1 Due Jan 20

1. Compute the following trigonometric numbers:

$$
\begin{aligned}
& \sin (5 \pi / 6)=\frac{1}{2} \\
& \cos (2 \pi / 3)=-\frac{1}{2} \\
& \sin (3 \pi / 2)=-1 \\
& \tan (7 \pi / 6)=\frac{\sqrt{3}}{3} \\
& \sec (5 \pi / 4)=-\sqrt{2}
\end{aligned}
$$

2. Sketch the graph of $f(x)=x^{3}$ and use it to sketch the graph of $g(x)=f(x-3)+1$. Translating a function means shifting it left, right, up, down and scaling it. To see the effect of the translation, we start with the x and work our way out. From $f(x)$ to $f(x-3)$ we shift RIGHT by 3 units. From $f(x-3)$ to $f(x-3)+1$ we shift UP 1 unit. So $g(x)=f(x-3)+1=(x-3)^{3}+1$ is the new graph, shown below in red.

3. Sketch the graph of $y=\sin x$ and $y=\sin (x-\pi / 4)$

The translation from $\sin (x)$ to $\sin (x-\pi / 4)$ shifts the graph RIGHT by $\pi / 4$ units. Then the change from $\sin (x-\pi / 4)$ to $3 \sin (x-\pi / 4)$ scales vertically by a factor of 3 . $\sin (x)$ is in blue while $3 \sin (x-\pi / 4)$ is in red.

4. Find the inverse of the function $f(x)=\frac{3 x+1}{x-3}$. Also determine the domain of f and that of f^{-1}.
To find the inverse, we follow these steps:

1) Put y in place of the $x \mathrm{~s}$, and put x in place of $f(x)$
2) Using algebra solve for y (if possible)
3) What you have now is the inverse function.

So the steps are:

1) $x=\frac{3 y+1}{y-3}$
2) Using algebra:

$$
\begin{gathered}
x=\frac{3 y+1}{y-3} \Rightarrow(y-3) x=3 y+1 \Rightarrow x y-3 x=3 y+1 \Rightarrow x y-3 y=3 x+1 \\
\Rightarrow y(x-3)=3 x+1 \Rightarrow y=\frac{3 x+1}{x-3}
\end{gathered}
$$

So the inverse function is

$$
f^{-1}(x)=\frac{3 x+1}{x-3}
$$

All values of x are ok in $f(x)$ except $x=3$, which will cause division by zero. So The domain of f can be written as "All real numbers except 3 ", or using set notation $\mathbb{R} \backslash\{3\}$, or using interval notation $(-\infty, 3) \cup(3, \infty)$. Since $f(x)=f^{-1}$ (coincidentally), it of course has the same domain.
5. Sketch the graph of $f(x)=\ln (x-4)$.

The graph of $\ln (x)$ passes through $(1,0)$ and has a vertical asymptote at $x=0$. $\ln (x-4)$ is shifted 4 units to the RIGHT, so it passes through the point $(5,0)$ and has the vertical asymptote at $x=4$.

2 Due Jan 22

1. A population triples every two days. Suppose that the initial count N_{0} is 5 and that the unit of time is 4 days. Give the formula for the sequence N_{t} that gives the population count at t units of time.
This is confusing because the unit of time is 4 days. So N_{1} is the population on day 4 . Since the population triples every 2 days, in 4 days it will have tripled twice, so it will be 9 times as big. So

$$
N_{1}=N_{0} \cdot 9
$$

When $t=2$, that is after 8 days, so the population will be increased by another factor of 9:

$$
N_{2}=N_{1} \cdot 9=\left(N_{0} \cdot 9\right) \cdot 9=N_{0} \cdot 9^{2}
$$

The pattern we see is

$$
N_{t}=N_{0} \cdot 9^{t}
$$

Since $N_{0}=5$, this is

$$
N_{t}=5 \cdot 9^{t}
$$

This can also be written

$$
N_{t}=5 \cdot 3^{2 t}
$$

2. The Fibonacci sequence is given recursively by $a_{1}=a_{2}=1$ and $a_{n+2}=a_{n}+a_{n+1}$. Give the first ten terms of the Fibonacci sequence.
$a_{1}=1$
$a_{2}=1$
$a_{3}=a_{1}+a_{2}=1+1=2$
$a_{4}=a_{2}+a_{3}=1+2=3$
$a_{5}=a_{3}+a_{4}=2+3=5$
$a_{6}=a_{4}+a_{5}=3+5=8$
$a_{7}=a_{5}+a_{6}=5+8=13$
$a_{8}=a_{6}+a_{7}=8+13=21$
$a_{9}=a_{7}+a_{8}=13+21=34$

$$
a_{10}=a_{8}+a_{9}=21+34=55
$$

3. Use the definition of the limit in order to justify that

$$
\lim _{n \rightarrow+\infty} \frac{2 n+3}{3 n+2}=\frac{2}{3}
$$

Let $\epsilon>0$. Suppose $\left|\frac{2 n+3}{3 n+2}-\frac{2}{3}\right|<\epsilon$. This is equivalent to

$$
\begin{aligned}
& \left|\frac{3(2 n+3)}{3(3 n+2)}-\frac{2(3 n+2)}{3(3 n+2)}\right|<\epsilon \\
& \Rightarrow\left|\frac{6 n+9}{9 n+6}-\frac{6 n+4}{9 n+6}\right|<\epsilon \\
& \Rightarrow\left|\frac{6 n+9-(6 n+4)}{9 n+6}\right|<\epsilon \\
& \Rightarrow\left|\frac{6 n+9-6 n-4)}{9 n+6}\right|<\epsilon \\
& \Rightarrow\left|\frac{5}{9 n+6}\right|<\epsilon
\end{aligned}
$$

Since $n>0$, the fraction is positive so we can remove the absolute value sign:

$$
\begin{aligned}
& \Rightarrow \frac{5}{9 n+6}<\epsilon \\
& \Rightarrow 5<\epsilon(9 n+6) \\
& \Rightarrow 5<9 \epsilon n+6 \epsilon \\
& \Rightarrow 5-6 \epsilon<9 \epsilon n \\
& \Rightarrow \frac{5-6 \epsilon}{9 \epsilon}<n
\end{aligned}
$$

So as long as $n>N=\frac{5-6 \epsilon}{9 \epsilon}$, it will be the case that $\left|\frac{2 n+3}{3 n+2}-\frac{2}{3}\right|<\epsilon$.

3 Due Jan 25

1. Use the definition of the limit in order to justify that

$$
\lim _{n \rightarrow+\infty} \frac{5 n+1}{2 n+1}=\frac{5}{2}
$$

Let $\epsilon>0$. Suppose $\left|\frac{5 n+1}{2 n+1}-\frac{5}{2}\right|<\epsilon$. This is equivalent to
$\left|\frac{2(5 n+1)}{2(2 n+1)}-\frac{5(2 n+1)}{2(2 n+1)}\right|<\epsilon$
$\Rightarrow\left|\frac{10 n+2}{4 n+2}-\frac{10 n+5}{4 n+2}\right|<\epsilon$
$\Rightarrow\left|\frac{10 n+2-(10 n+5)}{4 n+2}\right|<\epsilon$
$\Rightarrow\left|\frac{10 n+2-10 n-5)}{4 n+2}\right|<\epsilon$
$\Rightarrow\left|\frac{-3}{4 n+2}\right|<\epsilon$

Since $n>0$, the fraction is negative so we can remove the absolute value sign and change the numerator to 3 :
$\Rightarrow \frac{3}{4 n+2}<\epsilon$
$\Rightarrow 3<\epsilon(4 n+2)$
$\Rightarrow 3<4 \epsilon n+2 \epsilon$
$\Rightarrow 3-2 \epsilon<4 \epsilon n$
$\Rightarrow \frac{3-2 \epsilon}{4 \epsilon}<n$
So as long as $n>N=\frac{3-2 \epsilon}{4 \epsilon}$, it will be the case that $\left|\frac{5 n+1}{2 n+1}-\frac{5}{2}\right|<\epsilon$.
2. Use the definition of limit in order to justify that

$$
\lim _{n \rightarrow+\infty} 4^{n}=+\infty
$$

Fix $M>0$ large. We want to show that for for some large $N, n>N$ implies $4^{n}>M$. Take a logarithm of each side.

$$
\Rightarrow \ln \left(4^{n}\right)>\ln M
$$

Solve for n :

$$
\begin{gathered}
\Rightarrow n \ln 4>\ln M \\
\Rightarrow n>\frac{\ln M}{\ln 4}
\end{gathered}
$$

So provided $n>N=\frac{\ln M}{\ln 4}$, it is true that $4^{n}>M$.
3. Find the limit of the sequence $a_{n}=\frac{2^{3 n}}{3^{2 n}}$.

This can be handled by using some properties of exponents. Recall the property that $a^{b c}=\left(a^{b}\right)^{c}$. Thus the sequence can be written

$$
a_{n}=\frac{2^{3 n}}{3^{2 n}}=\frac{\left(2^{3}\right)^{n}}{\left(3^{2}\right)^{n}}=\frac{8^{n}}{9^{n}}
$$

Furthermore, recall another property of exponents: $\frac{a^{b}}{c^{b}}=\left(\frac{a}{c}\right)^{b}$. So the sequence can be written

$$
a_{n}=\left(\frac{8}{9}\right)^{n}
$$

because $0<\frac{8}{9}<1$, as n gets bigger and bigger, a_{n} will get smaller and smaller, getting closer to 0 . Lets prove that the limit is 0 . Let $\epsilon>0$. We want to show that for some large enough $n>N$, that $\left(\frac{8}{9}\right)^{n}<\epsilon$. Take a log of both sides:

$$
\begin{gathered}
\ln \left(\left(\frac{8}{9}\right)^{n}\right)<\ln \epsilon \\
\Rightarrow n \ln \frac{8}{9}<\ln \epsilon
\end{gathered}
$$

before we divide both sides by $\ln \frac{8}{9}$ we have to take a moment and be careful. Because $\frac{8}{9}<1$, its logarithm is negative. In fact, $\ln \frac{8}{9}=\ln 8-\ln 9$. Lets put this into the inequality:

$$
n(\ln 8-\ln 9)<\ln \epsilon
$$

When we divide both sides by $\ln 8-\ln 9$ the direction of inequality will flip.

$$
\Rightarrow n>\frac{\ln \epsilon}{\ln 8-\ln 9}
$$

Since ϵ is small (close to zero), $\ln \epsilon<0$, so the fraction is a negative divided by another negative - it is a positive number N. Thus as long as $n>N=\frac{\ln \epsilon}{\ln 8-\ln 9}$, it will be the case that $0<a_{n}<\epsilon$.
4. Find the limit of the sequence $a_{n}=\frac{3 n^{2}+n+1}{2 n^{2}+3}$.

The way we handle these rational functions (polynomial divided by a polynomial) is that we find the highest power of n (in this case n^{2}) and multiply the fraction by $\frac{1 / n^{2}}{1 / n^{2}}$. We get an equivalent expression for a_{n} but it will allow us to see the limit of the numerator and denominator separately:

$$
a_{n}=\frac{3 n^{2}+n+1}{2 n^{2}+3} \frac{\frac{1}{n^{2}}}{\frac{1}{n^{2}}}=\frac{3+\frac{1}{n}+\frac{1}{n^{2}}}{2+\frac{3}{n^{2}}}
$$

Looking at the numerator, we can see that as n gets big the second and third term go to zero. In the denominator, as n gets big the second term goes to zero. Then the limit should be $\frac{3}{2}$.

$4 \quad$ Due Jan 27

1. By using a table of values, try to guess the limit

$$
\lim _{x \rightarrow 3} \frac{x^{2}-9}{x-3}
$$

x	$\frac{x^{2}-9}{x-3}$
3.1	6.1
3.01	6.01
3.001	6.001
3.0001	6.0001
2.9999	5.9999
2.999	5.999
2.99	5.99
2.9	5.9

From the table it seems that the limit is 6 .
2. By taking one-sided limits, show that the limit

$$
\lim _{x \rightarrow 3} \frac{|x-3|}{x-3}
$$

does not exist.
First the left side limit.

$$
\lim _{x \rightarrow 3^{-}} \frac{|x-3|}{x-3}
$$

In this case, $x<3$ so $x-3<0$, thus $|x-3|=-(x-3)$.

$$
\lim _{x \rightarrow 3^{-}} \frac{|x-3|}{x-3}=\lim _{x \rightarrow 3^{-}} \frac{-(x-3)}{x-3}=\lim _{x \rightarrow 3^{-}}-1=-1
$$

Now the right-side limit.

$$
\lim _{x \rightarrow 3^{+}} \frac{|x-3|}{x-3}
$$

In this case, $x>3$ so $x-3>0$, thus $|x-3|=x-3$.

$$
\lim _{x \rightarrow 3^{+}} \frac{|x-3|}{x-3}=\lim _{x \rightarrow 3^{+}} \frac{x-3}{x-3}=\lim _{x \rightarrow 3^{+}} 1=1
$$

But the two one-sided limits do not agree, so the limit does not exist.
3. Use synthetic division to simplify $\frac{x^{4}-x^{3}-2}{x^{3}-3 x+2}$ by dividing both numerator and denominator by $x-1$.
From the numerator we get:

1 | 1 | 1 | 0 | 0 | -2 |
| ---: | ---: | ---: | ---: | ---: |
| | 1 | 2 | 2 | 2 |
| 1 | 2 | 2 | 2 | 0 |

Thus $x^{4}+x^{3}-2=(x-1)\left(x^{3}+2 x^{2}+2 x+2\right)$. For the denominator we get:

1 | 1 | 0 | -3 | 2 |
| ---: | ---: | ---: | ---: |
| | 1 | 1 | -2 |
| 1 | 1 | -2 | 0 |

Thus $x^{3}-3 x+2=(x-1)\left(x^{2}+x-2\right)$. Then we can simplify the fraction to $\frac{x^{4}-x^{3}-2}{x^{3}-3 x+2}=\frac{x^{3}+2 x^{2}+2 x+2}{x^{2}+x-2}$.

5 Due Jan 29

1. Compute the limit $\lim _{x \rightarrow 3} x^{3}-5 x^{2}+6 x-1$.

First try plugging in 3: $(3)^{3}-5(3)^{3}+6(3)-1=-1$.
2. Compute the limit $\lim _{x \rightarrow-2} \frac{x^{3}-7}{x^{2}+x+5}$.

First try plugging in $-2: \frac{(-2)^{3}-7}{(-2)^{2}+(-2)+5}=\frac{-8-7}{4-2+5}=\frac{-15}{7}$.
3. Compute the limit $\lim _{x \rightarrow 1} \sqrt{x^{3}+5 x^{2}-2 x+3}$.

Try plugging in $x=1: \sqrt{(1)^{3}+5(1)^{2}-2(1)+3}=\sqrt{1+5-2+3}=\sqrt{7}$
4. Compute the limit $\lim _{x \rightarrow 1} \frac{x^{4}+3 x^{2}-5 x+1}{x^{3}+5 x^{2}-6}$. If we plug in $x=1$ we will find the denominator is zero, so we cannot simply plug it in. For a rational, if the function is undefined at x, then x is either a vertical asymptote or a removable discontinuity (a hole). The limit won't exist at an asymptote, but it will at a removable
discontinuity. We have a removable discontinuity if x is a zero of the numerator and denominator. We can verify this: the numerator is indeed 0 when $x=1$. So we can use synthetic division to factor out $(x-1)$ from the numerator and denominator. From the numerator we get:

1 | 1 | 0 | 3 | -5 | 1 |
| ---: | ---: | ---: | ---: | ---: |
| | 1 | 1 | 4 | -1 |
| 1 | 1 | 4 | -1 | 0 |

Thus $x^{4}+3 x^{2}-5 x+1=(x-1)\left(x^{3}+x^{2}+4 x-1\right)$. For the denominator we get:

1 | 1 | 5 | 0 | -6 |
| ---: | ---: | ---: | ---: |
| 1 | 6 | 6 | |
| | 1 | 6 | 6 |

Thus $x^{3}+5 x^{2}-6=(x-1)\left(x^{2}+6 x+6\right)$. Then we can simplify the fraction to $\frac{x^{4}+3 x^{2}-5 x+1}{x^{3}+5 x^{2}-6}=\frac{x^{3}+x^{2}+4 x-1}{x^{2}+6 x+6}$. If we plug in $x=1$ in this new fraction, we get $\frac{5}{13}$, so this is our limit.
5. Compute the limit $\lim _{x \rightarrow-2} \frac{x^{3}-x+6}{x^{2}-6 x-16}$.

