
HW Solutions Math 170, Calc. for Life Sciences, Spr 2016
Brian Powers, TA

1 Due Jan 20

1. Compute the following trigonometric numbers:

sin(5π/6) =
1

2

cos(2π/3) = −1

2
sin(3π/2) = −1

tan(7π/6) =

√
3

3
sec(5π/4) = −

√
2

2. Sketch the graph of f(x) = x3 and use it to sketch the graph of g(x) = f(x−3)+1.
Translating a function means shifting it left, right, up, down and scaling it. To
see the effect of the translation, we start with the x and work our way out. From
f(x) to f(x − 3) we shift RIGHT by 3 units. From f(x − 3) to f(x − 3) + 1 we
shift UP 1 unit. So g(x) = f(x − 3) + 1 = (x − 3)3 + 1 is the new graph, shown
below in red.

3. Sketch the graph of y = sinx and y = sin(x− π/4)
The translation from sin(x) to sin(x−π/4) shifts the graph RIGHT by π/4 units.
Then the change from sin(x− π/4) to 3 sin(x− π/4) scales vertically by a factor
of 3. sin(x) is in blue while 3 sin(x− π/4) is in red.



4. Find the inverse of the function f(x) =
3x+ 1

x− 3
. Also determine the domain of f

and that of f−1.
To find the inverse, we follow these steps:
1) Put y in place of the xs, and put x in place of f(x)
2) Using algebra solve for y (if possible)
3) What you have now is the inverse function.
So the steps are:

1) x =
3y + 1

y − 3
2) Using algebra:

x =
3y + 1

y − 3
⇒ (y − 3)x = 3y + 1⇒ xy − 3x = 3y + 1⇒ xy − 3y = 3x+ 1

⇒ y(x− 3) = 3x+ 1⇒ y =
3x+ 1

x− 3

So the inverse function is

f−1(x) =
3x+ 1

x− 3

All values of x are ok in f(x) except x = 3, which will cause division by zero.
So The domain of f can be written as “All real numbers except 3”, or using set
notation R\{3}, or using interval notation (−∞, 3) ∪ (3,∞). Since f(x) = f−1

(coincidentally), it of course has the same domain.

5. Sketch the graph of f(x) = ln(x− 4).
The graph of ln(x) passes through (1, 0) and has a vertical asymptote at x = 0.
ln(x − 4) is shifted 4 units to the RIGHT, so it passes through the point (5, 0)
and has the vertical asymptote at x = 4.
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1. A population triples every two days. Suppose that the initial count N0 is 5 and
that the unit of time is 4 days. Give the formula for the sequence Nt that gives
the population count at t units of time.
This is confusing because the unit of time is 4 days. So N1 is the population on
day 4. Since the population triples every 2 days, in 4 days it will have tripled
twice, so it will be 9 times as big. So

N1 = N0 · 9

When t = 2, that is after 8 days, so the population will be increased by another
factor of 9:

N2 = N1 · 9 = (N0 · 9) · 9 = N0 · 92

The pattern we see is
Nt = N0 · 9t

Since N0 = 5, this is
Nt = 5 · 9t

This can also be written
Nt = 5 · 32t

2. The Fibonacci sequence is given recursively by a1 = a2 = 1 and an+2 = an +an+1.
Give the first ten terms of the Fibonacci sequence.
a1 = 1
a2 = 1
a3 = a1 + a2 = 1 + 1 = 2
a4 = a2 + a3 = 1 + 2 = 3
a5 = a3 + a4 = 2 + 3 = 5
a6 = a4 + a5 = 3 + 5 = 8
a7 = a5 + a6 = 5 + 8 = 13
a8 = a6 + a7 = 8 + 13 = 21
a9 = a7 + a8 = 13 + 21 = 34



a10 = a8 + a9 = 21 + 34 = 55

3. Use the definition of the limit in order to justify that

lim
n→+∞

2n+ 3

3n+ 2
=

2

3

Let ε > 0. Suppose

∣∣∣∣2n+ 3

3n+ 2
− 2

3

∣∣∣∣ < ε. This is equivalent to∣∣∣∣3(2n+ 3)

3(3n+ 2)
− 2(3n+ 2)

3(3n+ 2)

∣∣∣∣ < ε

⇒
∣∣∣∣6n+ 9

9n+ 6
− 6n+ 4

9n+ 6

∣∣∣∣ < ε

⇒
∣∣∣∣6n+ 9− (6n+ 4)

9n+ 6

∣∣∣∣ < ε

⇒
∣∣∣∣6n+ 9− 6n− 4)

9n+ 6

∣∣∣∣ < ε

⇒
∣∣∣∣ 5

9n+ 6

∣∣∣∣ < ε

Since n > 0, the fraction is positive so we can remove the absolute value sign:

⇒ 5

9n+ 6
< ε

⇒ 5 < ε(9n+ 6)
⇒ 5 < 9εn+ 6ε
⇒ 5− 6ε < 9εn

⇒ 5− 6ε

9ε
< n

So as long as n > N =
5− 6ε

9ε
, it will be the case that

∣∣∣∣2n+ 3

3n+ 2
− 2

3

∣∣∣∣ < ε.
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1. Use the definition of the limit in order to justify that

lim
n→+∞

5n+ 1

2n+ 1
=

5

2

Let ε > 0. Suppose

∣∣∣∣5n+ 1

2n+ 1
− 5

2

∣∣∣∣ < ε. This is equivalent to∣∣∣∣2(5n+ 1)

2(2n+ 1)
− 5(2n+ 1)

2(2n+ 1)

∣∣∣∣ < ε

⇒
∣∣∣∣10n+ 2

4n+ 2
− 10n+ 5

4n+ 2

∣∣∣∣ < ε

⇒
∣∣∣∣10n+ 2− (10n+ 5)

4n+ 2

∣∣∣∣ < ε

⇒
∣∣∣∣10n+ 2− 10n− 5)

4n+ 2

∣∣∣∣ < ε

⇒
∣∣∣∣ −3

4n+ 2

∣∣∣∣ < ε



Since n > 0, the fraction is negative so we can remove the absolute value sign and
change the numerator to 3:

⇒ 3

4n+ 2
< ε

⇒ 3 < ε(4n+ 2)
⇒ 3 < 4εn+ 2ε
⇒ 3− 2ε < 4εn

⇒ 3− 2ε

4ε
< n

So as long as n > N =
3− 2ε

4ε
, it will be the case that

∣∣∣∣5n+ 1

2n+ 1
− 5

2

∣∣∣∣ < ε.

2. Use the definition of limit in order to justify that

lim
n→+∞

4n = +∞

Fix M > 0 large. We want to show that for for some large N , n > N implies
4n > M . Take a logarithm of each side.

⇒ ln(4n) > lnM

Solve for n:
⇒ n ln 4 > lnM

⇒ n >
lnM

ln 4

So provided n > N = lnM
ln 4

, it is true that 4n > M .

3. Find the limit of the sequence an =
23n

32n
.

This can be handled by using some properties of exponents. Recall the property
that abc = (ab)c. Thus the sequence can be written

an =
23n

32n
=

(23)n

(32)n
=

8n

9n

Furthermore, recall another property of exponents: ab

cb
=
(
a
c

)b
. So the sequence

can be written

an =

(
8

9

)n
because 0 < 8

9
< 1, as n gets bigger and bigger, an will get smaller and smaller,

getting closer to 0. Lets prove that the limit is 0. Let ε > 0. We want to show
that for some large enough n > N , that

(
8
9

)n
< ε. Take a log of both sides:

ln

((
8

9

)n)
< ln ε

⇒ n ln
8

9
< ln ε

before we divide both sides by ln 8
9

we have to take a moment and be careful.
Because 8

9
< 1, its logarithm is negative. In fact, ln 8

9
= ln 8− ln 9. Lets put this

into the inequality:
n(ln 8− ln 9) < ln ε



When we divide both sides by ln 8− ln 9 the direction of inequality will flip.

⇒ n >
ln ε

ln 8− ln 9

Since ε is small (close to zero), ln ε < 0, so the fraction is a negative divided by
another negative - it is a positive number N . Thus as long as n > N = ln ε

ln 8−ln 9
, it

will be the case that 0 < an < ε.

4. Find the limit of the sequence an =
3n2 + n+ 1

2n2 + 3
.

The way we handle these rational functions (polynomial divided by a polynomial)
is that we find the highest power of n (in this case n2) and multiply the fraction

by
1/n2

1/n2
. We get an equivalent expression for an but it will allow us to see the

limit of the numerator and denominator separately:

an =
3n2 + n+ 1

2n2 + 3

1
n2

1
n2

=
3 + 1

n
+ 1

n2

2 + 3
n2

Looking at the numerator, we can see that as n gets big the second and third
term go to zero. In the denominator, as n gets big the second term goes to zero.
Then the limit should be 3

2
.
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1. By using a table of values, try to guess the limit

lim
x→3

x2 − 9

x− 3

x
x2 − 9

x− 3
3.1 6.1
3.01 6.01
3.001 6.001
3.0001 6.0001
2.9999 5.9999
2.999 5.999
2.99 5.99
2.9 5.9

From the table it seems that the limit is 6.

