1. Find the absolute maximum and minimum of $f(x)=-x^{3}+3 x^{2}-5$ on the interval $[1,3]$.
2. Find the derivative of $f(x)=\sqrt{x} \ln \left(x^{3}\right)$.
3. Find the derivative of $f(x)=\cos (x)^{x+1}$.
4. Find the derivative of $f(x)=5^{x}+\log _{4} x$.
5. Find the derivative of $f(x)=\sqrt{e^{x}+\ln x}$.
6. Find the derivative of $f(x)=\log _{10}(\cos x)$.
7. Find the derivative of $f(x)=\frac{x^{2}-x+1}{x^{2}+3}$.
8. Find the derivative of $f(x)=\sqrt{x} \sin x$.
9. Consider the function $f(x)=x e^{-x}$, with $f^{\prime}(x)=-e^{-x}(x-1), f^{\prime \prime}(x)=e^{-x}(x-2)$.
(a) Find the intervals on which f is increasing and decreasing.
(b) Find the intervals on which f is concave up and concave down.
(c) Determine any local max or minimums of f.
(d) Determine any inflection points of f.
10. How do we know that $f(x)=x^{5}-4 x+1$ has a zero between 0 and 1 ?
11. How do we know that $f(x)=\frac{\sin (\pi x)}{e^{x}}$ has a critical point between 1 and 2 ?
12. How do we know that somewhere between 0 and 2 , the function $f(x)=2^{x}-2 x$ has a derivative equal to $\frac{1}{2}$?
13. Use linear approximation to approximate $\sqrt{15}$.
14. Find the linearization of $f(x)=\tan x$ at $x=\frac{\pi}{3}$.