If we plug in -2 we get $\frac{(-2)^{3}-(-2)+6}{(-2)^{2}-6(-2)-16}=\frac{-8+2+6}{4+12-16}=\frac{0}{0}$. So our function has a removable discontinuity at $x=-2$. We can use synthetic division to factor $x+2$ out from the numerator and denominator. From the numerator we get:
$-2 \left\lvert\, \begin{array}{rrrr}1 & 0 & -1 & 6 \\ & -2 & 4 & -6 \\ 1 & -2 & 3 & 0\end{array}\right.$
Thus $x^{3}-x+6=(x+2)\left(x^{2}-2 x+3\right)$. For the denominator we get:

$$
-2 \begin{array}{rrr}
1 & -6 & -16 \\
& -2 & 16 \\
1 & -8 & 0
\end{array}
$$

Thus $x^{2}-6 x-16=(x+2)(x-8)$. Then we can simplify the fraction to $\frac{x^{3}-x+6}{x^{2}-6 x-16}=\frac{x^{2}-2 x+3}{x-8}$. If we plug in $x=-2$ now, we get $\frac{(-2)^{2}-2(-2)+3}{(-2)-8}=$ $\frac{4+4+3}{-2-8}=\frac{11}{-10}=-\frac{11}{10}$.
6. Compute the limit $\lim _{x \rightarrow 1} \frac{\sqrt{x+3}-2}{x^{2}+x-2}$.

If we plug in $x=1$, we get $\frac{\sqrt{(1)+3}-2}{(1)^{2}+(1)-2}=\frac{\sqrt{4}-2}{1+1-2}=\frac{0}{0}$. We have to look for some common factor of the numerator and denominator, but the square root makes it tricky. Fist let's look at the denominator and factor it into $(x-1)(x+$ $2)$. Next let's multiply the numerator and denominator by the conjugate of the
numerator, namely $\sqrt{x+3}+2$.

$$
\frac{\sqrt{x+3}-2}{x^{2}+x-2}=\frac{\sqrt{x+3}-2}{(x-1)(x+2)} \frac{\sqrt{x+3}+2}{\sqrt{x+3}+2}=\frac{(x+3)-4}{(x-1)(x+2)(\sqrt{x+3}+2)}
$$

The numerator is now $x-1$, and this is a factor of the denominator. So finally the fraction can be written as:

$$
\frac{1}{(x+2)(\sqrt{x+3}+2)}
$$

Plugging in $x=1$ now, we get

$$
\frac{1}{(1+2)(\sqrt{1+3}+2)}=\frac{1}{(3)(2+2)}=\frac{1}{12}
$$

7. Compute the limit $\lim _{x \rightarrow 0} \frac{\sqrt{x+4}-2}{\sqrt{x+9}-3}$.

If we plug in $x=0$ we get $\frac{0}{0}$, so we have to re-write the fraction. Again we use the trick of conjugates, but we have to multiply by both conjugates of the numerator AND denominator.

$$
\frac{\sqrt{x+4}-2}{\sqrt{x+9}-3}=\frac{\sqrt{x+4}-2}{\sqrt{x+9}-3} \frac{(\sqrt{x+4}+2)(\sqrt{x+9}+3)}{(\sqrt{x+4}+2)(\sqrt{x+9}+3)}
$$

Don't bother multiplying it all out - just multiply the conjugate pairs.

$$
=\frac{((x+4)-4)(\sqrt{x+9}+3)}{((x+9)-9)(\sqrt{x+4}+2)}=\frac{x(\sqrt{x+9}+3)}{x(\sqrt{x+4}+2)}
$$

Now we have x as a common factor of the numerator and denominator - we can cancel this and write our fraction as

$$
\frac{\sqrt{x+9}+3}{\sqrt{x+4}+2}
$$

If we plug in $x=0$ now we get $\frac{\sqrt{9}+3}{\sqrt{4}+2}=\frac{3+3}{2+2}=\frac{3}{2}$.

6 Due Feb 1

1. Determine the limit $\lim _{x \rightarrow 3} \frac{x^{2}+1}{x^{2}-3}$.

If we plug in $x=3$ we get $\frac{(3)^{2}+1}{(3)^{2}-3}=\frac{9+1}{9-3}=\frac{10}{6}=\frac{5}{3}$.
2. Determine the limit $\lim _{x \rightarrow 2} \frac{x+1}{x^{2}-4 x+4}$.

If we plug in $x=2$ we get $\frac{2+1}{(2)^{2}-4(2)+4}=\frac{3}{0}$, which is undefined. Let us factor
the denominator into $(x-2)(x-2)=(x-2)^{2}$. Thus the denominator is NEVER negative. Near $x=2$, the numerator is positive and the denominator is also positive, so both left-hand limit and right-hand limit is $+\infty$. Thus

$$
\lim _{x \rightarrow 2} \frac{x+1}{x^{2}-4 x+4}=+\infty
$$

3. Determine the limit $\lim _{x \rightarrow 0} \frac{x^{2}-3 x-5}{x^{2}+x}$.

If we plug in $x=0$ we get $\frac{-5}{0}$ which is undefined. Let us factor the denominator into $x(x+1)$. So we can write out limit as

$$
\lim _{x \rightarrow 0} \frac{x^{2}-3 x-5}{x+1} \cdot \frac{1}{x}
$$

By direct substitution, $\lim _{x \rightarrow 0} \frac{x^{2}-3 x-5}{x+1}=-5$. But $\lim _{x \rightarrow 0} \frac{1}{x}$ doesn't exist. This is because $\frac{1}{x}$ is negative for $x<0$ but positive for $x>0$. Thus the left-hand and right-hand limits don't agree. For this reason, our limit does not exist.

7 Due Feb 3

1. Determine the limit $\lim _{x \rightarrow+\infty} \frac{2 x^{2}+1}{3 x^{2}-3}$.

Since x^{2} is the highest power of x, multiply the fraction by $\frac{1 / x^{2}}{1 / x^{2}}$ to get and equivalent limit:

$$
\lim _{x \rightarrow+\infty} \frac{2 x^{2}+1}{3 x^{2}-3} \frac{\frac{1}{x^{2}}}{\frac{1}{x^{2}}}=\lim _{x \rightarrow+\infty} \frac{2+\frac{1}{x^{2}}}{3-\frac{3}{x^{2}}}
$$

As x gets big, the terms divided by x^{2} go to zero, so this limit is $\frac{2}{3}$.
2. Determine the limit $\lim _{x \rightarrow-\infty} \frac{x^{3}+1}{x^{2}-4 x+4}$.

Since x^{3} is the highest power of x, we multiply by the fraction $\frac{1 / x^{3}}{1 / x^{3}}$ to get an equivalent limit:

$$
\lim _{x \rightarrow-\infty} \frac{x^{3}+1}{x^{2}-4 x+4} \frac{1 / x^{3}}{1 / x^{3}}=\lim _{x \rightarrow-\infty} \frac{1+\frac{1}{x^{3}}}{\frac{1}{x}-\frac{4}{x^{3}}+\frac{4}{x^{4}}}
$$

As x goes to $-\infty$, the numerator goes to 4 . The denominator, however, consists of three terms which all get close to zero. The question is whether or not the denominator is negative or positive. In this case, however, $\frac{1}{x}$ is negative, $-\frac{4}{x^{2}}$ is negative, and $\frac{4}{x^{3}}$ are all negative when $x<0$, so the denominator is negative. Thus the limit is $-\infty$.
3. Find the horizontal asymptotes of the function $f(x)=\frac{x^{4}-3 x+5}{2 x^{4}-3}$.

We need to take the limit as $x \rightarrow+\infty$ and as $x \rightarrow-\infty$. First, however, we need to multiply by $\frac{1 / x^{4}}{1 / x^{4}}$ since x^{4} is the highest power of x. By doing this, the limits become

$$
\begin{aligned}
& \lim _{x \rightarrow+\infty} \frac{1-\frac{3}{x^{3}}+\frac{5}{x^{4}}}{2-\frac{3}{x^{4}}}=\frac{1}{2} \\
& \lim _{x \rightarrow-\infty} \frac{1-\frac{3}{x^{3}}+\frac{5}{x^{4}}}{2-\frac{3}{x^{4}}}=\frac{1}{2}
\end{aligned}
$$

So this function has a single horizontal asymptote, $y=\frac{1}{2}$.
4. Find the horizontal asymptotes of the function $f(x)=\frac{x+3}{|x|+1}$.

We need to take the limits as $x \rightarrow+\infty$ and $x \rightarrow-\infty$. In either case, $|x|$ will be x and $-x$ respectively. The limits are:

$$
\begin{gathered}
\lim _{x \rightarrow+\infty} \frac{x+3}{|x|+1}=\lim _{x \rightarrow+\infty} \frac{x+3}{x+1}=\lim _{x \rightarrow+\infty} \frac{1+\frac{3}{x}}{1+\frac{1}{x}}=\frac{1}{1}=1 \\
\lim _{x \rightarrow-\infty} \frac{x+3}{|x|+1}=\lim _{x \rightarrow-\infty} \frac{x+3}{-x+1}=\lim _{x \rightarrow-\infty} \frac{1+\frac{3}{x}}{-1+\frac{1}{x}}=\frac{1}{-1}=-1
\end{gathered}
$$

So we have two horizontal asymptotes: $y=1$ and $y=-1$.

8 Due Feb 5

1. Evaluate the limit $\lim _{x \rightarrow 0} \frac{\sin (5 x)}{x}$. We will use the fact that $\lim _{u \rightarrow 0} \frac{\sin u}{u}=1$, but we need this to be of the same form first. We can simply multiply by $\frac{5}{5}$:

$$
\lim _{x \rightarrow 0} 5 \frac{\sin (5 x)}{5 x}=5 \lim _{x \rightarrow 0} \frac{\sin (5 x)}{(5 x)}=5(1)=5
$$

Note of course that as $x \rightarrow 0,5 x \rightarrow 0$ as well.
2. Evaluate the limit $\lim _{x \rightarrow 0} \frac{\sin (5 x)}{\sin (10 x)}$.

As with 1 , we need to get this fraction in the form of $\frac{\sin u}{u}$ before we can substitute in a 1 . We need a $5 x$ in the denominator and a $10 x$ in the numerator. But we must counterbalance with another one, since we can't create them out of nowhere.

$$
\lim _{x \rightarrow 0} \frac{\sin (5 x)}{\sin (10 x)}=\lim _{x \rightarrow 0} \frac{10 x}{\sin (10 x)} \frac{\sin (5 x)}{5 x} \frac{5 x}{10 x}
$$

A limit of a product of 3 functions can be written as the product of 3 limits:

$$
\left(\lim _{x \rightarrow 0} \frac{10 x}{\sin (10 x)}\right)\left(\lim _{x \rightarrow 0} \frac{\sin (5 x)}{5 x}\right)\left(\lim _{x \rightarrow 0} \frac{5 x}{10 x}\right)=(1)(1)\left(\frac{1}{2}\right)=\frac{1}{2}
$$

3. Evaluate the limit $\lim _{x \rightarrow 1} \frac{\sin \left(x^{2}+x-2\right)}{x-1}$.

In order to put this in the form of $\lim _{u \rightarrow 0} \frac{\sin u}{u}$, we need the denominator to be $x^{2}+x-2$. But notice that $x^{2}+x-2=(x-1)(x+2)$. So we need to multiply this fraction by $\frac{x+2}{x+2}$. Then we get:

$$
\lim _{x \rightarrow 1} \frac{\sin \left(x^{2}+x-2\right)}{x-1} \frac{x+2}{x+2}=\lim _{x \rightarrow 1}(x+2) \frac{\sin \left(x^{2}+x-2\right)}{x^{2}+x-2}
$$

This can be written as the product of two limits:

$$
\left(\lim _{x \rightarrow 1} x+2\right)\left(\frac{\sin \left(x^{2}+x-2\right)}{x^{2}+x-2}\right)=(3)(1)=3
$$

Since as $x \rightarrow 1, x^{2}+x-2 \rightarrow 0$.
4. Evaluate the limit $\lim _{x \rightarrow 0} \cos (1 / x)$.

This one uses the Squeeze Theorem. Observe first that $-1 \leq \cos (1 / x) \leq 1$. Also, $-\left|x^{3}\right| \leq x^{3} \leq\left|x^{3}\right|$. Therefore

$$
-\left|x^{3}\right| \leq x^{3} \cos (1 / x) \leq\left|x^{3}\right|
$$

It is straightforward to show by direct substitution that $\lim _{x \rightarrow 0}-\left|x^{3}\right|=\lim _{x \rightarrow 0}\left|x^{3}\right|=0$, so by the squeeze theorem, the original limit is 0 as well.
5. Evaluate the limit $\lim _{x \rightarrow+\infty} \frac{\sin x+3}{x^{2}}$.

This uses the Squeeze Theorem as well. Since $-1 \leq \sin x \leq 1$, it follows that

$$
\begin{gathered}
2 \leq \sin x+3 \leq 4 \\
\Rightarrow \frac{2}{x^{2}} \leq \frac{\sin x+3}{x^{2}} \leq \frac{4}{x^{2}}
\end{gathered}
$$

As $x \rightarrow \infty$, the limits of both the left-hand side and right-hand side of the inequality chain are both 0 , so the original limit in question is 0 as well.

9 Due Feb 8

1. Determine whether the function

$$
f(x)= \begin{cases}\frac{x^{2}-9}{x-3} & x \neq 3 \\ 5 & x=3\end{cases}
$$

is continuous at 3 or not.
The function is continuous at 3 if $f(3)$ exists, $\lim _{x \rightarrow 3} f(x)$ exists and they are equal. In other words, we need to check if

$$
\lim _{x \rightarrow 3} \frac{x^{2}-9}{x-3}=5
$$

We need to factorize the numerator to find the limit:

$$
\lim _{x \rightarrow 3} \frac{x^{2}-9}{x-3}=\lim _{x \rightarrow 3} \frac{(x-3)(x+3)}{x-3}=\lim _{x \rightarrow 3}(x+3)=6
$$

This is not 5 , so the function is not continuous at 3 .
2. Find c so that the function

$$
f(x)= \begin{cases}3 x^{2}-c & x \geq 0 \\ \frac{\sin x}{x} & x<0\end{cases}
$$

is continuous on the set of real numbers.
The two pieces of the function are continuous on their intervals. $f(0)=3(0)^{3}-c=$ $-c$. For negative x,

$$
\lim _{x \rightarrow 0^{-}} \frac{\sin x}{x}=1
$$

Thus the function is only continuous if $f(0)=-c=1$, in other words, $c=-1$.
3. Show that the equation $x^{5}-x=3$ has a real root.

