Math 160, Finite Mathematics for Business

Section 7.2: Frequency and Probability Distributions – Discussion Notes Brian Powers – TA – Fall 2011

Recall that the **frequency** is the number of observations of a specific outcome. The **relative frequency** is a proportion of all observations (frequency / total observations)

A **frequency distribution** or **relative frequency distribution** is a way of displaying observed samples from experiments, whereas a probability distribution is a theoretical model for an experiment.

For example, let's say we have 100 students flip a penny 7 times, each one records the number of heads observed. The observations are put in the following table:

# Heads	Frequency	Relative Frequency
0	0	0
1	7	0.07
2	14	0.14
3	29	0.29
4	27	0.27
5	18	0.18
6	3	0.03
7	2	0.02

Incidentally, the theoretical probability distribution for this experiment (we will see how this is constructed in section 7.3) is:

# Heads	Probability
0	0.0078
1	0.0547
2	0.1641
3	0.2734
4	0.2734
5	0.1641
6	0.0547
7	0.0078

We can create a histogram for our relative frequency distribution as follows:

Theoretical Probability Distr.

You can see that the two histograms are similar.

ex) An urn contains 3 red balls and 4 white balls. You sample 3 balls and observe the number of red balls. Make a histogram for the probability distribution.

Let X be the random variable representing the number of red balls observed after sampling from the urn. Because there are 3 reds in the urn and we are sampling three at a time, it is possible that the number of red balls can be 0, 1, 2 or 3.

The number of possible outcomes is

$$\binom{7}{3} = 35$$

The number of ways of getting 0 red = # ways of getting 0 red and 3 white = $\begin{pmatrix} 3 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ 3 \end{pmatrix} = 4$ The probability distribution and histograms can be created as follows:

Probabilit Distr. Histogram

ex) Given the following probability distributions, answer the questions:

k	Pr(X=k)	Pr(Y=k)
1	0.3	0.2
2	0.4	0.2
3	0.2	0.2
4	0.1	0.4

a) Pr(X=2 or 3) = Pr(X=2)+Pr(X=3) because these are disjoint events = 0.4+0.2 = 0.6

b) Pr(Y=2 or 3) = Pr(Y=2)+Pr(Y=3) because these are disjoint = 0.2+0.2=0.4

c) $Pr(X \ge 2) = Pr(X=2 \text{ or } X=3 \text{ or } X=4) = 0.4+0.2+0.1=0.7$

d) Probability that X+3 is at least 5

 $= \Pr(X+3 \ge 5)$

= $Pr(X \ge 2)$ by subtracting 3 from both sides of the inequality

= 0.7 from part c

e) Probability that Y² is at most 9

 $= \Pr(Y^2 \le 9)$

- = $Pr(Y \le 3)$ by taking the square root of both sides of the inequality
- = 0.2 + 0.2 + 0.2 = 0.6

f) Make a probability distribution for (Y+2)²

Because Y can take values 1,2,3 or 4, Y+2 can take values 3,4,5 or 6. Then $(Y+2)^2$ can take values 9, 16, 25 or 36. The probabilities correspond:

k	$Pr((Y+2)^2=k)$
9	0.2
16	0.2
25	0.2
36	0.4