2. By taking one-sided limits, show that the limit

lim
x→3

|x− 3|
x− 3

does not exist.
First the left side limit.

lim
x→3−

|x− 3|
x− 3



In this case, x < 3 so x− 3 < 0, thus |x− 3| = −(x− 3).

lim
x→3−

|x− 3|
x− 3

= lim
x→3−

−(x− 3)

x− 3
= lim

x→3−
−1 = −1

Now the right-side limit.

lim
x→3+

|x− 3|
x− 3

In this case, x > 3 so x− 3 > 0, thus |x− 3| = x− 3.

lim
x→3+

|x− 3|
x− 3

= lim
x→3+

x− 3

x− 3
= lim

x→3+
1 = 1

But the two one-sided limits do not agree, so the limit does not exist.

3. Use synthetic division to simplify
x4 − x3 − 2

x3 − 3x+ 2
by dividing both numerator and

denominator by x− 1.
From the numerator we get:

1 1 0 0 − 2

1 1 2 2 2

1 2 2 2 0

Thus x4 + x3 − 2 = (x− 1)(x3 + 2x2 + 2x+ 2). For the denominator we get:

1 0 − 3 2

1 1 1 − 2

1 1 − 2 0

Thus x3 − 3x + 2 = (x − 1)(x2 + x − 2). Then we can simplify the fraction to
x4 − x3 − 2

x3 − 3x+ 2
=
x3 + 2x2 + 2x+ 2

x2 + x− 2
.
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1. Compute the limit lim
x→3

x3 − 5x2 + 6x− 1.

First try plugging in 3: (3)3 − 5(3)3 + 6(3)− 1 = −1.

2. Compute the limit lim
x→−2

x3 − 7

x2 + x+ 5
.

First try plugging in −2:
(−2)3 − 7

(−2)2 + (−2) + 5
=
−8− 7

4− 2 + 5
=
−15

7
.

3. Compute the limit lim
x→1

√
x3 + 5x2 − 2x+ 3.

Try plugging in x = 1:
√

(1)3 + 5(1)2 − 2(1) + 3 =
√

1 + 5− 2 + 3 =
√

7

4. Compute the limit lim
x→1

x4 + 3x2 − 5x+ 1

x3 + 5x2 − 6
. If we plug in x = 1 we will find the

denominator is zero, so we cannot simply plug it in. For a rational, if the function
is undefined at x, then x is either a vertical asymptote or a removable discontinuity
(a hole). The limit won’t exist at an asymptote, but it will at a removable



discontinuity. We have a removable discontinuity if x is a zero of the numerator
and denominator. We can verify this: the numerator is indeed 0 when x = 1.
So we can use synthetic division to factor out (x − 1) from the numerator and
denominator. From the numerator we get:

1 0 3 − 5 1

1 1 1 4 − 1

1 1 4 − 1 0

Thus x4 + 3x2− 5x+ 1 = (x− 1)(x3 + x2 + 4x− 1). For the denominator we get:

1 5 0 − 6

1 1 6 6

1 6 6 0

Thus x3 + 5x2 − 6 = (x − 1)(x2 + 6x + 6). Then we can simplify the fraction to
x4 + 3x2 − 5x+ 1

x3 + 5x2 − 6
=
x3 + x2 + 4x− 1

x2 + 6x+ 6
. If we plug in x = 1 in this new fraction,

we get
5

13
, so this is our limit.

5. Compute the limit lim
x→−2

x3 − x+ 6

x2 − 6x− 16
.

If we plug in −2 we get
(−2)3 − (−2) + 6

(−2)2 − 6(−2)− 16
=
−8 + 2 + 6

4 + 12− 16
=

0

0
. So our function

has a removable discontinuity at x = −2. We can use synthetic division to factor
x+ 2 out from the numerator and denominator. From the numerator we get:

1 0 − 1 6

− 2 − 2 4 − 6

1 − 2 3 0

Thus x3 − x+ 6 = (x+ 2)(x2 − 2x+ 3). For the denominator we get:

1 − 6 − 16

− 2 − 2 16

1 − 8 0

Thus x2 − 6x − 16 = (x + 2)(x − 8). Then we can simplify the fraction to
x3 − x+ 6

x2 − 6x− 16
=
x2 − 2x+ 3

x− 8
. If we plug in x = −2 now, we get

(−2)2 − 2(−2) + 3

(−2)− 8
=

4 + 4 + 3

−2− 8
=

11

−10
= −11

10
.

6. Compute the limit lim
x→1

√
x+ 3− 2

x2 + x− 2
.

If we plug in x = 1, we get

√
(1) + 3− 2

(1)2 + (1)− 2
=

√
4− 2

1 + 1− 2
=

0

0
. We have to look

for some common factor of the numerator and denominator, but the square root
makes it tricky. Fist let’s look at the denominator and factor it into (x− 1)(x +
2). Next let’s multiply the numerator and denominator by the conjugate of the



numerator, namely
√
x+ 3 + 2.

√
x+ 3− 2

x2 + x− 2
=

√
x+ 3− 2

(x− 1)(x+ 2)

√
x+ 3 + 2√
x+ 3 + 2

=
(x+ 3)− 4

(x− 1)(x+ 2)(
√
x+ 3 + 2)

The numerator is now x − 1, and this is a factor of the denominator. So finally
the fraction can be written as:

1

(x+ 2)(
√
x+ 3 + 2)

Plugging in x = 1 now, we get

(1 + 2)(
√

1 + 3 + 2)
=

1

(3)(2 + 2)
=

1

12

7. Compute the limit lim
x→0

√
x+ 4− 2√
x+ 9− 3

.

If we plug in x = 0 we get
0

0
, so we have to re-write the fraction. Again we use the

trick of conjugates, but we have to multiply by both conjugates of the numerator
AND denominator.

√
x+ 4− 2√
x+ 9− 3

=

√
x+ 4− 2√
x+ 9− 3

(
√
x+ 4 + 2)(

√
x+ 9 + 3)

(
√
x+ 4 + 2)(

√
x+ 9 + 3)

Don’t bother multiplying it all out - just multiply the conjugate pairs.

=

(
(x+ 4)− 4

)
(
√
x+ 9 + 3)(

(x+ 9)− 9
)
(
√
x+ 4 + 2)

=
x(
√
x+ 9 + 3)

x(
√
x+ 4 + 2)

Now we have x as a common factor of the numerator and denominator - we can
cancel this and write our fraction as

√
x+ 9 + 3√
x+ 4 + 2

If we plug in x = 0 now we get

√
9 + 3√
4 + 2

=
3 + 3

2 + 2
=

3

2
.
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1. Determine the limit lim
x→3

x2 + 1

x2 − 3
.

If we plug in x = 3 we get
(3)2 + 1

(3)2 − 3
=

9 + 1

9− 3
=

10

6
=

5

3
.

2. Determine the limit lim
x→2

x+ 1

x2 − 4x+ 4
.

If we plug in x = 2 we get
2 + 1

(2)2 − 4(2) + 4
=

3

0
, which is undefined. Let us factor



the denominator into (x− 2)(x− 2) = (x− 2)2. Thus the denominator is NEVER
negative. Near x = 2, the numerator is positive and the denominator is also
positive, so both left-hand limit and right-hand limit is +∞. Thus

lim
x→2

x+ 1

x2 − 4x+ 4
= +∞

3. Determine the limit lim
x→0

x2 − 3x− 5

x2 + x
.

If we plug in x = 0 we get −5
0

which is undefined. Let us factor the denominator
into x(x+ 1). So we can write out limit as

lim
x→0

x2 − 3x− 5

x+ 1
· 1

x

By direct substitution, lim
x→0

x2 − 3x− 5

x+ 1
= −5. But lim

x→0

1

x
doesn’t exist. This is

because
1

x
is negative for x < 0 but positive for x > 0. Thus the left-hand and

right-hand limits don’t agree. For this reason, our limit does not exist.
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1. Determine the limit lim
x→+∞

2x2 + 1

3x2 − 3
.

Since x2 is the highest power of x, multiply the fraction by
1/x2

1/x2
to get and

equivalent limit:

lim
x→+∞

2x2 + 1

3x2 − 3

1
x2

1
x2

= lim
x→+∞

2 + 1
x2

3− 3
x2

As x gets big, the terms divided by x2 go to zero, so this limit is
2

3
.

2. Determine the limit lim
x→−∞

x3 + 1

x2 − 4x+ 4
.

Since x3 is the highest power of x, we multiply by the fraction
1/x3

1/x3
to get an

equivalent limit:

lim
x→−∞

x3 + 1

x2 − 4x+ 4

1/x3

1/x3
= lim

x→−∞

1 + 1
x3

1
x
− 4

x3
+ 4

x4

As x goes to −∞, the numerator goes to 4. The denominator, however, consists
of three terms which all get close to zero. The question is whether or not the
denominator is negative or positive. In this case, however, 1

x
is negative, − 4

x2
is

negative, and 4
x3

are all negative when x < 0, so the denominator is negative.
Thus the limit is −∞.



3. Find the horizontal asymptotes of the function f(x) =
x4 − 3x+ 5

2x4 − 3
.