This will use the Intermediate Value Theorem. It says that if a function is continuous on $[a, b]$, then for any v between $f(a)$ and $f(b)$, there exists a c on the interval $[a, b]$ such that $f(c)=v$.
Consider the function $f(x)=x^{5}-x$. Note that $f(0)=(0)^{5}-(0)=0$ and $f(2)=(2)^{5}-(2)=32-2=30$. Since $f(x)$ is a polynomial, it is continuous on any interval, and $f(0)<3<f(2)$, so by the IVT, There exists SOME c between 0 and 2 where $f(c)=3$.
4. Show that the equation $\cos x=x^{3}$ has a real root.

Notice that

$$
\cos 0=1>0=(0)^{3}
$$

and

$$
\cos \frac{\pi}{2}=0<\frac{\pi^{3}}{8}=\left(\frac{\pi}{2}\right)^{3}
$$

Since $\cos x$ and x^{3} are both continuous functions, by the intermediate value theorem there MUST be some value c between 0 and $\frac{\pi}{2}$ where $\cos c=c^{3}$.
5. Determine whether the function $f(x)=\frac{x^{3}-3 x+3}{x^{2}-1}$ has any removable discontinuities or not.
To study the removable discontinuities of rational functions (polynomial divided by a polynomial) we look to see if the numerator and denominator have any common roots; if x is a root of both numerator AND denominator, it is a removable discontinuity. If it is a root of the denominator only, then it gives a vertical asymptote. Since both polynomials are quadratics, we can factor them without too much difficulty.

$$
f(x)=\frac{(x-1)(x+2)}{(x-1)(x+1)}
$$

The function is discontinuous at $x=1$ and $x=-1 ; x=1$ is a root of both numerator and denominator so it is a removable discontinuity, but $x=-1$ is only a root of the denominator, so it is a vertical asymptote.

10 Due Feb 10

1. Use the definition of the derivative in order to compute $f^{\prime}(3)$, where $f(x)=x^{2}$.

$$
\begin{aligned}
f^{\prime}(3) & =\lim _{h \rightarrow 0} \frac{f(3+h)-f(3)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(3+h)^{2}-(3)^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{9+6 h+h^{2}-9}{h} \\
& =\lim _{h \rightarrow 0} \frac{h(6+h)}{h}=6
\end{aligned}
$$

2. Use the definition of the derivative in order to compute $f^{\prime}(2)$, where $f(x)=$ $x^{3}-x+5$.

$$
\begin{aligned}
f^{\prime}(2) & =\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(2+h)^{3}-(2+h)+5-\left(2^{3}-2+5\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{8+12 h+6 h^{2}+h^{3}-2-h+5-8+2-5}{h} \\
& =\lim _{h \rightarrow 0} \frac{12 h+6 h^{2}+h^{3}-h}{h} \\
& =\lim _{h \rightarrow 0} \frac{h\left(11+6 h+h^{2}\right)}{h} \\
& =11
\end{aligned}
$$

3. Use the definition of the derivative in order to compute $f^{\prime}(2)$, where $f(x)=\frac{1}{x}$.

$$
\begin{aligned}
f^{\prime}(2) & =\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{1}{2+h}-\frac{1}{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{2}{2(2+h)}-\frac{2+h}{2(2+h)}\right) \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{2-2-h}{2(2+h)}\right) \\
& =\lim _{h \rightarrow 0} \frac{1}{h} \frac{-h}{2(2+h)} \\
& =\lim _{h \rightarrow 0} \frac{-1}{2(2+h)} \\
& =-\frac{1}{4}
\end{aligned}
$$

4. Use the definition of the derivative in order to compute $f^{\prime}(16)$, where $f(x)=\sqrt{x}$.

$$
\begin{aligned}
f^{\prime}(16) & =\lim _{h \rightarrow 0} \frac{f(16+h)-f(16)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{16+h}-\sqrt{16}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{16+h}-4}{h}\left(\frac{\sqrt{16+h}+4}{\sqrt{16+h}+4}\right) \\
& =\lim _{h \rightarrow 0} \frac{(16+h)-(16)}{h(\sqrt{16+h}+4)} \\
& =\lim _{h \rightarrow 0} \frac{h}{h(\sqrt{16+h}+4)} \\
& =\lim _{h \rightarrow 0} \frac{1}{\sqrt{16+h}+4} \quad=\frac{1}{8}
\end{aligned}
$$

5. If $f(1)=5$ and $f^{\prime}(1)=-3$, find the equation of the tangent lne to the graph of f at the point $(1,5)$.
A line going through $\left(x_{1}, y_{1}\right)$ with slope m has equation

$$
y-y_{1}=m\left(x-x_{1}\right) .
$$

the derivative at $1, f^{\prime}(1)=-3$ is the slope, so the equation is

$$
y-5=-3(x-1)
$$

11 Due Feb 17

1. Use the definition of the derivative in order to computer the derivative of the function $f(x)=x^{2}-x$.

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left((x+h)^{2}-(x+h)\right)-\left(x^{2}-x\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(x^{2}+2 h x+h^{2}-x-h\right)-x^{2}+x}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 h x+h^{2}-h}{h} \\
& =\lim _{h \rightarrow 0} \frac{h(2 x+h-1)}{h} \\
& =\lim _{h \rightarrow 0} 2 x+h-1 \\
& =2 x-1
\end{aligned}
$$

2. Use the definition of the derivative in order to compute the derivative of the function $f(x)=x^{3}+x+1$.

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left((x+h)^{3}+(x+h)+1\right)-\left(x^{3}+x+1\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(x^{3}+3 x^{2} h+3 x h^{2}+h^{3}+x+h+1\right)-x^{3}-x-1}{h} \\
& =\lim _{h \rightarrow 0} \frac{3 x^{2} h+3 x h^{2}+h^{3}+h}{h} \\
& =\lim _{h \rightarrow 0} \frac{h\left(3 x^{2}+3 x h+h^{2}+1\right)}{h} \\
& =\lim _{h \rightarrow 0} 3 x^{2}+3 x h+h^{2}+1 \\
& =3 x^{2}+1
\end{aligned}
$$

3. Use the definition of the derivative in order to compute the derivative of the function $f(x)=\frac{1}{\sqrt{x}}$.

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{1}{\sqrt{x+h}}-\frac{1}{\sqrt{x}}}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{\sqrt{x}}{\sqrt{x} \sqrt{x+h}}-\frac{\sqrt{x+h}}{\sqrt{x} \sqrt{x+h}}\right) \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{\sqrt{x}-\sqrt{x+h}}{\sqrt{x} \sqrt{x+h}}\right) \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{\sqrt{x}-\sqrt{x+h}}{\sqrt{x} \sqrt{x+h}}\right)\left(\frac{\sqrt{x}+\sqrt{x+h}}{\sqrt{x}+\sqrt{x+h}}\right) \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{x-(x+h)}{\sqrt{x} \sqrt{x+h}(\sqrt{x}+\sqrt{x+h})}\right) \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{-h}{\sqrt{x} \sqrt{x+h}(\sqrt{x}+\sqrt{x+h})}\right) \\
& =\lim _{h \rightarrow 0} \frac{-1}{\sqrt{x} \sqrt{x+h}(\sqrt{x}+\sqrt{x+h})} \\
& =\frac{-1}{\sqrt{x} \sqrt{x}(\sqrt{x}+\sqrt{x})} \\
& =\frac{-1}{2 x \sqrt{x}}
\end{aligned}
$$

4. Let $y=\frac{1}{x+2}$. Compute $\frac{d y}{d x}$.

Letting $f(x)=y$,

$$
\begin{aligned}
\frac{d y}{d x} & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{1}{(x+h)+2}-\frac{1}{x+2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{x+2}{(x+2)((x+h+2)}-\frac{x+h+2}{(x+2)(x+h+2)}\right) \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{-h}{(x+2)(x+h+2)}\right) \\
& =\lim _{h \rightarrow 0} \frac{-1}{(x+2)(x+h+2)} \\
& =\frac{-1}{(x+2)^{2}}
\end{aligned}
$$

5. Let $y=\frac{1}{x^{2}}$. Compute $\left.\frac{d y}{d x}\right|_{x=1}$.

Letting $f(x)=y$,

$$
\begin{aligned}
\frac{d y}{d x} & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{1}{(x+h)^{2}}-\frac{1}{x^{2}}}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{x^{2}}{x^{2}(x+h)^{2}}-\frac{(x+h)^{2}}{x^{2}(x+h)^{2}}\right) \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{x^{2}-\left(x^{2}+2 h x+h^{2}\right)}{x^{2}(x+h)^{2}}\right) \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{-2 h x-h^{2}}{x^{2}(x+h)^{2}}\right) \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{h(-2 x-h)}{x^{2}(x+h)^{2}}\right) \\
& =\lim _{h \rightarrow 0} \frac{-2 x-h}{x^{2}(x+h)^{2}} \\
& =\frac{-2 x}{x^{2}(x)^{2}} \\
& =-\frac{2}{x^{3}}
\end{aligned}
$$

6. Use the definition of derivative in order to find the 2 nd and 3rd derivatives of $f(x)=x^{3}+x$.

First we need the first derivative:

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left((x+h)^{3}+(x+h)\right)-\left(x^{3}+x\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(x^{3}+3 x^{2} h+3 x h^{2}+h^{3}+x+h\right)-x^{3}-x}{h} \\
& =\lim _{h \rightarrow 0} \frac{3 x^{2} h+3 x h^{2}+h^{3}+h}{h} \\
& =\lim _{h \rightarrow 0} \frac{h\left(3 x^{2}+3 x h+h^{2}+1\right)}{h} \\
& =\lim _{h \rightarrow 0} 3 x^{2}+3 x h+h^{2}+1 \\
& =3 x^{2}+1
\end{aligned}
$$

Now we find $f^{\prime \prime}(x)$:

$$
\begin{aligned}
f^{\prime \prime}(x) & =\lim _{h \rightarrow 0} \frac{f^{\prime}(x+h)-f^{\prime}(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(3(x+h)^{2}+1\right)-\left(3 x^{2}+1\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(3 x^{2}+6 h x+3 h^{2}+1\right)-3 x^{2}-1}{h} \\
& =\lim _{h \rightarrow 0} \frac{6 h x+3 h^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{h(6 x+3 h)}{h} \\
& =\lim _{h \rightarrow 0} 6 x+3 h \\
& =6 x
\end{aligned}
$$

Now we find $f^{\prime \prime \prime}(x)$.

$$
\begin{aligned}
f^{\prime \prime \prime}(x) & =\lim _{h \rightarrow 0} \frac{f^{\prime \prime}(x+h)-f^{\prime \prime}(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{6(x+h)-6 x}{h} \\
& =\lim _{h \rightarrow 0} \frac{6 h}{h} \\
& =6
\end{aligned}
$$

7. Give all possible notations for the derivatives of $y=f(x)$ up to order 8 .

Order					
1	$f^{\prime}(x)$	$f^{(1)}(x)$	y^{\prime}	$y^{(1)}$	$\frac{d y}{d x}$
2	$f^{\prime \prime}(x)$	$f^{(2)}(x)$	$y^{\prime \prime}$	$y^{(2)}$	$\frac{d^{2} y}{d x^{2}}$
3	$f^{\prime \prime \prime \prime}(x)$	$f^{(3)}(x)$	$y^{\prime \prime \prime \prime}$	$y^{(3)}$	$\frac{d^{3} y}{d x^{3}}$
4	$f^{\prime \prime \prime \prime \prime}(x)$	$f^{(4)}(x)$	$y^{\prime \prime \prime \prime}$	$y^{(4)}$	$\frac{d^{4} y}{d x^{4}}$
5	$f^{\prime \prime \prime \prime \prime}(x)$	$f^{(5)}(x)$	$y^{\prime \prime \prime \prime \prime}$	$y^{(5)}$	$\frac{d^{5} y}{d x^{5}}$
6	$f^{\prime \prime \prime \prime \prime \prime \prime}(x)$	$f^{(6)}(x)$	$y^{\prime \prime \prime \prime \prime \prime \prime}$	$y^{(6)}$	$\frac{d^{6} y}{d x^{6}}$
7	$f^{\prime \prime \prime \prime \prime \prime \prime \prime}(x)$	$f^{(7)}(x)$	$y^{\prime \prime \prime \prime \prime \prime \prime \prime}$	$y^{(7)}$	$\frac{d^{7} y}{d x^{7}}$
8	$f^{\prime \prime \prime \prime \prime \prime \prime \prime}(x)$	$f^{(8)}(x)$	$y^{\prime \prime \prime \prime \prime \prime \prime \prime \prime}$	$y^{(8)}$	$\frac{d^{8} y}{d x^{8}}$

12 Due Feb 19

1. Find the derivative of the function $f(x)=5 x^{3}-4 x^{2}+7 x+2$.

Use the power rule:

$$
\begin{aligned}
f^{\prime}(x) & =5\left(3 x^{2}\right)-4\left(2 x^{1}\right)+7 \\
& =15 x^{2}-8 x
\end{aligned}
$$

2. Find the derivative of the function $f(x)=2 \sqrt[5]{x}+1$.

First express the root as a power: $f(x)=2 x^{1 / 5}+1$.

$$
\begin{aligned}
f^{\prime}(x) & =2\left(\frac{1}{5} x^{1 / 5-1}\right) \\
& =\frac{2}{5} x^{-4 / 5}
\end{aligned}
$$

3. Find the derivative of the function $f(x)=x^{2}-x+3 \sqrt{x}$.

Re-write roots as exponents: $f(x)=x^{2}-x+3 x^{1 / 2}$.

$$
\begin{aligned}
f^{\prime}(x) & =2 x^{1}-1+3\left(\frac{1}{2} x^{1 / 2-1}\right) \\
& =2 x-1+\frac{3}{2} x^{-1 / 2}
\end{aligned}
$$

4. Find the derivative of the function $f(x)=x^{1 / 3}-x^{-1 / 3}$.

$$
f^{\prime}(x)=\frac{1}{3} x^{1 / 3-1}-\frac{-1}{3} x^{-1 / 3-1}=\frac{1}{3} x^{-2 / 3}+\frac{1}{3} x^{-4 / 3}
$$

5. Find the derivative of the function $f(x)=\left(3 x^{2}+1\right)^{3}$.

First we need to expand the function into a polynomial - use the fact that $(a+b)^{3}=$ $a^{3}+3 a^{2} b+3 a b^{2}+b^{3}$.
$f(x)=\left(3 x^{2}\right)^{3}+3\left(3 x^{2}\right)^{2}(1)+3\left(3 x^{2}\right)(1)^{2}+(1)^{3}=27 x^{6}+27 x^{4}+9 x^{2}+1$
Now use the power rule:
$f^{\prime}(x)=27\left(6 x^{5}\right)+27\left(4 x^{3}\right)+9(2 x)=162 x^{5}+108 x^{3}+18 x$
6. Find the derivative of the function $f(x)=x(2 x+1)^{2}$.

Expand the square and then distribute the x :
$f(x)=x\left(4 x^{2}+4 x+1\right)=4 x^{3}+4 x^{2}+x$
Now take the derivative using the power rule:
$f^{\prime}(x)=4\left(3 x^{2}\right)+4(2 x)+1=12 x^{2}+8 x+1$
7. Find the derivative of the function $f(x)=\frac{x^{2}+3}{\sqrt{x}}$.

First let's factor out $\frac{1}{\sqrt{x}}$ as $x^{-1 / 2)}$
$f(x)=x^{-1 / 2}\left(x^{2}+3\right)$
Now distribute: $f(x)=x^{3 / 2}+3 x^{-1 / 2}$.
Now we can take the derivative using the power rule.
$f^{\prime}(x)=\frac{3}{2} x^{1 / 2}+3\left(\frac{-1}{2} x^{-3 / 2}\right)=\frac{3}{2} x^{1 / 2}-\frac{3}{2} x^{-3 / 2}$.

