Math 160, Finite Mathematics for Business

Section 7.3: Binomial Trials - Discussion Notes Brian Powers - TA - Fall 2011

Binomial Trials

Binomial trials are a way of modeling a specific family of experiments. In these a certain trial is conducted n times, each time with the same probability p of success. The observed data value is the number of successes. Often We say $q=1-p$ is the probability of failure. To compute the probability of exactly k successes, we use the following formula:

$$
\operatorname{Pr}(X=k)=\binom{n}{k} p^{k} q^{n-k}
$$

We say that X is a binomial random variable with n and p as parameters.
To compute $\operatorname{Pr}(X \leq k)$ we must add up the cases $\operatorname{Pr}(X=0)+\operatorname{Pr}(X=1)+\cdots+\operatorname{Pr}(X=k)$.
ex) A Die is rolled 9 times. What is the probability of rolling only one $\mathbf{6}$?
Because the probability of rolling a 6 is $\frac{1}{6}$ and we are repeating the roll 9 times, this is a binomial trial. Using the binomial trials formula with $n=9, p=\frac{1}{6}$, and $k=1$, we have $\operatorname{Pr}(X=1)=\left(\begin{array}{l}9\end{array}\right) \frac{1}{6} \frac{1}{6}^{8} \approx .3489$
ex) A basketball player makes free-throws 80% of the time. What is the probability he makes exactly 3 out of 5 shots?
In this example, $\mathrm{n}=5, \mathrm{p}=.80$ and we want to know $\operatorname{Pr}(X=3)$. This is $\binom{5}{3} .80^{3} \cdot .20^{2} \approx .2048$
ex) $19 \$$ of the population uses a certain band of detergent. From a sample of 15 shoppers, what is the probability that more than 2 use this brand?
To calculate $\operatorname{Pr}(X>2)$ we would have to add up all cases $\operatorname{Pr}(X=3)+\operatorname{Pr}(X=4)+\cdots \operatorname{Pr}(X=15)$ which would be a tedious calculation. Instead we can use the complement rule: The probability more than 2 use the brand is 1 minus the probability that less than 3 use the brand; i.e. $\operatorname{Pr}(X>2)=1-\operatorname{Pr}(X=0$ or $X=1$ or $\left.X=2)=1-\left[\begin{array}{c}15 \\ 0\end{array}\right) \cdot 19^{0} \cdot 81^{15}+\binom{15}{1} \cdot 19^{1} \cdot 91^{14}+\binom{15}{2} \cdot 19^{2} \cdot 81^{13}\right] \approx .5635$
ex) For a 5 day vacation in Aspen with a 30% chance of snow each day, create a probability distribution for all possible numbers of snowy days.

k: \# Snow Days	$\operatorname{Pr}(X=k)$
0	$\binom{5}{0} \cdot 3^{0} \cdot 7^{5} \approx .168$
1	$\binom{5}{1} \cdot 3^{1} \cdot 7^{4} \approx .360$
2	$\binom{5}{2} \cdot 3^{2} \cdot 7^{3} \approx .309$
3	$\binom{5}{3} \cdot 3^{3} \cdot 7^{2} \approx .132$
4	$\binom{5}{4} \cdot 3^{4} \cdot 7^{1} \approx .028$
5	$\binom{5}{5} \cdot 3^{5} \cdot 7^{0} \approx .002$

What is the probability of getting $\mathbf{3}$ or more snow days?
We can add up the probabilities from the distribution: $.132+.028+.002=.162$