We need to take the limit as x→ +∞ and as x→ −∞. First, however, we need

to multiply by
1/x4

1/x4
since x4 is the highest power of x. By doing this, the limits

become

lim
x→+∞

1− 3
x3

+ 5
x4

2− 3
x4

=
1

2

lim
x→−∞

1− 3
x3

+ 5
x4

2− 3
x4

=
1

2

So this function has a single horizontal asymptote, y = 1
2
.

4. Find the horizontal asymptotes of the function f(x) =
x+ 3

|x|+ 1
.

We need to take the limits as x → +∞ and x → −∞. In either case, |x| will be
x and −x respectively. The limits are:

lim
x→+∞

x+ 3

|x|+ 1
= lim

x→+∞

x+ 3

x+ 1
= lim

x→+∞

1 + 3
x

1 + 1
x

=
1

1
= 1

lim
x→−∞

x+ 3

|x|+ 1
= lim

x→−∞

x+ 3

−x+ 1
= lim

x→−∞

1 + 3
x

−1 + 1
x

=
1

−1
= −1

So we have two horizontal asymptotes: y = 1 and y = −1.
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1. Evaluate the limit lim
x→0

sin(5x)

x
. We will use the fact that lim

u→0

sinu

u
= 1, but we

need this to be of the same form first. We can simply multiply by 5
5
:

lim
x→0

5
sin(5x)

5x
= 5 lim

x→0

sin(5x)

(5x)
= 5(1) = 5

Note of course that as x→ 0, 5x→ 0 as well.

2. Evaluate the limit lim
x→0

sin(5x)

sin(10x)
.

As with 1, we need to get this fraction in the form of
sinu

u
before we can substitute

in a 1. We need a 5x in the denominator and a 10x in the numerator. But we
must counterbalance with another one, since we can’t create them out of nowhere.

lim
x→0

sin(5x)

sin(10x)
= lim

x→0

10x

sin(10x)

sin(5x)

5x

5x

10x

A limit of a product of 3 functions can be written as the product of 3 limits:(
lim
x→0

10x

sin(10x)

)(
lim
x→0

sin(5x)

5x

)(
lim
x→0

5x

10x

)
= (1)(1)

(
1

2

)
=

1

2



3. Evaluate the limit lim
x→1

sin(x2 + x− 2)

x− 1
.

In order to put this in the form of lim
u→0

sinu

u
, we need the denominator to be

x2 + x− 2. But notice that x2 + x− 2 = (x− 1)(x+ 2). So we need to multiply

this fraction by
x+ 2

x+ 2
. Then we get:

lim
x→1

sin(x2 + x− 2)

x− 1

x+ 2

x+ 2
= lim

x→1
(x+ 2)

sin(x2 + x− 2)

x2 + x− 2

This can be written as the product of two limits:(
lim
x→1

x+ 2
)(sin(x2 + x− 2)

x2 + x− 2

)
= (3)(1) = 3

Since as x→ 1, x2 + x− 2→ 0.

4. Evaluate the limit lim
x→0

cos(1/x).

This one uses the Squeeze Theorem. Observe first that −1 ≤ cos(1/x) ≤ 1. Also,
−|x3| ≤ x3 ≤ |x3|. Therefore

−|x3| ≤ x3 cos(1/x) ≤ |x3|

It is straightforward to show by direct substitution that lim
x→0
−|x3| = lim

x→0
|x3| = 0,

so by the squeeze theorem, the original limit is 0 as well.

5. Evaluate the limit lim
x→+∞

sinx+ 3

x2
.

This uses the Squeeze Theorem as well. Since −1 ≤ sinx ≤ 1, it follows that

2 ≤ sinx+ 3 ≤ 4

⇒ 2

x2
≤ sinx+ 3

x2
≤ 4

x2

As x → ∞, the limits of both the left-hand side and right-hand side of the
inequality chain are both 0, so the original limit in question is 0 as well.
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1. Determine whether the function

f(x) =


x2 − 9

x− 3
x 6= 3

5 x = 3

is continuous at 3 or not.
The function is continuous at 3 if f(3) exists, lim

x→3
f(x) exists and they are equal.

In other words, we need to check if

lim
x→3

x2 − 9

x− 3
= 5



We need to factorize the numerator to find the limit:

lim
x→3

x2 − 9

x− 3
= lim

x→3

(x− 3)(x+ 3)

x− 3
= lim

x→3
(x+ 3) = 6

This is not 5, so the function is not continuous at 3.

2. Find c so that the function

f(x) =

3x2 − c x ≥ 0
sinx

x
x < 0

is continuous on the set of real numbers.
The two pieces of the function are continuous on their intervals. f(0) = 3(0)3−c =
−c. For negative x,

lim
x→0−

sinx

x
= 1

Thus the function is only continuous if f(0) = −c = 1, in other words, c = −1.

3. Show that the equation x5 − x = 3 has a real root.
This will use the Intermediate Value Theorem. It says that if a function is con-
tinuous on [a, b], then for any v between f(a) and f(b), there exists a c on the
interval [a, b] such that f(c) = v.
Consider the function f(x) = x5 − x. Note that f(0) = (0)5 − (0) = 0 and
f(2) = (2)5 − (2) = 32 − 2 = 30. Since f(x) is a polynomial, it is continuous on
any interval, and f(0) < 3 < f(2), so by the IVT, There exists SOME c between
0 and 2 where f(c) = 3.

4. Show that the equation cos x = x3 has a real root.
Notice that

cos 0 = 1 > 0 = (0)3

and

cos
π

2
= 0 <

π3

8
=
(π

2

)3
Since cos x and x3 are both continuous functions, by the intermediate value the-
orem there MUST be some value c between 0 and π

2
where cos c = c3.

5. Determine whether the function f(x) =
x3 − 3x+ 3

x2 − 1
has any removable disconti-

nuities or not.
To study the removable discontinuities of rational functions (polynomial divided
by a polynomial) we look to see if the numerator and denominator have any com-
mon roots; if x is a root of both numerator AND denominator, it is a removable
discontinuity. If it is a root of the denominator only, then it gives a vertical
asymptote. Since both polynomials are quadratics, we can factor them without
too much difficulty.

f(x) =
(x− 1)(x+ 2)

(x− 1)(x+ 1)

The function is discontinuous at x = 1 and x = −1; x = 1 is a root of both
numerator and denominator so it is a removable discontinuity, but x = −1 is only
a root of the denominator, so it is a vertical asymptote.



10 Due Feb 10

1. Use the definition of the derivative in order to compute f ′(3), where f(x) = x2.

f ′(3) = lim
h→0

f(3 + h)− f(3)

h

= lim
h→0

(3 + h)2 − (3)2

h

= lim
h→0

9 + 6h+ h2 − 9

h

= lim
h→0

h(6 + h)

h
= 6

2. Use the definition of the derivative in order to compute f ′(2), where f(x) =
x3 − x+ 5.

f ′(2) = lim
h→0

f(2 + h)− f(2)

h

= lim
h→0

(2 + h)3 − (2 + h) + 5− (23 − 2 + 5)

h

= lim
h→0

8 + 12h+ 6h2 + h3 − 2− h+ 5− 8 + 2− 5

h

= lim
h→0

12h+ 6h2 + h3 − h
h

= lim
h→0

h(11 + 6h+ h2)

h
= 11

3. Use the definition of the derivative in order to compute f ′(2), where f(x) = 1
x
.

f ′(2) = lim
h→0

f(2 + h)− f(2)

h

= lim
h→0

1
2+h
− 1

2

h

= lim
h→0

1

h

(
2

2(2 + h)
− 2 + h

2(2 + h)

)
= lim

h→0

1

h

(
2− 2− h
2(2 + h)

)
= lim

h→0

1

h

−h
2(2 + h)

= lim
h→0

−1

2(2 + h)

= −1

4



4. Use the definition of the derivative in order to compute f ′(16), where f(x) =
√
x.

f ′(16) = lim
h→0

f(16 + h)− f(16)

h

= lim
h→0

√
16 + h−

√
16

h

= lim
h→0

√
16 + h− 4

h

(√
16 + h+ 4√
16 + h+ 4

)
= lim

h→0

(16 + h)− (16)

h(
√

16 + h+ 4)

= lim
h→0

h

h(
√

16 + h+ 4)

= lim
h→0

1√
16 + h+ 4

=
1

8

5. If f(1) = 5 and f ′(1) = −3, find the equation of the tangent lne to the graph of
f at the point (1, 5).
A line going through (x1, y1) with slope m has equation

y − y1 = m(x− x1).
the derivative at 1, f ′(1) = −3 is the slope, so the equation is

y − 5 = −3(x− 1)

11 Due Feb 17

1. Use the definition of the derivative in order to computer the derivative of the
function f(x) = x2 − x.

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

((x+ h)2 − (x+ h))− (x2 − x)

h

= lim
h→0

(x2 + 2hx+ h2 − x− h)− x2 + x

h

= lim
h→0

2hx+ h2 − h
h

= lim
h→0

h(2x+ h− 1)

h
= lim

h→0
2x+ h− 1

= 2x− 1



2. Use the definition of the derivative in order to compute the derivative of the
function f(x) = x3 + x+ 1.

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

((x+ h)3 + (x+ h) + 1)− (x3 + x+ 1)

h

= lim
h→0

(x3 + 3x2h+ 3xh2 + h3 + x+ h+ 1)− x3 − x− 1

h

= lim
h→0

3x2h+ 3xh2 + h3 + h

h

= lim
h→0

h(3x2 + 3xh+ h2 + 1)

h
= lim

h→0
3x2 + 3xh+ h2 + 1

= 3x2 + 1

3. Use the definition of the derivative in order to compute the derivative of the

function f(x) =
1√
x

.

