Y}+2)^{2}=\mathrm{k}\right)$
9	0.2
16	0.2
25	0.2
36	0.4