13 Due Feb 23

1. Compute the derivative of $f(x)=2^{x} x^{2}$.

The function is in the form of $g(x) \cdot h(x)$ where $g(x)=2^{x}$ and $h(x)=x^{2}$, so we use the Product Rule:
$f^{\prime}(x)=g^{\prime}(x) h(x)+g(x) h^{\prime}(x)=\left(2^{x} \ln 2\right)\left(x^{2}\right)+\left(2^{x}\right)(2 x)$
2. Compute the derivative of $f(x)=x^{3} e^{x}$.

The function is in the form of $g(x) \cdot h(x)$ where $g(x)=x^{3}$ and $h(x)=e^{x}$, so we use the Product Rule:

$$
f^{\prime}(x)=g^{\prime}(x) h(x)+g(x) h^{\prime}(x)=\left(3 x^{2}\right)\left(e^{x}\right)+\left(x^{3}\right)\left(e^{x}\right)
$$

3. Compute the derivative of $f(x)=\frac{x^{2}-3 x+5}{x^{3}+1}$.

The function is in the form of $\frac{g(x)}{h(x)}$ where $g(x)=x^{2}-3 x+5$ and $h(x)=x^{3}+1$, so we use the Quotient Rule:

$$
f^{\prime}(x)=\frac{g^{\prime}(x) h(x)-g(x) h^{\prime}(x)}{h(x)^{2}}=\frac{(2 x-3)\left(x^{3}+1\right)-\left(x^{2}-3 x+5\right)\left(3 x^{2}\right)}{\left(x^{3}+1\right)^{2}}
$$

4. Compute the derivative of $f(x)=e^{2 x}$.

We can either write the function as $f(x)=\left(e^{2}\right)^{x}$ and use the derivative of b^{x}, or we can write it as $f(x)=e^{x+x}=e^{x} \cdot e^{x}$ and use the product rule.
First if $f(x)=\left(e^{2}\right)^{x}$,
$f^{\prime}(x)=\left(e^{2}\right)^{x} \ln \left(e^{2}\right)=e^{2 x} 2=2 e^{2 x}$.
Alternatively, if $f(x)=e^{x} e^{x}$,
$f^{\prime}(x)=\left(e^{x}\right)^{\prime}\left(e^{x}\right)+\left(e^{x}\right)\left(e^{x}\right)^{\prime}=e^{2 x}+e^{2 x}=2 e^{2 x}$
5. Compute the derivative of $f(x)=\frac{e^{x} x^{4}}{x^{2}+1}$.

Since this function is in the form of $\frac{g(x)}{h(x)}$, we use the quotient rule, but to find $g^{\prime}(x)$ we have to additionally use the product rule:
$f^{\prime}(x)=\frac{g^{\prime}(x) h(x)-g(x) h^{\prime}(x)}{h(x)^{2}}=\frac{\left(\left(e^{x}\right)\left(4 x^{3}\right)+\left(e^{x}\right)\left(x^{4}\right)\right)\left(x^{2}+1\right)-\left(e^{x} x^{4}\right)(2 x)}{\left(x^{2}+1\right)^{2}}$

14 Due Feb 24

1. Compute the derivative of the function $f(x)=\frac{x^{3} \sin x}{x^{2}+\cos x}$

We use the quotient rule where $g(x)=x^{3} \sin x$ and $h(x)=x^{2}+\cos x$. Then to find $g^{\prime}(x)$ we need to use the product rule:
$g^{\prime}(x)=\left(x^{3}\right)^{\prime}(\sin x)+\left(x^{3}\right)(\sin x)^{\prime}=\left(3 x^{2}\right)(\sin x)+\left(x^{3}\right)(\cos x)=3 x^{2} \sin x+x^{3} \cos x$.
$h^{\prime}(x)=2 x-\sin x$.
So by the quotient rule:
$f^{\prime}(x)=\frac{g^{\prime} h-g h^{\prime}}{h^{2}}=\frac{\left(3 x^{2} \sin x+x^{3} \cos x\right)\left(x^{2}+\cos x\right)-\left(x^{3} \sin x\right)(2 x-\sin x)}{\left(x^{2}+\cos x\right)^{2}}$
2. Compute the derivative of the function $f(x)=2^{x} \tan x$.

The derivative is found by the product rule, where $g(x)=2^{x}, h(x)=\tan x$.
$g^{\prime}(x)=2^{x} \ln 2$, and $h^{\prime}(x)=\sec ^{2} x$. Thus by the product rule:
$f^{\prime}(x)=g^{\prime} h+g h^{\prime}=(2 x \ln 2)(\tan x)+\left(2^{x}\right)\left(\sec ^{2} x\right)$
3. Compute the derivative of the function $f(x)=\frac{\tan x}{x \cos x}$.

This derivative is found by the quotient rule where $g(x)=\tan x$ and $h(x)=$ $x \cos x$.
$g^{\prime}(x)=(\tan x)^{\prime}=\sec ^{2} x$, but for $h^{\prime}(x)$ we need to use the product rule:
$h^{\prime}(x)=(x)^{\prime}(\cos x)+(x)(\cos x)^{\prime}=(1) \cos x+x(-\sin x)=\cos x-x \sin x$
So by the quotient rule:

$$
f^{\prime}(x)=\frac{g^{\prime} h-g h^{\prime}}{h^{2}}=\frac{\left(\sec ^{2} x\right)(x \cos x)-(\tan x)(\cos x-x \sin x)}{(x \cos x)^{2}}
$$

4. Find the tangent to the graph of the function $f(x)=\sin x+\cos x+x$ at the point $(\pi / 4, \sqrt{2}+\pi / 4)$.
We need the first derivative $f^{\prime}(x)$, but this is pretty straight forward:
$f^{\prime}(x)=\cos x-\sin x+1$
So the slope of the tangent line is
$f^{\prime}(\pi / 2)=\cos \left(\frac{\pi}{2}\right)-\sin \left(\frac{\pi}{2}\right)+1=\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}+1=1$
So the equation of the tangent line is

$$
y-\left(\sqrt{2}+\frac{\pi}{4}\right)=1\left(x-\frac{\pi}{4}\right)
$$

5. Compute the derivative of the function $f(x)=\frac{x^{2} 3^{x}+\sin x 4^{x}}{\cos x 5^{x}+\tan x 6^{x}}$.

We need to use the quotient rule here, but the derivative of the numerator and denominator need to be found, and both require the product rule. Let

$$
\begin{gathered}
g(x)=x^{2} 3^{x}+\sin x 4^{x}, \quad h(x)=\cos x 5^{x}+\tan x 6^{x} \\
g^{\prime}(x)=\left[\left(x^{2}\right)^{\prime}\left(3^{x}\right)+\left(x^{2}\right)\left(3^{x}\right)^{\prime}\right]+\left[(\sin x)^{\prime}\left(4^{x}\right)+(\sin x)\left(4^{x}\right)^{\prime}\right] \\
=\left[(2 x)\left(3^{x}\right)+\left(x^{2}\right)\left(3^{x} \ln 3\right)\right]+\left[(\cos x)\left(4^{x}\right)+(\sin x)\left(4^{x} \ln 4\right)\right] \\
=2 x 3^{x}+x^{2} 3^{x} \ln 3+\cos x 4^{x}+\sin x 4^{x} \ln 4 \\
h^{\prime}(x)=\left[(\cos x)^{\prime}\left(5^{x}\right)+(\cos x)\left(5^{x}\right)^{\prime}\right]+\left[(\tan x)^{\prime}\left(6^{x}\right)+(\tan x)\left(6^{x}\right)^{\prime}\right] \\
=\left[(-\sin x)\left(5^{x}\right)+(\cos x)\left(5^{x} \ln 5\right)\right]+\left[\left(\sec ^{2} x\right)\left(6^{x}\right)+(\tan x)\left(6^{x} \ln 6\right)\right] \\
=-\sin x 5^{x}+\cos x 5^{x} \ln 5+\sec ^{2} x 6^{x}+\ln 6 \tan x 6^{x}
\end{gathered}
$$

Putting it all together,

$$
\begin{gathered}
f^{\prime}(x)=\frac{g^{\prime} h-g h^{\prime}}{h^{2}} \\
=\frac{\left(2 x 3^{x}+x^{2} 3^{x} \ln 3+\cos x 4^{x}+\sin x 4^{x} \ln 4\right)\left(\cos x 5^{x}+\tan x 6^{x}\right)-\left(x^{2} 3^{x}+\sin x 4^{x}\right)\left(-\sin x 5^{x}+\cos x 5^{x}\right.}{\left(\cos x 5^{x}+\tan x 6^{x}\right)^{2}}
\end{gathered}
$$

Additional practice problems: $\operatorname{Pg} 177,1-6$:

15 Due Feb 26

1. Compute the derivative of the function $e^{x^{2}+1}$.

Using the chain rule, $f(x)=e^{u(x)}$, where $u(x)=x^{2}+1$, and $u^{\prime}(x)=2 x$, so

$$
f^{\prime}(x)=e^{u(x)} u^{\prime}(x)=e^{x^{2}+1}(2 x)=2 x e^{x^{2}+1}
$$

2. Compute the derivative of the function $f(x)=\tan (\sqrt{x})$.

Using the chain rule, $f(x)=\tan (u(x))$, where $u(x)=\sqrt{x}, u^{\prime}(x)=\frac{1}{2 \sqrt{x}}$, so

$$
f^{\prime}(x)=\sec ^{2}(u(x)) u^{\prime}(x)=\sec ^{2}(\sqrt{x})\left(\frac{1}{2 \sqrt{x}}\right)=\frac{\sec ^{2} x}{2 \sqrt{x}}
$$

3. Compute the derivative of the function $f(x)=(\sin x+x)^{10}$.

Using the chain rule, $f(x)=(u(x))^{10}$, where $u(x)=\sin x+x, u^{\prime}(x)=\cos x+1$, so

$$
f^{\prime}(x)=10(u(x))^{9} u^{\prime}(x)=10(\sin x+x)^{9}(\cos x+1)
$$

4. Compute the derivative of the function $f(x)=\sqrt{x \sec x-5}$.

Using the chain rule, $f(x)=\sqrt{u(x)}$, where $u(x)=x \sec x-5$, and $u^{\prime}(x)=\sec x+x \sec x \tan x$. Thus,

$$
f^{\prime}(x)=\frac{1}{2 \sqrt{u(x)}} u^{\prime}(x)=\frac{\sec x+x \sec x \tan x}{2 \sqrt{x \sec x-5}}
$$

5. Compute the derivative of the function $f(x)=\sin \left(3^{x^{2}+1}\right)$.

Using the chain rule, $f(x)=\sin (u(x))$, where $u(x)=3^{v(x)}$, and $v(x)=x^{2}+1$. Then

$$
\begin{gathered}
v^{\prime}(x)=2 x \\
u^{\prime}(x)=3^{v(x)} \ln 3 v^{\prime}(x)=2 x 3^{x^{2}+1} \ln 3 \\
f^{\prime}(x)=\cos (u(x)) u^{\prime}(x)=\cos \left(3^{x^{2}+1}\right) 2 x 3^{x^{2}+1} \ln 3
\end{gathered}
$$

Additional practice problems on pg 172, 1-12

16 Due Feb 29

1. Compute the derivative of $f(x)=\cos ^{6}(\ln x)$
$f(x)$ may explicitly be written

$$
f(x)=(\cos (\ln x))^{6}
$$

Using the chain rule and the derivative of a logarithm, we get

$$
\begin{aligned}
f^{\prime}(x) & =6(\cos (\ln x))^{5}(\cos (\ln x))^{\prime} \\
& =6(\cos (\ln x))^{5}\left(-\sin (\ln x)(\ln x)^{\prime}\right) \\
& =6(\cos (\ln x))^{5}\left(-\sin (\ln x)\left(\frac{1}{x}\right)\right) \\
& =-\frac{6 \cos ^{5}(\ln x) \sin (\ln x)}{x}
\end{aligned}
$$

2. Compute the derivative of $f(x)=\sec \left(\sqrt{x^{2}+1}\right)$

Using the chain rule we have:

$$
\begin{aligned}
f^{\prime}(x) & =\sec \left(\sqrt{x^{2}+1}\right) \tan \left(\sqrt{x^{2}+1}\right)\left(\sqrt{x^{2}+1}\right)^{\prime} \\
& =\sec \left(\sqrt{x^{2}+1}\right) \tan \left(\sqrt{x^{2}+1}\right)\left(\frac{1}{2 \sqrt{x^{2}+1}}\left(x^{2}+1\right)^{\prime}\right) \\
& =\sec \left(\sqrt{x^{2}+1}\right) \tan \left(\sqrt{x^{2}+1}\right)\left(\frac{1}{2 \sqrt{x^{2}+1}}(2 x)\right) \\
& =\sec \left(\sqrt{x^{2}+1}\right) \tan \left(\sqrt{x^{2}+1}\right)\left(\frac{x}{\sqrt{x^{2}+1}}\right)
\end{aligned}
$$

3. Compute the derivative of $f(x)=\log _{3}\left(x^{2}+1\right)$

Using the chain rule and derivative of a logarithm, we get

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1}{\left(x^{2}+1\right) \ln 3}\left(x^{2}+1\right)^{\prime} \\
& =\frac{1}{\left(x^{2}+1\right) \ln 3}(2 x) \\
& =\frac{2 x}{\left(x^{2}+1\right) \ln 3}
\end{aligned}
$$

4. Compute the derivative of $f(x)=\sqrt{\ln \left(x^{3}+5\right)}$

Using chain rule and derivative of a logarithm, we get:

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1}{2 \sqrt{\ln \left(x^{3}+5\right)}}\left(\ln \left(x^{3}+5\right)\right)^{\prime} \\
& =\frac{1}{2 \sqrt{\ln \left(x^{3}+5\right)}}\left(\frac{1}{x^{3}+5}\left(x^{3}+5\right)^{\prime}\right) \\
& =\frac{1}{2 \sqrt{\ln \left(x^{3}+5\right)}}\left(\frac{1}{x^{3}+5}\left(3 x^{2}\right)\right) \\
& =\frac{3 x^{2}}{2\left(x^{3}+5\right) \ln \left(x^{3}+5\right)}
\end{aligned}
$$

5. Compute the derivative of $f(x)=x^{\sin x}$

To take the derivative of $x^{u(x)}$, we have to use the trick that $f(x)=e^{\ln (f(x))}$. Thus

$$
x^{\sin x}=e^{\ln \left(x^{\sin x}\right)}=e^{\sin x \ln x}
$$

The latter uses the Power Rule of logarithms. Now we can take the derivative using chain rule and product rule.

$$
\begin{aligned}
f^{\prime}(x) & =e^{\sin x \ln x}(\sin x \ln x)^{\prime} \\
& =e^{\sin x \ln x}\left((\sin x)^{\prime} \ln x+\sin x(\ln x)^{\prime}\right) \\
& =e^{\sin x \ln x}\left((\cos x) \ln x+\sin x\left(\frac{1}{x}\right)\right) \\
& =x^{\sin x}\left(\cos x \ln x+\frac{\sin x}{x}\right)
\end{aligned}
$$

Additional practice problems on pg 192, 23-34

17 Due Mar 2

1. Compute the linear approximation of $f(x)=\frac{1}{1+x^{3}}$ at $a=1$ and use this in order to estimate $f(1.2)$.
The linear approximation is the tangent line at $x=a$. The formula is

$$
L(x)=f^{\prime}(a)(x-a)+f(a)
$$

The first derivative is found using chain rule, but it is useful to write $f(x)=$ $\left(1+x^{3}\right)^{-1}$:

$$
\begin{aligned}
f^{\prime}(x) & =-\left(1+x^{3}\right)^{-2}\left(1+x^{3}\right)^{\prime} \\
& =-\left(1+x^{3}\right)^{-2}\left(3 x^{2}\right) \\
& =\frac{-3 x^{2}}{\left(1+x^{3}\right)^{2}}
\end{aligned}
$$