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

1√
x+h
− 1√

x

h

= lim
h→0

1

h

( √
x

√
x
√
x+ h

−
√
x+ h

√
x
√
x+ h

)
= lim

h→0

1

h

(√
x−
√
x+ h

√
x
√
x+ h

)
= lim

h→0

1

h

(√
x−
√
x+ h

√
x
√
x+ h

)(√
x+
√
x+ h

√
x+
√
x+ h

)
= lim

h→0

1

h

(
x− (x+ h)

√
x
√
x+ h(

√
x+
√
x+ h)

)
= lim

h→0

1

h

(
−h

√
x
√
x+ h(

√
x+
√
x+ h)

)
= lim

h→0

−1
√
x
√
x+ h(

√
x+
√
x+ h)

=
−1√

x
√
x(
√
x+
√
x)

=
−1

2x
√
x



4. Let y =
1

x+ 2
. Compute

dy

dx
.

Letting f(x) = y,

dy

dx
= lim

h→0

f(x+ h)− f(x)

h

= lim
h→0

1
(x+h)+2

− 1
x+2

h

= lim
h→0

1

h

(
x+ 2

(x+ 2)((x+ h+ 2)
− x+ h+ 2

(x+ 2)(x+ h+ 2)

)
= lim

h→0

1

h

(
−h

(x+ 2)(x+ h+ 2)

)
= lim

h→0

−1

(x+ 2)(x+ h+ 2)

=
−1

(x+ 2)2

5. Let y =
1

x2
. Compute

dy

dx

∣∣∣∣
x=1

.

Letting f(x) = y,

dy

dx
= lim

h→0

f(x+ h)− f(x)

h

= lim
h→0

1
(x+h)2

− 1
x2

h

= lim
h→0

1

h

(
x2

x2(x+ h)2
− (x+ h)2

x2(x+ h)2

)
= lim

h→0

1

h

(
x2 − (x2 + 2hx+ h2)

x2(x+ h)2

)
= lim

h→0

1

h

(
−2hx− h2

x2(x+ h)2

)
= lim

h→0

1

h

(
h(−2x− h)

x2(x+ h)2

)
= lim

h→0

−2x− h
x2(x+ h)2

=
−2x

x2(x)2

= − 2

x3

6. Use the definition of derivative in order to find the 2nd and 3rd derivatives of
f(x) = x3 + x.



First we need the first derivative:

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

((x+ h)3 + (x+ h))− (x3 + x)

h

= lim
h→0

(x3 + 3x2h+ 3xh2 + h3 + x+ h)− x3 − x
h

= lim
h→0

3x2h+ 3xh2 + h3 + h

h

= lim
h→0

h(3x2 + 3xh+ h2 + 1)

h
= lim

h→0
3x2 + 3xh+ h2 + 1

= 3x2 + 1

Now we find f ′′(x):

f ′′(x) = lim
h→0

f ′(x+ h)− f ′(x)

h

= lim
h→0

(3(x+ h)2 + 1)− (3x2 + 1)

h

= lim
h→0

(3x2 + 6hx+ 3h2 + 1)− 3x2 − 1

h

= lim
h→0

6hx+ 3h2

h

= lim
h→0

h(6x+ 3h)

h
= lim

h→0
6x+ 3h

= 6x

Now we find f ′′′(x).

f ′′′(x) = lim
h→0

f ′′(x+ h)− f ′′(x)

h

= lim
h→0

6(x+ h)− 6x

h

= lim
h→0

6h

h
= 6

7. Give all possible notations for the derivatives of y = f(x) up to order 8.



Order

1 f ′(x) f (1)(x) y′ y(1)
dy

dx

2 f ′′(x) f (2)(x) y′′ y(2)
d2y

dx2

3 f ′′′(x) f (3)(x) y′′′ y(3)
d3y

dx3

4 f ′′′′(x) f (4)(x) y′′′′ y(4)
d4y

dx4

5 f ′′′′′(x) f (5)(x) y′′′′′ y(5)
d5y

dx5

6 f ′′′′′′(x) f (6)(x) y′′′′′′ y(6)
d6y

dx6

7 f ′′′′′′′(x) f (7)(x) y′′′′′′′ y(7)
d7y

dx7

8 f ′′′′′′′′(x) f (8)(x) y′′′′′′′′ y(8)
d8y

dx8

12 Due Feb 19

1. Find the derivative of the function f(x) = 5x3 − 4x2 + 7x+ 2.
Use the power rule:

f ′(x) = 5(3x2)− 4(2x1) + 7

= 15x2 − 8x

2. Find the derivative of the function f(x) = 2 5
√
x+ 1.

First express the root as a power: f(x) = 2x1/5 + 1.

f ′(x) = 2(
1

5
x1/5−1)

=
2

5
x−4/5

3. Find the derivative of the function f(x) = x2 − x+ 3
√
x.

Re-write roots as exponents: f(x) = x2 − x+ 3x1/2.

f ′(x) = 2x1 − 1 + 3

(
1

2
x1/2−1

)
= 2x− 1 +

3

2
x−1/2



4. Find the derivative of the function f(x) = x1/3 − x−1/3.
f ′(x) = 1

3
x1/3−1 − −1

3
x−1/3−1 = 1

3
x−2/3 + 1

3
x−4/3

5. Find the derivative of the function f(x) = (3x2 + 1)3.
First we need to expand the function into a polynomial - use the fact that (a+b)3 =
a3 + 3a2b+ 3ab2 + b3.
f(x) = (3x2)3 + 3(3x2)2(1) + 3(3x2)(1)2 + (1)3 = 27x6 + 27x4 + 9x2 + 1
Now use the power rule:
f ′(x) = 27(6x5) + 27(4x3) + 9(2x) = 162x5 + 108x3 + 18x

6. Find the derivative of the function f(x) = x(2x+ 1)2.
Expand the square and then distribute the x:
f(x) = x(4x2 + 4x+ 1) = 4x3 + 4x2 + x
Now take the derivative using the power rule:
f ′(x) = 4(3x2) + 4(2x) + 1 = 12x2 + 8x+ 1

7. Find the derivative of the function f(x) =
x2 + 3√

x
.

First let’s factor out 1√
x

as x−1/2)

f(x) = x−1/2(x2 + 3)
Now distribute: f(x) = x3/2 + 3x−1/2.
Now we can take the derivative using the power rule.

f ′(x) =
3

2
x1/2 + 3

(
−1

2
x−3/2

)
=

3

2
x1/2 − 3

2
x−3/2.

13 Due Feb 23

1. Compute the derivative of f(x) = 2xx2.
The function is in the form of g(x) · h(x) where g(x) = 2x and h(x) = x2, so we
use the Product Rule:
f ′(x) = g′(x)h(x) + g(x)h′(x) = (2x ln 2)(x2) + (2x)(2x)

2. Compute the derivative of f(x) = x3ex.
The function is in the form of g(x) · h(x) where g(x) = x3 and h(x) = ex, so we
use the Product Rule:
f ′(x) = g′(x)h(x) + g(x)h′(x) = (3x2)(ex) + (x3)(ex)

3. Compute the derivative of f(x) =
x2 − 3x+ 5

x3 + 1
.

The function is in the form of
g(x)

h(x)
where g(x) = x2 − 3x+ 5 and h(x) = x3 + 1,

so we use the Quotient Rule:

f ′(x) =
g′(x)h(x)− g(x)h′(x)

h(x)2
=

(2x− 3)(x3 + 1)− (x2 − 3x+ 5)(3x2)

(x3 + 1)2

4. Compute the derivative of f(x) = e2x.
We can either write the function as f(x) = (e2)x and use the derivative of bx, or
we can write it as f(x) = ex+x = ex · ex and use the product rule.
First if f(x) = (e2)x,



f ′(x) = (e2)x ln(e2) = e2x2 = 2e2x.
Alternatively, if f(x) = exex,
f ′(x) = (ex)′(ex) + (ex)(ex)′ = e2x + e2x = 2e2x

5. Compute the derivative of f(x) =
exx4

x2 + 1
.

Since this function is in the form of
g(x)

h(x)
, we use the quotient rule, but to find

g′(x) we have to additionally use the product rule:

f ′(x) =
g′(x)h(x)− g(x)h′(x)

h(x)2
=

((ex)(4x3) + (ex)(x4)) (x2 + 1)− (exx4)(2x)

(x2 + 1)2

14 Due Feb 24

1. Compute the derivative of the function f(x) =
x3 sinx

x2 + cosx
We use the quotient rule where g(x) = x3 sinx and h(x) = x2 + cosx. Then to
find g′(x) we need to use the product rule:
g′(x) = (x3)′(sinx)+(x3)(sinx)′ = (3x2)(sinx)+(x3)(cosx) = 3x2 sinx+x3 cosx.
h′(x) = 2x− sinx.
So by the quotient rule:

f ′(x) =
g′h− gh′

h2
=

(3x2 sinx+ x3 cosx)(x2 + cosx)− (x3 sinx)(2x− sinx)

(x2 + cosx)2

2. Compute the derivative of the function f(x) = 2x tanx.
The derivative is found by the product rule, where g(x) = 2x, h(x) = tan x.
g′(x) = 2x ln 2, and h′(x) = sec2 x. Thus by the product rule:
f ′(x) = g′h+ gh′ = (2x ln 2)(tanx) + (2x)(sec2 x)

3. Compute the derivative of the function f(x) =
tanx

x cosx
.

This derivative is found by the quotient rule where g(x) = tanx and h(x) =
x cosx.
g′(x) = (tan x)′ = sec2 x, but for h′(x) we need to use the product rule:
h′(x) = (x)′(cosx) + (x)(cosx)′ = (1) cos x+ x(− sinx) = cos x− x sinx
So by the quotient rule:

f ′(x) =
g′h− gh′

h2
=

(sec2 x)(x cosx)− (tanx)(cosx− x sinx)

(x cosx)2

4. Find the tangent to the graph of the function f(x) = sinx+cosx+x at the point
(π/4,

√
2 + π/4).

We need the first derivative f ′(x), but this is pretty straight forward:
f ′(x) = cos x− sinx+ 1
So the slope of the tangent line is
f ′(π/2) = cos(π

2
)− sin(π

2
) + 1 =

√
2
2
−
√
2
2

+ 1 = 1
So the equation of the tangent line is

y − (
√

2 +
π

4
) = 1(x− π

4
)



5. Compute the derivative of the function f(x) =
x23x + sinx4x

cosx5x + tanx6x
.

We need to use the quotient rule here, but the derivative of the numerator and
denominator need to be found, and both require the product rule. Let

g(x) = x23x + sinx4x, h(x) = cos x5x + tanx6x

g′(x) =
[
(x2)′(3x) + (x2)(3x)′

]
+ [(sinx)′(4x) + (sin x)(4x)′]

=
[
(2x)(3x) + (x2)(3x ln 3)

]
+ [(cosx)(4x) + (sin x)(4x ln 4)]

= 2x3x + x23x ln 3 + cosx4x + sinx4x ln 4

h′(x) = [(cos x)′(5x) + (cos x)(5x)′] + [(tan x)′(6x) + (tanx)(6x)′]

= [(− sinx)(5x) + (cos x)(5x ln 5)] +
[
(sec2 x)(6x) + (tan x)(6x ln 6)

]
= − sinx5x + cosx5x ln 5 + sec2 x6x + ln 6 tan x6x

Putting it all together,

f ′(x) =
g′h− gh′

h2

=
(2x3x + x23x ln 3 + cosx4x + sinx4x ln 4)(cos x5x + tanx6x)− (x23x + sinx4x)(− sinx5x + cosx5x ln 5 + sec2 x6x + ln 6 tan x6x)

(cosx5x + tanx6x)2

Additional practice problems: Pg 177, 1-6:

15 Due Feb 26

1. Compute the derivative of the function ex
2+1.

Using the chain rule, f(x) = eu(x), where u(x) = x2 + 1, and u′(x) = 2x, so

f ′(x) = eu(x)u′(x) = ex
2+1(2x) = 2xex

2+1

2. Compute the derivative of the function f(x) = tan(
√
x).

Using the chain rule, f(x) = tan(u(x)), where u(x) =
√
x, u′(x) =

1

2
√
x

, so

f ′(x) = sec2(u(x))u′(x) = sec2(
√
x)

(
1

2
√
x

)
=

sec2 x

2
√
x

3. Compute the derivative of the function f(x) = (sin x+ x)10.
Using the chain rule, f(x) = (u(x))10, where u(x) = sinx + x, u′(x) = cosx + 1,
so

f ′(x) = 10(u(x))9u′(x) = 10(sin x+ x)9(cosx+ 1)



4. Compute the derivative of the function f(x) =
√
x secx− 5.

Using the chain rule, f(x) =
√
u(x), where u(x) = x secx− 5, and

u′(x) = sec x+ x secx tanx. Thus,

f ′(x) =
1

2
√
u(x)

u′(x) =
secx+ x secx tanx

2
√
x secx− 5

5. Compute the derivative of the function f(x) = sin
(

3x
2+1
)

.

Using the chain rule, f(x) = sin
(
u(x)

)
, where u(x) = 3v(x), and v(x) = x2 + 1.

Then
v′(x) = 2x

u′(x) = 3v(x) ln 3v′(x) = 2x3x
2+1 ln 3

f ′(x) = cos(u(x))u′(x) = cos
(

3x
2+1
)

2x3x
2+1 ln 3

Additional practice problems on pg 172, 1-12

16 Due Feb 29

1. Compute the derivative of f(x) = cos6(lnx)
f(x) may explicitly be written

f(x) = (cos (lnx))6

Using the chain rule and the derivative of a logarithm, we get

f ′(x) = 6 (cos (lnx))5 (cos (lnx))′

= 6 (cos (lnx))5
(
− sin (lnx) (lnx)′

)
= 6 (cos (lnx))5

(
− sin (lnx)

(
1

x

))
= −6 cos5(lnx) sin(lnx)

x

2. Compute the derivative of f(x) = sec
(√

x2 + 1
)

Using the chain rule we have:

f ′(x) = sec
(√

x2 + 1
)

tan
(√

x2 + 1
)(√

x2 + 1
)′

= sec
(√

x2 + 1
)

tan
(√

x2 + 1
)( 1

2
√
x2 + 1

(
x2 + 1

)′)
= sec

(√
x2 + 1

)
tan
(√

x2 + 1
)( 1

2
√
x2 + 1

(2x)

)
= sec

(√
x2 + 1

)
tan
(√

x2 + 1
)( x√

x2 + 1

)



3. Compute the derivative of f(x) = log3(x
2 + 1)

Using the chain rule and derivative of a logarithm, we get

f ′(x) =
1

(x2 + 1) ln 3
(x2 + 1)′

=
1

(x2 + 1) ln 3
(2x)

=
2x

(x2 + 1) ln 3

4. Compute the derivative of f(x) =
√

ln(x3 + 5)
Using chain rule and derivative of a logarithm, we get:

f ′(x) =
1

2
√

ln(x3 + 5)

(
ln(x3 + 5)

)′
=

1

2
√

ln(x3 + 5)

(
1

x3 + 5
(x3 + 5)′

)
=

1

2
√

ln(x3 + 5)

(
1

x3 + 5
(3x2)

)
=

3x2

2(x3 + 5) ln(x3 + 5)

5. Compute the derivative of f(x) = xsinx

To take the derivative of xu(x), we have to use the trick that f(x) = eln(f(x)). Thus

xsinx = eln(x
sin x) = esinx lnx

The latter uses the Power Rule of logarithms. Now we can take the derivative
using chain rule and product rule.

f ′(x) = esinx lnx(sinx lnx)′

= esinx lnx ((sinx)′ lnx+ sinx(lnx)′)

= esinx lnx
(

(cosx) lnx+ sinx

(
1

x

))
= xsinx

(
cosx lnx+

sinx

x

)

Additional practice problems on pg 192, 23-34

17 Due Mar 2

1. Compute the linear approximation of f(x) =
1

1 + x3
at a = 1 and use this in

order to estimate f(1.2).
The linear approximation is the tangent line at x = a. The formula is

L(x) = f ′(a)(x− a) + f(a)



The first derivative is found using chain rule, but it is useful to write f(x) =
(1 + x3)−1:

f ′(x) = −(1 + x3)−2(1 + x3)′

= −(1 + x3)−2(3x2)

=
−3x2

(1 + x3)2

Now f ′(a) = f ′(1) = −3

4
and f(a) = f(1) =

1

2
. So

L(x) = −3

4
(x− 1) +

1

2

So the estimate is

f(1.2) ≈ L(1.2) = −3

4
(1.2− 1) +

1

2
= −3

4

(
1

5

)
+

1

2
= − 3

20
+

10

20
=

7

20

2. Compute the linear approximation of the function f(x) = 3
√
x at the point a = 8

and use this approximation in order to estimate 3
√

8.5.
As in the previous problem, the linear approximation is the tangent line at x = a.
The formula is

L(x) = f ′(a)(x− a) + f(a)

With f(x) = x1/3, we have

f ′(x) =
1

3
x−2/3

so f ′(8) =
1

3
(8)−2/3 =

1

3

1

4
=

1

12
. Since f(8) = 2, our linear approximation is

L(x) =
1

12
(x− 8) + 2

Thus
3
√

8.5 ≈ L(8.5) =
1

12
(8.5− 8) + 2 =

1

24
+ 2 =

49

24

3. Estimate
√

62.
We want to estimate based on a nearby a which is a perfect square: Let’s use
a = 64 since

√
64 = 8. With f(x) =

√
x, and x = a we can find the linear

approximation. Note that f ′(x) =
1

2
√
x

, so f ′(64) = 1
2(8)

= 1
16

.