Now $f^{\prime}(a)=f^{\prime}(1)=-\frac{3}{4}$ and $f(a)=f(1)=\frac{1}{2}$. So

$$
L(x)=-\frac{3}{4}(x-1)+\frac{1}{2}
$$

So the estimate is

$$
f(1.2) \approx L(1.2)=-\frac{3}{4}(1.2-1)+\frac{1}{2}=-\frac{3}{4}\left(\frac{1}{5}\right)+\frac{1}{2}=-\frac{3}{20}+\frac{10}{20}=\frac{7}{20}
$$

2. Compute the linear approximation of the function $f(x)=\sqrt[3]{x}$ at the point $a=8$ and use this approximation in order to estimate $\sqrt[3]{8.5}$.
As in the previous problem, the linear approximation is the tangent line at $x=a$. The formula is

$$
L(x)=f^{\prime}(a)(x-a)+f(a)
$$

With $f(x)=x^{1 / 3}$, we have

$$
f^{\prime}(x)=\frac{1}{3} x^{-2 / 3}
$$

so $f^{\prime}(8)=\frac{1}{3}(8)^{-2 / 3}=\frac{1}{3} \frac{1}{4}=\frac{1}{12}$. Since $f(8)=2$, our linear approximation is

$$
L(x)=\frac{1}{12}(x-8)+2
$$

Thus

$$
\sqrt[3]{8.5} \approx L(8.5)=\frac{1}{12}(8.5-8)+2=\frac{1}{24}+2=\frac{49}{24}
$$

3. Estimate $\sqrt{62}$.

We want to estimate based on a nearby a which is a perfect square: Let's use $a=64$ since $\sqrt{64}=8$. With $f(x)=\sqrt{x}$, and $x=a$ we can find the linear approximation. Note that $f^{\prime}(x)=\frac{1}{2 \sqrt{x}}$, so $f^{\prime}(64)=\frac{1}{2(8)}=\frac{1}{16}$.

$$
\sqrt{62} \approx L(62)=\frac{1}{16}(62-64)+8=\frac{1}{16}(-2)+8=-\frac{1}{8}+8=7.875
$$

4. Estimate $\sqrt[3]{26}$.

This is similar to number 2 . We find a nearby a which is a perfect cube: $a=27$ is an obvious choice. We let $f(x)=x^{1 / 3}$. As in problem $2, f^{\prime}(x)=\frac{1}{3}(x)^{-2 / 3}$. We have $f(27)=3$ and

$$
f^{\prime}(27)=\frac{1}{3}(27)^{-2 / 3}=\frac{1}{3} \frac{1}{9}=\frac{1}{27}
$$

The approximation is thus

$$
\sqrt[3]{26} \approx L(26)=\frac{1}{27}(26-27)+3=-\frac{1}{27}+3=\frac{80}{27}
$$

5. Estimate $\ln 2$.

We use a linear approximation of $f(x)=\ln x$ with $a=e$, since that is the only nearby x value where $f(x)$ gives a reasonably nice value. Note:

$$
f^{\prime}(x)=\frac{1}{x}
$$

so $f^{\prime}(e)=\frac{1}{e}$ and $f(e)=1$. The approximation is thus:

$$
\ln 2 \approx L(2)=\frac{1}{e}(2-e)+1=\frac{2}{e}
$$

6. Find the linear approximation of $y=\cos x \sin x$ at $a=\frac{\pi}{4}$.

By the product rule,

$$
y^{\prime}=(\sin x) \sin x+\cos x(-\cos x)=\sin ^{2} x-\cos ^{2} x
$$

At the point $x=\frac{\pi}{4}$, the slope is

$$
y^{\prime}(\pi / 4)=\sin ^{2}(\pi / 4)-\cos ^{2}(\pi / 4)=\left(\frac{\sqrt{2}}{2}\right)^{2}-\left(\frac{\sqrt{2}}{2}\right)^{2}=0
$$

Since at $x=\frac{\pi}{4}, y=\frac{1}{2}$,

$$
L(x)=0\left(x-\frac{\pi}{4}\right)+\frac{1}{2}=\frac{1}{2}
$$

7. Find the linear approximation of $y=e^{\sqrt{x}}$ at $a=(\ln 2)^{2}$. By chain rule,

$$
y^{\prime}=e^{\sqrt{x}}(\sqrt{x})^{\prime}=e^{\sqrt{x}}\left(\frac{1}{2 \sqrt{x}}\right)
$$

$y(a)=e^{\ln 2}=2$, and $y^{\prime}(a)=e^{\ln 2}\left(\frac{1}{2 \ln 2}\right)=2\left(\frac{1}{2 \ln 2}\right)=\frac{1}{\ln 2}$ So the linear approximation is

$$
L(x)=\frac{1}{\ln 2}\left(x-(\ln 2)^{2}\right)+2
$$

18 Due March 4

1. Use the mean value theorem to show that if x and y are two numbers on $[1,+\infty)$, then

$$
|\sqrt{x}-\sqrt{y}| \leq \frac{1}{2}|x-y|
$$

First, let's assume $y \leq x$. So what we are trying to prove is equivalent to

$$
\sqrt{x}-\sqrt{y} \leq \frac{1}{2}(x-y)
$$

or, by dividing both sides by $(x-y)$ we could write

$$
\frac{\sqrt{x}-\sqrt{y}}{x-y} \leq \frac{1}{2}
$$

Consider the function $f(x)=\sqrt{x}$, where $f^{\prime}(x)=\frac{1}{2 \sqrt{x}}$. By the MVT, there must be a value c where $y<c<x$ such that

$$
f^{\prime}(c)=\frac{f(x)-f(y)}{x-y}=\frac{\sqrt{x}-\sqrt{y}}{x-y}
$$

Also, notice that $f^{\prime}(x)$ is decreasing; so

$$
f^{\prime}(x) \geq f^{\prime}(x) \geq f^{\prime}(c)=
$$

The first expression is $\frac{1}{2}$, so we can write

$$
\frac{1}{2} \geq \frac{\sqrt{x}-\sqrt{y}}{x-y}
$$

2. Use the mean value theorem to show that if x and y are two numbers on $[0,1]$, then

$$
\left|e^{x}-e^{y}\right| \leq e|x-y|
$$

First, let us assume $y \leq x$. Then what we are trying to prove can be written

$$
e^{x}-e^{y} \leq e(x-y)
$$

or

$$
\frac{e^{x}-e^{y}}{x-y} \leq e
$$

Consider the function $f(x)=e^{x}$, where $f^{\prime}(x)=e^{x}$ which is increasing. By the MVT, there exists some c where $y<c<x$ such that

$$
f^{\prime}(c)=\frac{f(x)-f(y)}{x-y}=\frac{e^{x}-e^{y}}{x-y}
$$

Since $f^{\prime}(x)$ is increasing, we can write

$$
f^{\prime}(c) \leq f^{\prime}(1)
$$

Namely

$$
\frac{e^{x}-e^{y}}{x-y} \leq e
$$

3. Use the mean value theorem to show that if x and y are any two numbers, then

$$
|\cos x-\cos y| \leq|x-y|
$$

Let us assume $y \leq x$. So what we are trying to prove can be written as

$$
\frac{|\cos x-\cos y|}{x-y} \leq 1
$$

Consider the function $f(x)=\cos x$. By the mean value theorem, there exists some c between x and y where

$$
f^{\prime}(c)=\frac{f(x)-f(y)}{x-y}
$$

in other words,

$$
f^{\prime}(c)=\frac{\cos x-\cos y}{x-y}
$$

Since $f^{\prime}(c)=-\sin x \leq 1$, we can say for sure that

$$
\frac{\cos x-\cos y}{x-y} \leq\left|\frac{\cos x-\cos y}{x-y}\right| \leq 1
$$

Or

$$
|\cos x-\cos y| \leq|x-y|
$$

4. Examine whether Rolle's theorem applies to the function $f(x)=x(1-x)$ on the interval $[0,1]$.
Since $f(x)$ is differentiable on $(0,1)$ and $f(0)=0=f(1)$, Rolle's Theorem does apply.
5. Examine whether Rolle's theorem applies to the function $f(x)=\sin x$ on the interval $[0, \pi / 2]$. How about the Mean Value Theorem?
Since $\sin x$ is differentiable, but $f(0)=0$ and $f(\pi / 2)=1$, so Rolle's Theorem does not apply, but the Mean Value Theorem does.
6. Show that if a differential function that is defined on all of \mathbb{R}, has distinct roots, then its derivative has at least five distinct roots.
Say the five distinct roots, in increasing order are $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}$. Since the value of the function is zero at each of these points, by Rolle's Theorem there exist distinct points $y_{1}, \ldots y_{5}$ where

$$
x_{1}<y_{1}<x_{2}<y_{2}<x_{3}<y_{3}<x_{4}<y_{4}<x_{5}<y_{5}<x_{6}
$$

where $f^{\prime}\left(y_{i}\right)=0$ for each $i=1, \ldots, 5$.

19 Due March 7

1. Find the critical points of the function $f(x)=x \ln x$.

The domain of the function is $(0, \infty)$.
$f^{\prime}(x)=\ln x+x \cdot \frac{1}{x}=\ln x+1$. Setting this equal to zero

$$
\begin{gathered}
\ln x+1=0 \\
\Leftrightarrow \ln x=-1 \\
\Leftrightarrow e^{-1}=x
\end{gathered}
$$

This is the only critical point on the domain.
2. Find the critical points of the function $f(x)=x^{3}-x+1$.

The domain of the function is all reals.
$f^{\prime}(x)=3 x^{2}-1$. Setting this equal to zero

$$
3 x^{2}-1=0 \Leftrightarrow x^{2}=\frac{1}{3}
$$

So the two critical points are $x=\sqrt{\frac{1}{3}},-\sqrt{\frac{1}{3}}$.
3. Find the minimum and the maximum of the function $f(x)=e^{x}-x-1$ on the interval $[-1,1]$.
$f^{\prime}(x)=e^{x}-1$. Setting this equal to zero we have

$$
e^{x}-1=0 \Leftrightarrow e^{x}=1 \Leftrightarrow x=0
$$

We now evaluate the function at the endpoints of the domain and at $x=0$
$f(-1)=e^{-1}+1-1=\frac{1}{e}$
$f(0)=e^{0}-0-1=0$ (minimum)
$f(1)=e^{1}-1-1=e-2$ (maximum)
4. Find the minimum and the maximum of the function $f(x)=\cos x+x$ on the interval $[-\pi, \pi]$.
$f^{\prime}(x)=-\sin x+1$, which is zero when $\sin x=1$, i.e. $x=\frac{\pi}{2}$. We check the endpoints of the domain and the critical point:
$f(-\pi)=-1-\pi$ (minimum)
$f\left(\frac{\pi}{2}\right)=0+\frac{\pi}{2}=\frac{\pi}{2}$
$f(\pi)=-1+\pi$ (maximum)
5. Find the minimum and the maximum of the function $f(x)=\frac{1-x}{x^{2}+3 x}$ on the interval $[1,4]$.
$f^{\prime}(x)=\frac{-\left(x^{2}+3 x\right)-(1-x)(2 x+3)}{\left(x^{2}+3 x\right)^{2}}$.
Where we get a critical point when the numerator is zero, i.e.

$$
\begin{aligned}
& -x^{2}-3 x-\left(2 x-2 x^{2}-3 x+3\right)=0 \\
& \Leftrightarrow x^{2}-2 x-3=(x-3)(x+1)=0
\end{aligned}
$$

Where roots are $x=-1,3$. The only critical point in the interval is $x=3$. Now we check the endpoints of the interval as well:
$f(1)=0$ (maximum)
$f(3)=\frac{1-3}{18}=-\frac{1}{9}$ (minimum)
$f(4)=\frac{-3}{16+12}=-\frac{3}{28}$
6. Find the minimum and the maximum of the function $f(x)=x^{5}-x$ on the interval [0, 2].
$f^{\prime}(x)=5 x^{4}-1$. Setting this equal to zero

$$
5 x^{4}-1=0 \Leftrightarrow x^{4}=\frac{1}{5}
$$

So the only critical point in our interval is $\frac{1}{\sqrt[4]{5}}$.
We check the endpoints and critical point to find min and max:
$f(0)=0$ (maximum)
$f\left(\frac{1}{\sqrt[4]{5}}\right)=\frac{1}{\sqrt[4]{5}}\left(\frac{1}{5}-1\right)=-\frac{4}{5 \sqrt[4]{5}}$ (minimum)
$f(1)=0$ (maximum)

20 Due March 9

1. Determine the intervals of monotonicity and the local extrema of the function $f(x)=x^{3}-x$
$f^{\prime}(x)=3 x^{2}-1$. If we set the first derivative equal to zero and solve for x we get

$$
3 x^{2}-1=0 \Leftrightarrow x^{2}=\frac{1}{3}
$$

So we get $x=-\sqrt{\frac{1}{3}}$ and $x=\sqrt{\frac{1}{3}}$. We can draw the sign graph of $f^{\prime}(x)$:

$+\quad 0$	-	0	+		
-2	-1	0		1	2

So the function is increasing on $\left(-\infty,-\sqrt{\frac{1}{3}}\right) \cup\left(\frac{\sqrt{1} 3}{,} \infty\right)$ and decreasing on $\left(-\sqrt{\frac{1}{3}}, \sqrt{\frac{1}{3}}\right)$.
Since the function goes from increasing to decreasing there, $x=-\sqrt{\frac{1}{3}}$ is a local maximum. Similarly, $x=\sqrt{\frac{1}{3}}$ is a local minimum.
2. Determine the intervals of monotonicity and the local extrema of the function $f(x)=x e^{-x^{2}}$ $f^{\prime}(x)=e^{-x^{2}}+x e^{-x^{2}}(-2 x)=x^{-x^{2}}\left(1-2 x^{2}\right)$. Since $e^{-x^{2}}>0$ always, we only need to set $1-2 x^{2}=0$. We get

$$
x^{2}=\frac{1}{2}
$$

So we have critical points at $x=-\sqrt{\frac{1}{2}}$ and $x=\sqrt{\frac{1}{2}}$. We can draw the sign graph of $f^{\prime}(x)$:

$$
\begin{array}{rrrrrr}
& - & 0 & + & 0 & - \\
\\
& \bullet & -1 & 0 & & 1
\end{array}
$$

f is increasing on $\left(-\sqrt{\frac{1}{2}}, \sqrt{\frac{1}{2}}\right)$.
f is decreasing on $\left(-\infty, \sqrt{\frac{1}{2}}\right) \cup\left(\sqrt{\frac{1}{2}}, \infty\right)$.
$x=-\sqrt{\frac{1}{2}}$ is a local minimum and $x=\sqrt{\frac{1}{2}}$ is a local maximum.
3. Determine the intervals of monotonicity and the local extrema of the function $f(x)=\frac{x}{x^{2}+4}$
$f^{\prime}(x)=\frac{\left(x^{2}+4\right)-x(2 x)}{\left(x^{2}+4\right)^{2}}=\frac{-x^{2}+4}{\left(x^{2}+4\right)^{2}}$. The denominator is always positive, so this derivative is only zero when the numerator is zero, i.e. at $x=-2$ and $x=2$. The sign graph of $f^{\prime}(x)$ looks like:

-	0		+		0	-
\longleftrightarrow	\bullet				\bullet	\vdots

f is increasing on $(-2,2)$.
f is decreasing on $(-\infty, 2) \cup(2, \infty)$.
$x=-2$ is a local minimum and $x=2$ is a local maximum.
4. A differentiable function f is defined on the interval $[-1,4]$. The graph of its derivative is a broken line with vertices at the points $(-1,1),(1,-1),(3,2),(4,0)$. Determine the intervals of monotonicity of f and the local extrema of f on $(-1,4)$. First, it is helpful to have a sense of the picture of the derivative function.