√
62 ≈ L(62) =

1

16
(62− 64) + 8 =

1

16
(−2) + 8 = −1

8
+ 8 = 7.875



4. Estimate 3
√

26.
This is similar to number 2. We find a nearby a which is a perfect cube: a = 27
is an obvious choice. We let f(x) = x1/3. As in problem 2, f ′(x) = 1

3
(x)−2/3. We

have f(27) = 3 and

f ′(27) =
1

3
(27)−2/3 =

1

3

1

9
=

1

27

The approximation is thus

3
√

26 ≈ L(26) =
1

27
(26− 27) + 3 = − 1

27
+ 3 =

80

27

5. Estimate ln 2.
We use a linear approximation of f(x) = ln x with a = e, since that is the only
nearby x value where f(x) gives a reasonably nice value. Note:

f ′(x) =
1

x

so f ′(e) = 1
e

and f(e) = 1. The approximation is thus:

ln 2 ≈ L(2) =
1

e
(2− e) + 1 =

2

e

6. Find the linear approximation of y = cosx sinx at a =
π

4
.

By the product rule,

y′ = (sinx) sinx+ cosx(− cosx) = sin2 x− cos2 x

At the point x = π
4
, the slope is

y′(π/4) = sin2(π/4)− cos2(π/4) =

(√
2

2

)2

−

(√
2

2

)2

= 0

Since at x = π
4
, y = 1

2
,

L(x) = 0
(
x− π

4

)
+

1

2
=

1

2

7. Find the linear approximation of y = e
√
x at a = (ln 2)2.

By chain rule,

y′ = e
√
x(
√
x)′ = e

√
x

(
1

2
√
x

)
y(a) = eln 2 = 2, and y′(a) = eln 2

(
1

2 ln 2

)
= 2

(
1

2 ln 2

)
= 1

ln 2
So the linear approxi-

mation is

L(x) =
1

ln 2

(
x− (ln 2)2

)
+ 2



18 Due March 4

1. Use the mean value theorem to show that if x and y are two numbers on [1,+∞),
then

|
√
x−√y| ≤ 1

2
|x− y|

First, let’s assume y ≤ x. So what we are trying to prove is equivalent to

√
x−√y ≤ 1

2
(x− y)

or, by dividing both sides by (x− y) we could write
√
x−√y
x− y

≤ 1

2

Consider the function f(x) =
√
x, where f ′(x) =

1

2
√
x

. By the MVT, there must

be a value c where y < c < x such that

f ′(c) =
f(x)− f(y)

x− y
=

√
x−√y
x− y

Also, notice that f ′(x) is decreasing; so

f ′(x) ≥ f ′(x) ≥ f ′(c) =

The first expression is 1
2
, so we can write

1

2
≥
√
x−√y
x− y

2. Use the mean value theorem to show that if x and y are two numbers on [0, 1],
then

|ex − ey| ≤ e|x− y|
First, let us assume y ≤ x. Then what we are trying to prove can be written

ex − ey ≤ e(x− y)

or
ex − ey

x− y
≤ e

Consider the function f(x) = ex, where f ′(x) = ex which is increasing. By the
MVT, there exists some c where y < c < x such that

f ′(c) =
f(x)− f(y)

x− y
=
ex − ey

x− y
Since f ′(x) is increasing, we can write

f ′(c) ≤ f ′(1)

Namely
ex − ey

x− y
≤ e



3. Use the mean value theorem to show that if x and y are any two numbers, then

| cosx− cos y| ≤ |x− y|

Let us assume y ≤ x. So what we are trying to prove can be written as

| cosx− cos y|
x− y

≤ 1

Consider the function f(x) = cos x. By the mean value theorem, there exists
some c between x and y where

f ′(c) =
f(x)− f(y)

x− y

in other words,

f ′(c) =
cosx− cos y

x− y
Since f ′(c) = − sinx ≤ 1, we can say for sure that

cosx− cos y

x− y
≤
∣∣∣∣cosx− cos y

x− y

∣∣∣∣ ≤ 1

Or
| cosx− cos y| ≤ |x− y|

4. Examine whether Rolle’s theorem applies to the function f(x) = x(1− x) on the
interval [0, 1].
Since f(x) is differentiable on (0, 1) and f(0) = 0 = f(1), Rolle’s Theorem does
apply.

5. Examine whether Rolle’s theorem applies to the function f(x) = sinx on the
interval [0, π/2]. How about the Mean Value Theorem?
Since sinx is differentiable, but f(0) = 0 and f(π/2) = 1, so Rolle’s Theorem
does not apply, but the Mean Value Theorem does.

6. Show that if a differential function that is defined on all of R, has distinct roots,
then its derivative has at least five distinct roots.
Say the five distinct roots, in increasing order are x1, x2, x3, x4, x5, x6. Since the
value of the function is zero at each of these points, by Rolle’s Theorem there
exist distinct points y1, . . . y5 where

x1 < y1 < x2 < y2 < x3 < y3 < x4 < y4 < x5 < y5 < x6

where f ′(yi) = 0 for each i = 1, . . . , 5.



19 Due March 7

1. Find the critical points of the function f(x) = x lnx.
The domain of the function is (0,∞).
f ′(x) = ln x+ x · 1

x
= lnx+ 1. Setting this equal to zero

lnx+ 1 = 0

⇔ lnx = −1

⇔ e−1 = x

This is the only critical point on the domain.

2. Find the critical points of the function f(x) = x3 − x+ 1.
The domain of the function is all reals.
f ′(x) = 3x2 − 1. Setting this equal to zero

3x2 − 1 = 0⇔ x2 =
1

3

So the two critical points are x =
√

1
3
,−
√

1
3
.

3. Find the minimum and the maximum of the function f(x) = ex − x − 1 on the
interval [−1, 1].
f ′(x) = ex − 1. Setting this equal to zero we have

ex − 1 = 0⇔ ex = 1⇔ x = 0

We now evaluate the function at the endpoints of the domain and at x = 0
f(−1) = e−1 + 1− 1 = 1

e

f(0) = e0 − 0− 1 = 0 (minimum)
f(1) = e1 − 1− 1 = e− 2 (maximum)

4. Find the minimum and the maximum of the function f(x) = cos x + x on the
interval [−π, π].
f ′(x) = − sinx + 1, which is zero when sinx = 1, i.e. x = π

2
. We check the

endpoints of the domain and the critical point:
f(−π) = −1− π (minimum)
f(π

2
) = 0 + π

2
= π

2

f(π) = −1 + π (maximum)

5. Find the minimum and the maximum of the function f(x) =
1− x
x2 + 3x

on the

interval [1, 4].

f ′(x) =
−(x2 + 3x)− (1− x)(2x+ 3)

(x2 + 3x)2
.

Where we get a critical point when the numerator is zero, i.e.

−x2 − 3x− (2x− 2x2 − 3x+ 3) = 0

⇔ x2 − 2x− 3 = (x− 3)(x+ 1) = 0



Where roots are x = −1, 3. The only critical point in the interval is x = 3. Now
we check the endpoints of the interval as well:
f(1) = 0 (maximum)

f(3) =
1− 3

18
= −1

9
(minimum)

f(4) =
−3

16 + 12
= − 3

28

6. Find the minimum and the maximum of the function f(x) = x5−x on the interval
[0, 2].
f ′(x) = 5x4 − 1. Setting this equal to zero

5x4 − 1 = 0⇔ x4 =
1

5

So the only critical point in our interval is
1
4
√

5
.

We check the endpoints and critical point to find min and max:
f(0) = 0 (maximum)

f

(
1
4
√

5

)
=

1
4
√

5

(
1

5
− 1

)
= − 4

5 4
√

5
(minimum)

f(1) = 0 (maximum)

20 Due March 9

1. Determine the intervals of monotonicity and the local extrema of the function
f(x) = x3 − x
f ′(x) = 3x2 − 1. If we set the first derivative equal to zero and solve for x we get

3x2 − 1 = 0⇔ x2 =
1

3

So we get x = −
√

1
3

and x =
√

1
3
. We can draw the sign graph of f ′(x):

−2 −1 0 1 2

+ 0 − 0 +

So the function is increasing on (−∞,−
√

1
3
)∪(

√
13
,
∞) and decreasing on (−

√
1
3
,
√

1
3
).

Since the function goes from increasing to decreasing there, x = −
√

1
3

is a local

maximum. Similarly, x =
√

1
3

is a local minimum.

2. Determine the intervals of monotonicity and the local extrema of the function
f(x) = xe−x

2

f ′(x) = e−x
2

+ xe−x
2
(−2x) = x−x

2
(1− 2x2). Since e−x

2
> 0 always, we only need

to set 1− 2x2 = 0. We get

x2 =
1

2



So we have critical points at x = −
√

1
2

and x =
√

1
2
. We can draw the sign graph

of f ′(x):

−2 −1 0 1 2

− 0 + 0 −

f is increasing on (−
√

1
2
,
√

1
2
).

f is decreasing on (−∞,
√

1
2
) ∪ (

√
1
2
,∞).

x = −
√

1
2

is a local minimum and x =
√

1
2

is a local maximum.

3. Determine the intervals of monotonicity and the local extrema of the function

f(x) =
x

x2 + 4

f ′(x) =
(x2 + 4)− x(2x)

(x2 + 4)2
=
−x2 + 4

(x2 + 4)2
. The denominator is always positive, so

this derivative is only zero when the numerator is zero, i.e. at x = −2 and x = 2.
The sign graph of f ′(x) looks like:

−3 −2 −1 0 1 2 3

− 0 + 0 −

f is increasing on (−2, 2).
f is decreasing on (−∞, 2) ∪ (2,∞).
x = −2 is a local minimum and x = 2 is a local maximum.

4. A differentiable function f is defined on the interval [−1, 4]. The graph of its
derivative is a broken line with vertices at the points (−1, 1), (1,−1), (3, 2), (4, 0).
Determine the intervals of monotonicity of f and the local extrema of f on (−1, 4).
First, it is helpful to have a sense of the picture of the derivative function.

This is what f ′(x) looks like. The function is increasing when f ′(x) > 0 and it is
decreasing when f ′(x) < 0. Local extrema happen when f goes from increasing
to decreasing, or vice versa, so let’s first find the intervals of monotonicity. From

(−1, 1) to (1,−1) the slope of f ′ is
(−1)− (1)

(1)− (−1)
= −1. From the point −1, 1) we



can see that the line will hit the point (0, 0). From (1,−1) to (3, 2), we have a

slope of
(2)− (−1)

(3)− (1)
=

3

2
. The line in point-slope form is

y − 2 =
3

2
(x− 3)

Plugging in y = 0 we solve for x and get x =
5

3
, so this line hits the point (5

3
, 0).

The sign graph of f ′(x) can be given by

−1 0 1 2 3 4

+ 0 − 0 +

So the function is increasing on (−1, 0) ∪ (5
3
, 4).

f is decreasing on (0, 5
3
).

x = 0 is a local maximum and x = 5
3

is a local minimum. Although not necessary,
it is perhaps helpful to see what f(x) may look like (in red):

5. Determine the intervals of monotonicity and the local extrema of the function
f(x) = 2x5 − 5x2

f ′(x) = 10x4 − 10x = 10x(x3 − 1).
So x = 0 and x = 1 are the two roots of f ′(x). The sign graph of f ′(x) is

−1 0 1 2

+ 0 − 0 +

f is increasing on (−∞, 0) ∪ (1,∞) and decreasing on (0, 1).
x = 0 is a local maximum while x = 1 is a local minimum.

6. The graph of the derivative of a function f(x) is given by



Determine the intervals on which f is

(a) increasing

(b) decreasing

Don’t forget, this is the graph of f ′(x), not f(x). The sign graph of f ′(x) is

0 1 2 3 4 5

− 0 + 0 −

From this we can get the intervals of increasing/decreasing:
Increasing on (1, 3), decreasing on (0, 1) ∪ (3, 5).

21 Due March 11

1. Use the second derivative test in order to identify the local extrema of the function
f(x) = x3 − 3x.
f ′(x) = 3x2 − 3, so set 3(x2 − 1) = 0 gives us x = −1, 1 as critical points.
f ′′(x) = 6x. f ′′(−1) < 0 so −1 is a local maximum. f ′′(1) > 0 so 1 is a local
minimum.

2. Use the second derivative test in order to identify the local extrema of the function

f(x) =
x

x2 + 1
.

f ′(x) =
(x2 + 1)− (2x2)

(x2 + 1)2
=
−x2 + 1

(x2 + 1)2
. Zeroes come from the numerator, x =

−1, 1, so these are critical points. Note the denominator is always positive.

f ′′(x) =
(−2x)(x2 + 1)2 − (−x2 + 1)(2(x2 + 1)(2x)

(x2 + 1)4
=
−2x ((x2 + 1) + 2(−x2 + 1))

(x2 + 1)3

=
−2x (−x2 + 3)

(x2 + 1)3
.

f ′′(−1) =
−2(−1)(2)

23
> 0 so −1 is a local minimum.

f ′′(1) =
−2(1)(2)

23
< 0 so 1 is a local maximum.

3. Determine the intervals of concavity and the inflection points of the function
f(x) = x3 − x.



f ′(x) = 3x2 − 1, and f ′′(x) = 6x The sign graph of f ′′(x) is

−1 0 1

− 0 +

f is concave down on (−∞, 0), concave up on (0,∞) and 0 is an inflection point.

4. Determine the intervals of concavity and the inflection points of the function
f(x) = e−x

2
. f ′(x) = −2xe−x

2
, and f ′′(x) = −e−x2 + (4x2)e−x

2
= e−x

2
(4x2 − 1)

which has zeroes at x = ±1
2
. The sign graph of f ′′(x) is

−1 −0.5 0 0.5 1

+ 0 0− +

f is concave down on (−.5, .5), concave up on (−∞,−.5) ∪ (.5,∞). −.5 and .5
are inflection points.

5. Determine the intervals of concavity and the inflection points of the function

f(x) =
x

x2 + 4
.

f ′(x) =
(x2 + 4)− (2x2)

(x2 + 4)2
=
−x2 + 4

(x2 + 4)2
.

f ′′(x) =
(−2x)(x2 + 4)2 − (−x2 + 4)(2(x2 + 4)(2x)

(x2 + 4)4
=
−2x ((x2 + 4) + 2(−x2 + 4))

(x2 + 4)3

=
−2x (−x2 + 12)

(x2 + 4)3
.

f ′′(x) has zeroes (from the numerator) at x = 0,±
√

12. The sign graph of f ′′(x)
is

−4 −3 −2 −1 0 1 2 3 4

− 0 00 −+ +

f is concave down on (−∞,−
√

12)∪(0,
√

12), concave up on (−
√

12, 0)∪(
√

12,∞).
−
√

12, 0 and
√

12 are inflection points.

6. A differentiable function f is defined on the interval [−1, 4]. The graph of its
derivative is a broken line with vertices at the points (−1, 1), (1,−1), (3, 2), (4, 0).
Determine the intervals of concavity and the inflection points of f on (−1, 4).
The slope of the derivative function is −1 on (−1, 1), +3

2
on (1, 3) and −2 on

(3, 4). Therefore, the function f is concave down on (−1, 1) ∪ (3, 4), concave up
on (1, 3) and the points 1, 3 are inflection points.

7. Determine the intervals of concavity and the inflection points of the function
f(x) = 2x5 − 5x2

f ′(x) = 10x4 − 10x

f ′′(x) = 40x3 − 10 = 10(4x3 − 1). There is only one zero, which is 3

√
1

4
. The sign



graph of f ′′(x) is

−1 0 1

− 0 +

So the function is concave down on (−∞, 3

√
1
4
), concave up on ( 3

√
1
4
,∞) and 3

√
1
4

is the only inflection point.

8. The graph of the derivative of a function is given by:

Determine the intervals on which f is

(a) concave up

(b) concave down

The slope of the derivative function is 1 on (1, 2), −1 on (2, 4) and 1 on (4, 5).
Therefore, the function f is concave up on (0, 2) ∪ (4, 5), and concave down on
(2, 4).

22 Due March 14

1. Sketch the graph of the function f(x) = x3 − 3x.
f(x) = x(x2 − 3) so we have zeroes at x = 0,±

√
3.

f ′(x) = 3x2 − 3 which has zeroes at x = −1, 1. From homework 20 we have f
increasing on (−∞,−1) ∪ (1,∞) and decreasing on (−1, 1).
f ′′(x) = 6x. From homework 21 we have concave down on (−∞, 0), concave up
on (0,∞) and an inflection point at 0.
There are no vertical asymptotes, and lim

x→−∞
f(x) = −∞, lim

x→+∞
f(x) = +∞.

The sketch looks like this:



2. Sketch the graph of the function f(x) =
x

x2 + 1
.

f has a zero only at x = 0.
From homework 20 we have f increasing on (−1,−1) and decreasing on (−∞,−1)∪
(1,∞).

From homework 21 we have f ′′(x) =
−2x (−x2 + 3)

(x2 + 1)3
. This has zeroes at x =

0,±
√

3, and we can show that it is concave down on (−∞,−
√

3) ∪ (0,
√

3), con-
cave up on (−

√
3, 0) ∪ (

√
3,∞).

There are no vertical asymptotes, and lim
x→−∞

f(x) = 0, lim
x→+∞

f(x) = 0.

The sketch looks like this:

3. Sketch the graph of the function f(x) = e−x
2
.

f(x) > 0 always, so there are no zeroes.



From homework 20 we have f increasing on (−∞, 0) and decreasing on (0,∞).

From homework 21 we have concave down on (−
√

1
2
,
√

1
2
), concave up on (−∞,−

√
1
2
)∪

(
√

1
2
,∞) and inflection points at −

√
1
2
,
√

1
2
.

There are no vertical asymptotes, and lim
x→−∞

f(x) = 0, lim
x→+∞

f(x) = 0.