This is what $f^{\prime}(x)$ looks like. The function is increasing when $f^{\prime}(x)>0$ and it is decreasing when $f^{\prime}(x)<0$. Local extrema happen when f goes from increasing to decreasing, or vice versa, so let's first find the intervals of monotonicity. From $(-1,1)$ to $(1,-1)$ the slope of f^{\prime} is $\frac{(-1)-(1)}{(1)-(-1)}=-1$. From the point $\left.-1,1\right)$ we
can see that the line will hit the point $(0,0)$. From $(1,-1)$ to $(3,2)$, we have a slope of $\frac{(2)-(-1)}{(3)-(1)}=\frac{3}{2}$. The line in point-slope form is

$$
y-2=\frac{3}{2}(x-3)
$$

Plugging in $y=0$ we solve for x and get $x=\frac{5}{3}$, so this line hits the point $\left(\frac{5}{3}, 0\right)$. The sign graph of $f^{\prime}(x)$ can be given by

So the function is increasing on $(-1,0) \cup\left(\frac{5}{3}, 4\right)$. f is decreasing on $\left(0, \frac{5}{3}\right)$.
$x=0$ is a local maximum and $x=\frac{5}{3}$ is a local minimum. Although not necessary, it is perhaps helpful to see what $f(x)$ may look like (in red):

5. Determine the intervals of monotonicity and the local extrema of the function $f(x)=2 x^{5}-5 x^{2}$ $f^{\prime}(x)=10 x^{4}-10 x=10 x\left(x^{3}-1\right)$.
So $x=0$ and $x=1$ are the two roots of $f^{\prime}(x)$. The sign graph of $f^{\prime}(x)$ is

f is increasing on $(-\infty, 0) \cup(1, \infty)$ and decreasing on $(0,1)$. $x=0$ is a local maximum while $x=1$ is a local minimum.
6. The graph of the derivative of a function $f(x)$ is given by

Determine the intervals on which f is
(a) increasing
(b) decreasing

Don't forget, this is the graph of $f^{\prime}(x)$, not $f(x)$. The sign graph of $f^{\prime}(x)$ is

From this we can get the intervals of increasing/decreasing: Increasing on $(1,3)$, decreasing on $(0,1) \cup(3,5)$.

21 Due March 11

1. Use the second derivative test in order to identify the local extrema of the function $f(x)=x^{3}-3 x$. $f^{\prime}(x)=3 x^{2}-3$, so set $3\left(x^{2}-1\right)=0$ gives us $x=-1,1$ as critical points. $f^{\prime \prime}(x)=6 x . f^{\prime \prime}(-1)<0$ so -1 is a local maximum. $f^{\prime \prime}(1)>0$ so 1 is a local minimum.
2. Use the second derivative test in order to identify the local extrema of the function $f(x)=\frac{x}{x^{2}+1}$.
$f^{\prime}(x)=\frac{\left(x^{2}+1\right)-\left(2 x^{2}\right)}{\left(x^{2}+1\right)^{2}}=\frac{-x^{2}+1}{\left(x^{2}+1\right)^{2}}$. Zeroes come from the numerator, $x=$ $-1,1$, so these are critical points. Note the denominator is always positive.
$f^{\prime \prime}(x)=\frac{(-2 x)\left(x^{2}+1\right)^{2}-\left(-x^{2}+1\right)\left(2\left(x^{2}+1\right)(2 x)\right.}{\left(x^{2}+1\right)^{4}}=\frac{-2 x\left(\left(x^{2}+1\right)+2\left(-x^{2}+1\right)\right)}{\left(x^{2}+1\right)^{3}}$
$=\frac{-2 x\left(-x^{2}+3\right)}{\left(x^{2}+1\right)^{3}}$.
$f^{\prime \prime}(-1)=\frac{-2(-1)(2)}{2^{3}}>0$ so -1 is a local minimum.
$f^{\prime \prime}(1)=\frac{-2(1)(2)}{2^{3}}<0$ so 1 is a local maximum.
3. Determine the intervals of concavity and the inflection points of the function $f(x)=x^{3}-x$.
$f^{\prime}(x)=3 x^{2}-1$, and $f^{\prime \prime}(x)=6 x$ The sign graph of $f^{\prime \prime}(x)$ is

f is concave down on $(-\infty, 0)$, concave up on $(0, \infty)$ and 0 is an inflection point.
4. Determine the intervals of concavity and the inflection points of the function $f(x)=e^{-x^{2}} . f^{\prime}(x)=-2 x e^{-x^{2}}$, and $f^{\prime \prime}(x)=-e^{-x^{2}}+\left(4 x^{2}\right) e^{-x^{2}}=e^{-x^{2}}\left(4 x^{2}-1\right)$ which has zeroes at $x= \pm \frac{1}{2}$. The sign graph of $f^{\prime \prime}(x)$ is

f is concave down on $(-.5, .5)$, concave up on $(-\infty,-.5) \cup(.5, \infty) .-.5$ and .5 are inflection points.
5. Determine the intervals of concavity and the inflection points of the function $f(x)=\frac{x}{x^{2}+4}$.
$f^{\prime}(x)=\frac{\left(x^{2}+4\right)-\left(2 x^{2}\right)}{\left(x^{2}+4\right)^{2}}=\frac{-x^{2}+4}{\left(x^{2}+4\right)^{2}}$.
$f^{\prime \prime}(x)=\frac{(-2 x)\left(x^{2}+4\right)^{2}-\left(-x^{2}+4\right)\left(2\left(x^{2}+4\right)(2 x)\right.}{\left(x^{2}+4\right)^{4}}=\frac{-2 x\left(\left(x^{2}+4\right)+2\left(-x^{2}+4\right)\right)}{\left(x^{2}+4\right)^{3}}$ $=\frac{-2 x\left(-x^{2}+12\right)}{\left(x^{2}+4\right)^{3}}$.
$f^{\prime \prime}(x)$ has zeroes (from the numerator) at $x=0, \pm \sqrt{12}$. The sign graph of $f^{\prime \prime}(x)$ is

f is concave down on $(-\infty,-\sqrt{12}) \cup(0, \sqrt{12})$, concave up on $(-\sqrt{12}, 0) \cup(\sqrt{12}, \infty)$. $-\sqrt{12}, 0$ and $\sqrt{12}$ are inflection points.
6. A differentiable function f is defined on the interval $[-1,4]$. The graph of its derivative is a broken line with vertices at the points $(-1,1),(1,-1),(3,2),(4,0)$. Determine the intervals of concavity and the inflection points of f on $(-1,4)$. The slope of the derivative function is -1 on $(-1,1),+\frac{3}{2}$ on $(1,3)$ and -2 on $(3,4)$. Therefore, the function f is concave down on $(-1,1) \cup(3,4)$, concave up on $(1,3)$ and the points 1,3 are inflection points.
7. Determine the intervals of concavity and the inflection points of the function $f(x)=2 x^{5}-5 x^{2}$ $f^{\prime}(x)=10 x^{4}-10 x$
$f^{\prime \prime}(x)=40 x^{3}-10=10\left(4 x^{3}-1\right)$. There is only one zero, which is $\sqrt[3]{\frac{1}{4}}$. The sign
graph of $f^{\prime \prime}(x)$ is

So the function is concave down on $\left(-\infty, \sqrt[3]{\frac{1}{4}}\right)$, concave up on $\left(\sqrt[3]{\frac{1}{4}}, \infty\right)$ and $\sqrt[3]{\frac{1}{4}}$ is the only inflection point.
8. The graph of the derivative of a function is given by:

Determine the intervals on which f is
(a) concave up
(b) concave down

The slope of the derivative function is 1 on $(1,2),-1$ on $(2,4)$ and 1 on $(4,5)$. Therefore, the function f is concave up on $(0,2) \cup(4,5)$, and concave down on $(2,4)$.

22 Due March 14

1. Sketch the graph of the function $f(x)=x^{3}-3 x$.
$f(x)=x\left(x^{2}-3\right)$ so we have zeroes at $x=0, \pm \sqrt{3}$.
$f^{\prime}(x)=3 x^{2}-3$ which has zeroes at $x=-1,1$. From homework 20 we have f increasing on $(-\infty,-1) \cup(1, \infty)$ and decreasing on $(-1,1)$.
$f^{\prime \prime}(x)=6 x$. From homework 21 we have concave down on $(-\infty, 0)$, concave up on $(0, \infty)$ and an inflection point at 0 .
There are no vertical asymptotes, and $\lim _{x \rightarrow-\infty} f(x)=-\infty, \lim _{x \rightarrow+\infty} f(x)=+\infty$.
The sketch looks like this:

2. Sketch the graph of the function $f(x)=\frac{x}{x^{2}+1}$.
f has a zero only at $x=0$.
From homework 20 we have f increasing on $(-1,-1)$ and decreasing on $(-\infty,-1) \cup$ $(1, \infty)$.
From homework 21 we have $f^{\prime \prime}(x)=\frac{-2 x\left(-x^{2}+3\right)}{\left(x^{2}+1\right)^{3}}$. This has zeroes at $x=$ $0, \pm \sqrt{3}$, and we can show that it is concave down on $(-\infty,-\sqrt{3}) \cup(0, \sqrt{3})$, concave up on $(-\sqrt{3}, 0) \cup(\sqrt{3}, \infty)$.
There are no vertical asymptotes, and $\lim _{x \rightarrow-\infty} f(x)=0, \lim _{x \rightarrow+\infty} f(x)=0$.
The sketch looks like this:

3. Sketch the graph of the function $f(x)=e^{-x^{2}}$.
$f(x)>0$ always, so there are no zeroes.

From homework 20 we have f increasing on $(-\infty, 0)$ and decreasing on $(0, \infty)$.
From homework 21 we have concave down on $\left(-\sqrt{\frac{1}{2}}, \sqrt{\frac{1}{2}}\right)$, concave up on $\left(-\infty,-\sqrt{\frac{1}{2}}\right) \cup$ $\left(\sqrt{\frac{1}{2}}, \infty\right)$ and inflection points at $-\sqrt{\frac{1}{2}}, \sqrt{\frac{1}{2}}$.
There are no vertical asymptotes, and $\lim _{x \rightarrow-\infty} f(x)=0, \lim _{x \rightarrow+\infty} f(x)=0$.
The sketch looks like this:

4. Sketch the graph of the function $f(x)=\frac{x}{x^{2}+4}$.
f has a zero only at $x=0$.
From homework 20 we have f increasing on $(-2,-2)$ and decreasing on $(-\infty,-2) \cup$ $(2, \infty)$.
From homework 21 we have concave down on $(-\infty,-\sqrt{12}) \cup(0, \sqrt{12})$, concave up on $(-\sqrt{3}, 0) \cup(\sqrt{3}, \infty)$.
There are no vertical asymptotes, and $\lim _{x \rightarrow-\infty} f(x)=0, \lim _{x \rightarrow+\infty} f(x)=0$.
The sketch looks like this:

5. Sketch the graph of the function $f(x)=2 x^{5}-5 x^{2}$.
$f(x)=x^{2}\left(2 x^{3}-5\right)$ so we have zeroes at $x=0, \pm \sqrt[3]{\frac{5}{2}}$.
From homework 20 we have f increasing on $(-\infty, 0) \cup(1, \infty)$ and decreasing on $(0,1)$.
From homework 21 we have concave down on $\left(-\infty, \sqrt[3]{\frac{1}{4}}\right)$, concave up on $\left(\sqrt[3]{\frac{1}{4}}, \infty\right)$ and an inflection point at 0 .
There are no vertical asymptotes, and $\lim _{x \rightarrow-\infty} f(x)=-\infty, \lim _{x \rightarrow+\infty} f(x)=+\infty$.
The sketch looks like this:

6. The graph of the derivative of a function is given by:

Try to sketch the graph of f.
We have f increasing on $(1,3)$ only and decreasing on $(0,1) \cup(3,5)$.
From homework 21 we have concave up on $(0,2) \cup(4,5)$ and concave down on $(2,4)$. Furthermore, we know that the curve has a derivative of $-1,0,1,0,-1,0$ at $x=0,1,2,3,4,5$ respectively. With this in mind, we can attempt a sketch of
the curve:

Note, however, that the starting point of the curve is arbitrary. I started it at $(0,0)$ but it could have started at any y-coordinate.

23 Due March 30

1. Use L'Hôpital's rule to compute the limit $\lim _{x \rightarrow 0} \frac{\sqrt{x+4}-2}{\sqrt{x+9}-3}$.

We can see that both the numerator and denominator approach 0 as $x \rightarrow 0$, so we may use L'Hôpital's rule.

$$
\lim _{x \rightarrow 0} \frac{\sqrt{x+4}-2}{\sqrt{x+9}-3}=\lim _{x \rightarrow 0} \frac{\frac{1}{2 \sqrt{x+4}}}{\frac{1}{2 \sqrt{x+9}}}=\lim _{x \rightarrow 0} \frac{1}{2 \sqrt{x+4}} \frac{2 \sqrt{x+9}}{1}=\frac{\sqrt{9}}{\sqrt{4}}=\frac{3}{2}
$$

2. Use L'Hôpital's rule to compute the limit $\lim _{x \rightarrow 0} \frac{\sin (3 x)}{\sin (5 x)}$. As $x \rightarrow 0$, both numerator and denominator approach 0 , so we may use L'Hôpital's rule.

$$
\lim _{x \rightarrow 0} \frac{\sin (3 x)}{\sin (5 x)}=\lim _{x \rightarrow 0} \frac{\cos (3 x) 3}{\cos (5 x) 5}=\frac{3}{5}
$$

3. Use L'Hôpital's rule to compute the limit $\lim _{x \rightarrow 0} \frac{\cos (2 x)-1}{\cos (7 x)-1}$.

As $x \rightarrow 0$, both numerator and denominator approach 0 , so we may use L'Hôpital's rule.

$$
\lim _{x \rightarrow 0} \frac{\cos (2 x)-1}{\cos (7 x)-1}=\lim _{x \rightarrow 0} \frac{-\sin (2 x) 2}{-\sin (7 x) 7}
$$

But still both numerator and denominator approach 0, so we can use L'Hôpital's ruleagain:

$$
=\lim _{x \rightarrow 0} \frac{\cos (2 x) 4}{\cos (7 x) 49}=\frac{4}{49}
$$

4. Use L'Hôpital's rule to compute the limit $\lim _{x \rightarrow 0} \frac{e^{3 x}-1}{e^{8 x}-1}$.

Both numerator and denominator approach 0 as $x \rightarrow 0$, so we may use L'Hôpital's rule.

$$
\lim _{x \rightarrow 0} \frac{e^{3 x}-1}{e^{8 x}-1}=\lim _{x \rightarrow 0} \frac{3 e^{3 x}}{8 e^{8 x}}=\frac{3}{8}
$$

5. Use L'Hôpital's rule to compute the limit
(a) $\lim _{x \rightarrow 0} \frac{e^{7 x}-1}{e^{6 x}-1+x}$.
both numerator and denominaot approach 0 as $x \rightarrow 0$ so we may use L'Hôpital's rule.

$$
\lim _{x \rightarrow 0} \frac{e^{7 x}-1}{e^{6 x}-1+x}=\lim _{x \rightarrow 0} \frac{7 e^{7 x}}{6 e^{6 x}+1}=\frac{7}{6+1}=1
$$

(b) $\lim _{x \rightarrow+\infty} \frac{\ln x}{\sqrt{x}}$.

Both numerator and denominator approach $+\infty$ as $x \rightarrow+\infty$, so we may use L'Hôpital's rule.

$$
\lim _{x \rightarrow+\infty} \frac{\ln x}{\sqrt{x}}=\lim _{x \rightarrow+\infty} \frac{\frac{1}{x}}{\frac{1}{2 \sqrt{x}}}=\lim _{x \rightarrow+\infty} \frac{2 \sqrt{x}}{x}=\lim _{x \rightarrow+\infty} \frac{2}{\sqrt{x}}=0
$$

6. Use L'Hôpital's rule to compute the limit $\lim _{x \rightarrow 0^{+}} x^{x}$.

To handle a limit like this, we have to use a few tricks before employing L'Hôpital's rule. Let us call this limit L. The limit of $\ln \left(x^{x}\right)$ will be $\ln (L)$. It will be easier to find this limit, then to get L, we use the fact that $L=e^{\ln (L)}$.

$$
\ln (L)=\lim _{x \rightarrow 0^{+}} \ln \left(x^{x}\right)=\lim _{x \rightarrow 0^{+}} x \ln (x)
$$

Now we can use a trick, we can move x to the denominator as $1 / x$, since $x=\frac{1}{\frac{1}{x}}$.

$$
\lim _{x \rightarrow 0^{+}} x \ln (x)=\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{\frac{1}{x}}
$$

Now notice that the numerator approaches $-\infty$ and the denominator approaches $+\infty$, so we may use L'Hôpital's rule.

$$
\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{\frac{1}{x}}=\lim _{x \rightarrow 0^{+}} \frac{\frac{1}{x}}{-\frac{1}{x^{2}}}=\lim _{x \rightarrow 0^{+}} \frac{-x^{2}}{x}=\lim _{x \rightarrow 0^{+}}-x=0
$$

So the answer to the original limit is $e^{0}=1$.
7. Use L'Hôpital's ruleto compute the limit $\lim _{x \rightarrow+\infty}\left(1+\frac{1}{x}\right)^{x}$.

To handle a limit like this, we have to use a few tricks before employing L'Hôpital's rule. Let us call this limit L. The limit of $\ln \left(\left(1+\frac{1}{x}\right)^{x}\right)$ is $\ln (L)$. It will be easier to find this limit, then to get L we use the fact that $L=e^{\ln (L)}$.

$$
\ln (L)=\lim _{x \rightarrow+\infty} \ln \left(\left(1+\frac{1}{x}\right)^{x}\right)=\lim _{x \rightarrow+\infty} x \ln \left(1+\frac{1}{x}\right)=\lim _{x \rightarrow+\infty} \frac{\ln \left(1+\frac{1}{x}\right)}{\frac{1}{x}}
$$

Using the same trick as in 6 . Now we can see that both numerator and denominator approach 0 , so we can use L'Hôpital's rule.

$$
\lim _{x \rightarrow+\infty} \frac{\ln \left(1+\frac{1}{x}\right)}{\frac{1}{x}}=\lim _{x \rightarrow+\infty} \frac{\frac{1}{1+\frac{1}{x}}\left(-\frac{1}{x^{2}}\right)}{-\frac{1}{x^{2}}}=\lim _{x \rightarrow+\infty} \frac{1}{1+\frac{1}{x}}=1
$$

So the answer to the original limit is $L=e^{1}=e$. This is a famous limit, it is the definition of the special constant e.
8. Use L'Hôpital's ruleto compute the limit $\lim _{x \rightarrow 0} \frac{1}{x}-\frac{1}{\sin x}$.

We can't use L'Hôpital's rule immediately, we have to fanagle this limit so that it is a fraction. One way to do that is to multiply by $\frac{x}{x}$, where we distribute the numerator x and keep teh other one in the denominator:

$$
\lim _{x \rightarrow 0}\left(\frac{1}{x}-\frac{1}{\sin x}\right) \frac{x}{x}=\lim _{x \rightarrow 0} \frac{\frac{x}{x}-\frac{x}{\sin x}}{x}=\lim _{x \rightarrow 0} \frac{1-\frac{x}{\sin x}}{x}
$$

Now observe that the numerator and denominator both approach 0 , so we may use L'Hôpital's rule.

$$
\lim _{x \rightarrow 0} \frac{1-\frac{x}{\sin x}}{x}=\lim _{x \rightarrow 0} \frac{\frac{\sin x+x \cos x}{\sin ^{2} x}}{1}=\lim _{x \rightarrow 0} \frac{\sin x+x \cos x}{\sin ^{2} x}
$$

Once again, both numerator and denominator approach 0 , so we use L'Hôpital's rule again.
$\lim _{x \rightarrow 0} \frac{\sin x+x \cos x}{\sin ^{2} x}=\lim _{x \rightarrow 0} \frac{\cos x+\cos x-x \sin x}{2 \sin x \cos x}=\lim _{x \rightarrow 0} \frac{-x \sin x}{2 \sin x \cos x}=\lim _{x \rightarrow 0} \frac{-x}{2 \cos x}=0$

24 Due April 1

1. Write the sum $3^{3}+5^{3}+7^{3}+\cdots+101^{3}$ in summation notation.

We want to sum up the odd numbers cubed from 3 to 101 . The best way to index the odd numbers is $2 n+1$. If we start $n=1$ the last value of n should be 50 . So this sum will be denoted

$$
\sum_{n=1}^{50}(2 n+1)^{3}
$$

2. Evaluate the sum $\sum_{n=10}^{40}(2 n+1)$

The first trick is to write this as a difference of sums starting at $n=1$.

$$
\sum_{n=10}^{40}(2 n+1)=\sum_{n=1}^{40}(2 n+1)-\sum_{n=1}^{9}(2 n+1)
$$

Next we want to split the constant part of each sum from the indexed part:

$$
=\sum_{n=1}^{40}(2 n)+40-\sum_{n=1}^{9}(2 n)-9=31+\sum_{n=1}^{40}(2 n)-\sum_{n=1}^{9}(2 n)
$$

Next we can factor out the 2:

$$
=31+2 \sum_{n=1}^{40} n-2 \sum_{n=1}^{9} n
$$

Finally we can use the summation formula

$$
\sum_{n=1}^{k} n=\frac{(k)(k+1)}{2}
$$

which will give us:

$$
31+2 \frac{(40)(41)}{2}-\frac{(9)(10)}{2}=31+2(820)-2(45)=1581
$$

3. Compute R_{4} and L_{4} for the function $f(x)=x^{2}-x$ on the interval $[0,4]$. R_{4} is the right-Riemann sum, splitting [0,4] into 4 sub-intervals, whereas L_{4} is the left Riemann sum using the same 4 sub-intervals. The sub intervals are of course $[0,1],[1,2],[2,3],[3,4]$. Let's organize the info in a table:

$$
\begin{array}{c|ccccc}
x & 0 & 1 & 2 & 3 & 4 \\
\hline f(x) & 0 & 0 & 2 & 6 & 12
\end{array}
$$

Since the width of each sub-interval is 1 , we simply have $R_{4}=0+2+6+12=20$, while $L_{4}=0+0+2+6=8$.
4. Compute M_{4} for the function $f(x)=x^{2}+x+1$ on the interval $[0,8]$.
M_{4} is the midpoint Riemann sum. We are splitting $[0,8]$ into 4 sub-intervals $[0,2],[2,4],[4,6],[6,8]$, and we evaluate the function at the midpoint of each interval:

$$
\begin{array}{c|cccc}
x & 1 & 3 & 5 & 7 \\
\hline f(x) & 3 & 13 & 31 & 57
\end{array}
$$

Since the width of each sub-interval is $2, M_{4}=2(3+13+31+57)=208$

25 Due April 6

1. Use L_{3} in order to estimate the integral $\int_{0}^{3} x^{3}-x+1 d x$.
L_{3} is the left-Riemann sum, splitting [0, 3] into 3 sub-intervals: $[0,1],[1,2],[2,3]$. Let's organize the info in a table:

$$
\begin{array}{c|ccc}
x & 0 & 1 & 2 \\
\hline f(x) & 1 & 1 & 7
\end{array}
$$

Since the width of each sub-interval is 1 , we simply have $L_{3}=1+1+7=9$.
2. Use M_{4} in order to estimate the integral $\int_{0}^{\pi} \sin x d x$.
M_{4} is the midpoint-Riemann sum, splitting $[0, \pi]$ into 4 sub-intervals: $\left[0, \frac{\pi}{4}\right],\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$, $\left[\frac{\pi}{2}, \frac{3 \pi}{4}\right],\left[\frac{3 \pi}{4}, \pi\right]$. We must evaluate $\sin x$ at the midpoint of each interval. Let's organize the info in a table:

x	$\frac{\pi}{8}$	$\frac{3 \pi}{8}$	$\frac{5 \pi}{8}$	$\frac{7 \pi}{8}$
$f(x)$.3827	.9239	.9239	.3827

Since the width of each sub-interval is $\frac{\pi}{4}$, we simply have $M_{4}=\frac{\pi}{4}(.3827+.9239+$ $.9239+.3827)=2.0524$.
3. Compute the integral $\int_{-1}^{1} \sin ^{5} x+3 d x$.

We can first split the integral into two parts:

$$
\int_{-1}^{1} \sin ^{5} x d x+\int_{-1}^{1} 3 d x
$$

The first integral is of an odd function from $-a$ to a so it is equal to zero. The second integral is of a constant function, so we measure the area of the rectangle with a height of 3 and a base length of $1-(-1)=2$, so we have $3 \cdot 2=6$.
4. Compute the integral $\int_{-3}^{3} x^{7} e^{x^{2}} d x$.

We can check to see if this is an odd function or not by plugging in $-x$ in.

$$
(-x)^{7} e^{(-x)^{2}}=-x^{7} e^{x^{2}}
$$

So yes, this is an odd function, and since it is integrated over the interval $[-1,1]$, the integral is zero.
5. The function f defined on $[0,6]$ has a graph which is a broken line with vertices $(0,0),(2,2),(4,2)$ and $(6,0)$. Compute the integral $\int_{0}^{6} f(x) d x$. The function looks like this:

The integral can be calculated geometrically. This is a trapezoid with bases $b_{1}=6, b_{2}=2$ and height $h=2$. The area of a trapezoid is

$$
A=\frac{b_{1}+b_{2}}{2} \cdot h=\frac{6+2}{2} \cdot 2=8
$$

6. Show the integral $\int_{0}^{2} x^{3} d x$ cannot exceed 16.

Since x^{3} is increasing on the interval [0, 2], a right Riemann sum would OVERestimate. Let's calculate R_{1}, which is simply $2 \cdot f(2)=2 \cdot 8=16$. This is an over-estimate, so the integral cannot exceed 16 .

26 Due April 8

1. Use R_{4} in order to estimate $\int_{0}^{2} x^{2}-x+1 d x$
R_{4} is the right-Riemann sum, splitting [0, 2] into 4 sub-intervals: $[0, .5],[.5,1],[1,1.5],[1.5,2$. Let's organize the info in a table:

$$
\begin{array}{c|cccc}
x & .5 & 1 & 1.5 & 2 \\
\hline f(x) & .25-.5+1=.75 & 1 & 2.25-1.5+1=1.75 & 3
\end{array}
$$

Since the width of each sub-interval is .5 , we simply have

$$
R_{4}=.5(.75+1+1.75+3)=.5(6.5)=3.25
$$

2. Compute the integral $\int_{-2}^{2} \sin ^{3} x+1 d x$.

We can first split the integral into two parts:

$$
\int_{-2}^{2} \sin ^{3} x d x+\int_{-2}^{2} 1 d x
$$

The first integral is of an odd function from $-a$ to a so it is equal to zero. The second integral is of a constant function, so we measure the area of the rectangle with a height of 1 and a base length of $2-(-2)=4$, so we have $1 \cdot 4=4$.
3. Compute the integral $\int_{-1}^{1} x^{5} e^{x^{4}} d x$.

We can check to see if this is an odd function or not by plugging in $-x$ in.

$$
(-x)^{5} e^{(-x)^{4}}=-x^{5} e^{x^{4}}
$$

So yes, this is an odd function, and since it is integrated over the interval $[-1,1]$, the integral is zero.
4. The function f defined on $[0,5]$ has a graph which is a broken line with vertices $(0,1),(1,1),(3,-1)$ and $(5,-1)$. Compute the following integrals

$$
\int_{0}^{1} f(x) d x \quad \int_{1}^{3} f(x) d x \quad \int_{2}^{4} f(x) d x \quad \int_{3}^{5} f(x) d x \quad \int_{0}^{5} f(x) d x
$$

The function looks like this:

The integral over any interval is the net area, so we can calculate them by adding up the positive or negative triangular or square areas.

$$
\begin{gathered}
\int_{0}^{1} f(x) d x=1 \\
\int_{1}^{3} f(x) d x=.5+-.5=0 \\
\int_{2}^{4} f(x) d x=-.5+-1=-1.5 \\
\int_{3}^{5} f(x) d x=-1+-1=-2 \\
\int_{0}^{5} f(x) d x=1+.5+-.5+-1+-1=-1
\end{gathered}
$$

5. Show the integral $\int_{0}^{\pi} \sin x d x$ cannot exceed 4.

The maximum and minimum values of $\sin x$ on the interval $[0, \pi]$ occurs at a critical point or at one of the endpoints. $(\sin x)^{\prime}=\cos x=0$ has only one solution on this interval, $x=\pi / 2$. Since $\sin (\pi / 2)=1$ and $\sin (0)=\sin (\pi)=0$, we can say for sure that $0 \leq \sin x \leq 1$ on this interval. So

$$
\int_{0}^{\pi} \sin x d x \leq \pi \cdot 1=\pi \leq 4
$$

This is why the integral cannot exceed 4.

27 Due April 11

1. Use the Newton-Leibniz formula to compute $\int_{0}^{\pi} \sin x d x$.

Since $(-\cos x)^{\prime}=\sin x$, by the FTC,

$$
\int_{0}^{\pi} \sin x d x=(-\cos (\pi))-(-\cos 0)=(--1)-(-1)=2
$$

2. Use the Newton-Leibniz formula to compute $\int_{0}^{\ln 2} e^{x} d x$.

Since $\left(e^{x}\right)^{\prime}=e^{x}$, by the FTC,

$$
\int_{0}^{\ln 2} e^{x} d x=e^{(\ln 2)}-e^{0}=2-1=1
$$

3. Use the Newton-Leibniz formula to compute $\int_{0}^{1} 3 x^{2} d x$.

Since $\left(x^{3}\right)^{\prime}=3 x^{2}$, by the FTC,

$$
\int_{0}^{1} 3 x^{2} d x=(1)^{3}-(0)^{3}=1
$$

4. Compute the indefinite integral $\int 3 x d x$.

Since $\left(x^{2}\right)^{\prime}=2 x$, that means $\left(\frac{3}{2} x^{2}\right)^{\prime}=3 x$, so

$$
\int 3 x d x=\frac{3}{2} x^{2}+C
$$

5. Compute the indefinite integral $\int e^{2 x} d x$.

Since $\left(e^{2 x}\right)^{\prime}=2 e^{2 x}$, that means $\left(\frac{1}{2} e^{2 x}\right)^{\prime}=e^{2 x}$. Therefore,

$$
\int e^{2 x} d x=\frac{1}{2} e^{2 x}+C
$$

6. Compute the indefinite integral $\int \sqrt{x} d x$.

Since $\sqrt{x}=x^{1 / 2}$, and $\left(x^{3 / 2}\right)^{\prime}=\frac{3}{2} x^{1 / 2},\left(\frac{2}{3} x^{3 / 2}=x^{1 / 2}\right.$. Therefore,

$$
\int \sqrt{x} d x=\frac{2}{3} x^{3 / 2}+C
$$

28 Due April 13

1. Use the Newton-Leibniz formula to compute $\int_{\pi / 2}^{\pi} \cos x d x$.

Since $(\sin x)^{\prime}=\cos x$,

$$
\int_{\pi / 2}^{\pi} \cos x d x=\sin (\pi)-\sin (\pi / 2)=0-1=-1
$$

2. Use the Newton-Leibniz formula to compute $\int_{0}^{\ln 3} e^{2 x} d x$ and express your answer in the form $\frac{a}{b}$ where a and b are integer numbers.
since $\left(e^{2 x}\right)^{\prime}=2 e^{2 x},\left(\frac{1}{2} e^{2 x}=e^{2 x}\right.$, so

$$
\int_{0}^{\ln 3} e^{2 x} d x=\frac{1}{2} e^{2(\ln 3)}-\frac{1}{2} e^{2(0)}=\frac{e^{\ln 9}}{2}-\frac{1}{2}=\frac{9}{2}-\frac{1}{2}=\frac{8}{2}=4
$$

3. Use the Newton-Leibniz formula to compute $\int_{0}^{1} 4 x^{3}-x d x$.

Since $\left(x^{4}\right)^{\prime}=4 x^{3}$ and $\left(x^{2}\right)^{\prime}=2 x$, therefore $\left(x^{4}-\frac{1}{2} x^{2}\right)^{\prime}=4 x^{3}-x$. Thus

$$
\int_{0}^{1} 4 x^{3}-x d x=\left((1)^{4}-\frac{1}{2}(1)^{2}\right)-\left((0)^{4}-\frac{1}{2}(0)^{2}\right)=1-\frac{1}{2}=\frac{1}{2}
$$

4. Compute the indefinite integral $\int \sin (3 x) d x$.

Since $(\cos (3 x))^{\prime}=-3 \sin (3 x),\left(-\frac{1}{3} \cos (3 x)\right)^{\prime}=\sin (3 x)$. Therefore,

$$
\int \sin (3 x) d x=-\frac{1}{3} \cos (3 x)+C
$$

5. Compute the indefinite integral $\int x e^{5 x^{2}} d x$.

Since $\left(e^{5 x^{2}}\right)^{\prime}=e^{5 x^{2}}(10 x)=10 x e^{5 x^{2}},\left(\frac{1}{10} e^{5 x^{2}}\right)^{\prime}=x e^{5 x^{2}}$. Therefore,

$$
\int x e^{5 x^{2}} d x=\frac{1}{10} e^{5 x^{2}}+C
$$

6. Compute the indefinite integral $\int \sqrt[3]{x} d x$.

First write $\sqrt[3]{x}=x^{1 / 3}$. Since $\left(x^{4 / 3}\right)^{\prime}=\frac{3}{4} x^{1 / 3},\left(\frac{3}{4} x^{4 / 3}\right)^{\prime}=x^{1 / 3}$. Therefore,

$$
\int \sqrt[3]{x} d x=\frac{3}{4} x^{4 / 3}+C
$$

29 Due April 15

1. Find $\frac{d}{d x} \int_{1}^{x} \ln \left(t^{2}+1\right) d t$

Let $f(t)=\ln \left(t^{2}+1\right)$. If $F(t)=\int f(t) d t$, then

$$
\int_{1}^{x} \ln \left(t^{2}+1\right) d t=F(x)-F(1)
$$

The derivative, with respect to x is simply $f(x)$, or $\ln \left(x^{2}+1\right)$.
2. Find $\frac{d}{d x} \int_{0}^{x} e^{t^{3}} d t$

Let $f(t)=e^{t^{3}}$. If $F(t)=\int f(t) d t$, then

$$
\frac{d}{d x} \int_{0}^{x} e^{t^{3}} d t=F(x)=F(0)
$$

So the derivative with respect to x is simply $f(x)$, or $e^{x^{3}}$.
3. Find the integral $\int(5 x-1)^{6} d x$

Let $u=5 x-1$. Then $d u=5 d x$, or $d x=\frac{1}{5} d u$. The integral becomes

$$
\int \frac{1}{5} u^{6} d u=\frac{1}{5} \frac{1}{7} u^{7}+C=\frac{1}{35} u^{7}+C
$$

Substituting the x expression back in, we get

$$
\frac{1}{25}(5 x-1)^{7}+C
$$

4. Find the integral $\int \cos ^{3} x d x$

Taking the integral of cosine or sine to an odd power uses a clever trick. We use the trig identity that $\cos ^{2} x=1-\sin ^{2} x$ first. The integral becomes

$$
\int \cos x\left(1-\sin ^{2} x\right) d x
$$

We now use the substitution that $u=\sin x$ and $d u=\cos x d x$. The substituted integral is

$$
\int 1-u^{2} d u=u-\frac{1}{3} u^{3}+C
$$

Substituting the x expression back in we get $\sin x-\frac{1}{3} \sin ^{3} x+C$.
5. Find the integral $\int \frac{d x}{1+e^{-x}}$

If we first multiply the numerator and denominator by e^{x}, we get

$$
\int \frac{e^{x}}{e^{x}+1} d x
$$

We now let $u=e^{x}+1$, and then $d u=e^{x} d x$. The integral is now

$$
\int \frac{1}{u} d u=\ln |u|+C
$$

If we substitute the expression in x (which is always positive) our integral is

$$
\ln \left(e^{x}+1\right)+C
$$

6. Find the integral $\int x \sqrt[3]{3 x+5} d x$

We make the substitution $u=3 x+5$, which means $x=\frac{u-5}{3}$ and $d x=\frac{1}{3} d u$. The substituted integral is

$$
\int \frac{u-5}{3} u^{1 / 3} \frac{1}{3} d u=\frac{1}{9} \int u^{4 / 3}-5 u^{1 / 3} d u
$$

We can integrate this using the power rule. It is

$$
\frac{1}{9}\left[\frac{3}{7} u^{7 / 3}-5 \frac{3}{4} u^{4 / 3}\right]+C=\frac{1}{21} u^{7 / 3}-\frac{5}{12} u^{4 / 3}+C
$$

Substituting the x expression in, we get

$$
\frac{1}{21}(3 x+5)^{7 / 3}-\frac{5}{12}(3 x+5)^{4 / 3}+C
$$

7. Find the integral $\int x^{3} e^{-x^{4}} d x$

Letting $u=-x^{4}$, and $d u=-4 x^{3} d x$, we get $x^{3} d x=-\frac{1}{4} d u$, so the integral becomes

$$
\int-\frac{1}{4} e^{u} d u=-\frac{1}{4} e^{u}+C
$$

Substituting x back in we get

$$
-\frac{1}{4} e^{-x^{4}}+C
$$

30 Due April 18

1. Compute $\int \tan (3 x) d x$

First write tan as $\frac{\text { sin }}{\text { cos }}$:

$$
\int \frac{\sin (3 x)}{\cos (3 x)} d x
$$

Now we can use a substitution. Let $u=\cos (3 x), d u=-3 \sin (3 x) d x$, so $\sin (3 x) d x=$ $-\frac{1}{3} d u$. The integral becomes

$$
\int-\frac{1}{3} \frac{1}{u} d u=-\frac{1}{3} \ln |u|+C=-\frac{1}{3} \ln |3 x|+C
$$

2. Compute $\int \sin ^{5} x d x$

Taking the integral of cosine or sine to an odd power uses a clever trick. First let's write the factor of $\left(\sin ^{2} x\right)$ explicitly:

$$
\int\left(\sin ^{2} x\right)^{2} \sin x d x
$$

We next use the trig identity that $\sin ^{2} x=1-\cos ^{2} x$ first. The integral becomes

$$
\int\left(1-\cos ^{2} x\right)^{2} \sin x d x
$$

We now use the substitution that $u=\cos x$ and $d u=-\sin x d x$. The substituted integral is

$$
-\int\left(1-u^{2}\right)^{2} d u=-\int 1-2 u^{2}+u^{4} d u=-\left(u-\frac{2}{3} u^{3}+\frac{1}{5} u^{5}\right)+C
$$

Substituting the x expression back in we get $-\cos x+\frac{2}{3} \cos ^{3} x-\frac{1}{5} \cos ^{5} x+C$.
3. Compute $\int_{1}^{2} \frac{\ln x}{x} d x$

Letting $u=\ln x, d u=\frac{1}{x} d x$, and converting the bounds of integration, we get

$$
\int_{\ln 1}^{\ln 2} u d u=\left.\frac{1}{2} u^{2}\right|_{0} ^{\ln 2}=\frac{1}{2}\left((\ln 2)^{2}\right)
$$

4. Compute $\int \frac{x}{\sqrt[5]{3 x-1}} d x$

Letting $u=3 x-1, d u=3 d x$ and solving for x we get $x=\frac{u+1}{3}$, we make the substitution and get

$$
\int \frac{u+1}{3 u^{1 / 5}} \frac{1}{3} d u=\frac{1}{9} \int \frac{u}{u^{1 / 5}}+\frac{1}{u^{1 / 5}} d u=\frac{1}{9} \int u^{4 / 5}+u^{-1 / 5} d u
$$

Integrating using the power rule we get

$$
\frac{1}{9}\left(\frac{5}{9} u^{9 / 5}+\frac{5}{4} u^{4 / 5}\right)+C
$$

5. Compute $\int_{0}^{1} x^{2} \sqrt[4]{x^{3}+2} d x$

For this integral, we can use a substitution $u=x^{3}+2$, so $d u=3 x^{2} d x$. Thus $x^{2} d x=\frac{1}{3} d u$. The bounds of integration become $u(1)=1^{3}+2=3, u(0)=$ $0^{3}+2=2$. The integral is now

$$
\int_{2}^{3} \frac{1}{3} u^{1 / 4} d u=\left.\frac{1}{3} \frac{4}{5} u^{5 / 4}\right|_{2} ^{3}=\frac{4}{15}(3 \sqrt[4]{3}-2 \sqrt[4]{2})
$$

6. Compute $\int \frac{1}{1+e^{-2 x}} d x$

For this integral it will be useful to multiply the numerator and denominator by $e^{2 x}$. This gives us

$$
\int \frac{e^{2 x}}{e^{2 x}+1} d x
$$

Now if we use a substitution $u=e^{2 x}+1$, this gives us $d u=2 e^{2 x} d x$, so $e^{2 x} d x=\frac{1}{2} d u$. The integral after substitution is

$$
\int \frac{1}{2} \frac{1}{u} d u=\frac{1}{2} \ln |u|+C=\frac{1}{2} \ln \left(e^{2 x}+1\right)
$$

31 Due April 20

1. Compute $\int x \sin x d x$

For this integral we use integration by parts. We choose u such that its derivative is simpler and $d v$ such that its anti-derivative is no worse; in other words, $u=x$ with $d u=d x$ and $d v=\sin x d x$ with $v=-\cos x$. The integral after integration by parts is

$$
x(-\cos x)-\int(-\cos x) d x=-x \cos x+\int \cos x d x=-x \cos x+\sin x+C
$$

2. Compute $\int x \ln ^{2} x d x$

If we were to choose $u=x$ then $d v=\ln ^{2} x d x$, and its anti-derivative is very ugly. Let's instead choose $u=\ln ^{2} x$ (with $d u=2 \ln x \frac{1}{x} d x$) and $d v=x d x$ which gives $v=\frac{1}{2} x^{2}$. Integration by parts gives us

$$
\left(\ln ^{2} x\right)\left(\frac{1}{2} x^{2}\right)-\int \frac{1}{2} x^{2} \cdot 2 \ln x \frac{1}{x} d x=\frac{1}{2} x^{2} \ln ^{2} x-\int x \ln x d x
$$

Now we once again do integration by parts, with $u=\ln x$ and $d v=x d x$. Thus $d u=\frac{1}{x} d x$ and $v=\frac{1}{2} x^{2}$. The integral becomes:

$$
\begin{gathered}
\frac{1}{2} x^{2} \ln ^{2} x-\left(\frac{1}{2} x^{2} \ln x-\int \frac{1}{2} x^{2} \frac{1}{x} d x\right) \\
\quad=\frac{1}{2} x^{2} \ln ^{2} x-\frac{1}{2} x^{2} \ln x+\frac{1}{2} \int x d x \\
=\frac{1}{2} x^{2} \ln ^{2} x-\frac{1}{2} x^{2} \ln x+\frac{1}{4} x^{2}+C
\end{gathered}
$$

3. Compute $\int x^{2} e^{x} d x$

We perform integration by parts with $u=x^{2}$ and $d v=e^{x} d x$; thus $d u=2 x d x$ and $v=e^{x}$. Integration by parts gives us

$$
x^{2} e^{x}-\int 2 x e^{x} d x
$$

We need to perform integration by parts one more time, this time with $u=$ $2 x, d u=2 d x$. The choice of $d v$ is the same. We get

$$
=x^{2} e^{x}-\left(2 x e^{x}-\int 2 e^{x} d x\right)
$$

which becomes

$$
=x^{2} e^{x}-2 x e^{x}+2 e^{x}+C=\left(x^{2}-2 x+2\right) e^{x}+C
$$

4. Compute $\int e^{2 x} \cos x d x$

Here we will use integration by parts twice to finally recover the original integral, then solve for the integral with algebra. Let $u=e^{2 x}$ and $d v=\cos x d x$ (so $\left.d u=2 e^{2 x} d x, v=\sin x\right)$. Integration by parts gives us

$$
=e^{2 x} \sin x-\int 2 e^{2 x} \sin x d x
$$

This time we choose $u=2 e^{2 x}\left(d u=4 w^{2 x}\right)$ and $d v=\sin x d x$ and $v=-\cos x$. Integration by parts gives

$$
=e^{2 x} \sin x-\left(-2 e^{2 x} \cos x-\int(-\cos x) 4 e^{2 x} d x\right)
$$

which simplifies to

$$
=e^{2 x} \sin x+2 e^{2 x} \cos x-\int 4 e^{2 x} \cos x d x
$$

We equate this with the original integral

$$
\int e^{2 x} \cos x d x=e^{2 x} \sin x+2 e^{2 x} \cos x-\int 4 e^{2 x} \cos x d x
$$

We collect the integral terms to one side

$$
5 \int e^{2 x} \cos x d x=e^{2 x} \sin x+2 e^{2 x} \cos x
$$

We divide by 5 and then add the arbitrary constant

$$
5 \int e^{2 x} \cos x d x=\frac{e^{2 x}}{5}(\sin x+\cos x)+C
$$

5. Compute $\int \sin \left(x^{1 / 3}\right) d x$

Before we jump into integration by parts, we need to first do a substitution. Let $t=x^{1 / 3}$. Thus $t^{3}=x$, so $d x=3 t^{2} d t$. The integral becomes

$$
\int 3 t^{2} \sin t d t
$$

We can now proceed with integration by parts. Let $u=3 t^{2}$ and $d v=\sin t d t$. Thus, $d u=6 t d t$ and $v=-\cos t$. Integration by parts gives us

$$
=\left(3 t^{2}\right)(-\cos t)-\int(-\cos t)(6 t d t)=-3 t^{2} \cos t+\int 6 t \cos t d t
$$

We perform integration by parts a second time, now $u=6 t$ and $d v=\cos t d t$. Thus $d u=6 d t$ and $v=\sin t$. We have

$$
\begin{gathered}
=-3 t^{2} \cos t+(6 t)(\sin t)-\int(\sin t)(6 d t) \\
=-3 t^{2} \cos t+6 t \sin t-\int 6 \sin t d t \\
=-3 t^{2} \cos t+6 t \sin t+6 \cos t+C \\
=\left(6-3 t^{2}\right) \cos t+6 t \sin t+C
\end{gathered}
$$

We substitute $t=x^{1 / 3}$ again to get

$$
=\left(6-3 x^{2 / 3}\right) \cos \left(x^{1 / 3}\right)+6 x^{1 / 3} \sin \left(x^{1 / 3}\right)+C
$$