The sketch looks like this:

4. Sketch the graph of the function f(x) =
x

x2 + 4
.

f has a zero only at x = 0.
From homework 20 we have f increasing on (−2,−2) and decreasing on (−∞,−2)∪
(2,∞).
From homework 21 we have concave down on (−∞,−

√
12) ∪ (0,

√
12), concave

up on (−
√

3, 0) ∪ (
√

3,∞).
There are no vertical asymptotes, and lim

x→−∞
f(x) = 0, lim

x→+∞
f(x) = 0.

The sketch looks like this:



5. Sketch the graph of the function f(x) = 2x5 − 5x2.

f(x) = x2(2x3 − 5) so we have zeroes at x = 0,± 3

√
5
2
.

From homework 20 we have f increasing on (−∞, 0) ∪ (1,∞) and decreasing on
(0, 1).

From homework 21 we have concave down on (−∞, 3

√
1
4
), concave up on ( 3

√
1
4
,∞)

and an inflection point at 0.
There are no vertical asymptotes, and lim

x→−∞
f(x) = −∞, lim

x→+∞
f(x) = +∞.

The sketch looks like this:



6. The graph of the derivative of a function is given by:

Try to sketch the graph of f .
We have f increasing on (1, 3) only and decreasing on (0, 1) ∪ (3, 5).
From homework 21 we have concave up on (0, 2) ∪ (4, 5) and concave down on
(2, 4). Furthermore, we know that the curve has a derivative of −1, 0, 1, 0,−1, 0
at x = 0, 1, 2, 3, 4, 5 respectively. With this in mind, we can attempt a sketch of



the curve:

Note, however, that the starting point of the curve is arbitrary. I started it at
(0, 0) but it could have started at any y−coordinate.

23 Due March 30

1. Use L’Hôpital’s rule to compute the limit lim
x→0

√
x+ 4− 2√
x+ 9− 3

.

We can see that both the numerator and denominator approach 0 as x → 0, so
we may use L’Hôpital’s rule.

lim
x→0

√
x+ 4− 2√
x+ 9− 3

= lim
x→0

1
2
√
x+4
1

2
√
x+9

= lim
x→0

1

2
√
x+ 4

2
√
x+ 9

1
=

√
9√
4

=
3

2

2. Use L’Hôpital’s rule to compute the limit lim
x→0

sin(3x)

sin(5x)
. As x→ 0, both numerator

and denominator approach 0, so we may use L’Hôpital’s rule.

lim
x→0

sin(3x)

sin(5x)
= lim

x→0

cos(3x)3

cos(5x)5
=

3

5

3. Use L’Hôpital’s rule to compute the limit lim
x→0

cos(2x)− 1

cos(7x)− 1
.

As x→ 0, both numerator and denominator approach 0, so we may use L’Hôpital’s
rule.

lim
x→0

cos(2x)− 1

cos(7x)− 1
= lim

x→0

− sin(2x)2

− sin(7x)7

But still both numerator and denominator approach 0, so we can use L’Hôpital’s
ruleagain:

= lim
x→0

cos(2x)4

cos(7x)49
=

4

49



4. Use L’Hôpital’s rule to compute the limit lim
x→0

e3x − 1

e8x − 1
.

Both numerator and denominator approach 0 as x→ 0, so we may use L’Hôpital’s
rule.

lim
x→0

e3x − 1

e8x − 1
= lim

x→0

3e3x

8e8x
=

3

8

5. Use L’Hôpital’s rule to compute the limit

(a) lim
x→0

e7x − 1

e6x − 1 + x
.

both numerator and denominaot approach 0 as x → 0 so we may use
L’Hôpital’s rule.

lim
x→0

e7x − 1

e6x − 1 + x
= lim

x→0

7e7x

6e6x + 1
=

7

6 + 1
= 1

(b) lim
x→+∞

lnx√
x

.

Both numerator and denominator approach +∞ as x→ +∞, so we may use
L’Hôpital’s rule.

lim
x→+∞

lnx√
x

= lim
x→+∞

1
x
1

2
√
x

= lim
x→+∞

2
√
x

x
= lim

x→+∞

2√
x

= 0

6. Use L’Hôpital’s rule to compute the limit lim
x→0+

xx.

To handle a limit like this, we have to use a few tricks before employing L’Hôpital’s
rule. Let us call this limit L. The limit of ln(xx) will be ln(L). It will be easier
to find this limit, then to get L, we use the fact that L = eln(L).

ln(L) = lim
x→0+

ln(xx) = lim
x→0+

x ln(x)

Now we can use a trick, we can move x to the denominator as 1/x, since x =
1
1
x

.

lim
x→0+

x ln(x) = lim
x→0+

ln(x)
1
x

Now notice that the numerator approaches −∞ and the denominator approaches
+∞, so we may use L’Hôpital’s rule.

lim
x→0+

ln(x)
1
x

= lim
x→0+

1
x

− 1
x2

= lim
x→0+

−x2

x
= lim

x→0+
−x = 0

So the answer to the original limit is e0 = 1.



7. Use L’Hôpital’s ruleto compute the limit lim
x→+∞

(
1 +

1

x

)x
.

To handle a limit like this, we have to use a few tricks before employing L’Hôpital’s

rule. Let us call this limit L. The limit of ln

((
1 +

1

x

)x)
is ln(L). It will be

easier to find this limit, then to get L we use the fact that L = eln(L).

ln(L) = lim
x→+∞

ln

((
1 +

1

x

)x)
= lim

x→+∞
x ln

(
1 +

1

x

)
= lim

x→+∞

ln

(
1 +

1

x

)
1
x

Using the same trick as in 6. Now we can see that both numerator and denomi-
nator approach 0, so we can use L’Hôpital’s rule.

lim
x→+∞

ln

(
1 +

1

x

)
1
x

= lim
x→+∞

1

1 + 1
x

(
− 1
x2

)
− 1
x2

= lim
x→+∞

1

1 + 1
x

= 1

So the answer to the original limit is L = e1 = e. This is a famous limit, it is the
definition of the special constant e.

8. Use L’Hôpital’s ruleto compute the limit lim
x→0

1

x
− 1

sinx
.

We can’t use L’Hôpital’s rule immediately, we have to fanagle this limit so that

it is a fraction. One way to do that is to multiply by
x

x
, where we distribute the

numerator x and keep teh other one in the denominator:

lim
x→0

(
1

x
− 1

sinx

)
x

x
= lim

x→0

x

x
− x

sinx
x

= lim
x→0

1− x

sinx
x

Now observe that the numerator and denominator both approach 0, so we may
use L’Hôpital’s rule.

lim
x→0

1− x

sinx
x

= lim
x→0

sinx+x cosx
sin2 x

1
= lim

x→0

sinx+ x cosx

sin2 x

Once again, both numerator and denominator approach 0, so we use L’Hôpital’s
rule again.

lim
x→0

sinx+ x cosx

sin2 x
= lim

x→0

cosx+ cosx− x sinx

2 sinx cosx
= lim

x→0

−x sinx

2 sinx cosx
= lim

x→0

−x
2 cosx

= 0
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1. Write the sum 33 + 53 + 73 + · · ·+ 1013 in summation notation.
We want to sum up the odd numbers cubed from 3 to 101. The best way to index
the odd numbers is 2n+ 1. If we start n = 1 the last value of n should be 50. So
this sum will be denoted

50∑
n=1

(2n+ 1)3



2. Evaluate the sum
40∑

n=10

(2n+ 1)

The first trick is to write this as a difference of sums starting at n = 1.

40∑
n=10

(2n+ 1) =
40∑
n=1

(2n+ 1)−
9∑

n=1

(2n+ 1)

Next we want to split the constant part of each sum from the indexed part:

=
40∑
n=1

(2n) + 40−
9∑

n=1

(2n)− 9 = 31 +
40∑
n=1

(2n)−
9∑

n=1

(2n)

Next we can factor out the 2:

= 31 + 2
40∑
n=1

n− 2
9∑

n=1

n

Finally we can use the summation formula

k∑
n=1

n =
(k)(k + 1)

2

which will give us:

31 + 2
(40)(41)

2
− (9)(10)

2
= 31 + 2(820)− 2(45) = 1581

3. Compute R4 and L4 for the function f(x) = x2 − x on the interval [0, 4].
R4 is the right-Riemann sum, splitting [0, 4] into 4 sub-intervals, whereas L4 is
the left Riemann sum using the same 4 sub-intervals. The sub intervals are of
course [0, 1], [1, 2], [2, 3], [3, 4]. Let’s organize the info in a table:

x 0 1 2 3 4
f(x) 0 0 2 6 12

Since the width of each sub-interval is 1, we simply have R4 = 0+2+6+12 = 20,
while L4 = 0 + 0 + 2 + 6 = 8.

4. Compute M4 for the function f(x) = x2 + x+ 1 on the interval [0, 8].
M4 is the midpoint Riemann sum. We are splitting [0, 8] into 4 sub-intervals
[0, 2], [2, 4], [4, 6], [6, 8], and we evaluate the function at the midpoint of each in-
terval:

x 1 3 5 7
f(x) 3 13 31 57

Since the width of each sub-interval is 2, M4 = 2(3 + 13 + 31 + 57) = 208
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1. Use L3 in order to estimate the integral
∫ 3

0
x3 − x+ 1dx.

L3 is the left-Riemann sum, splitting [0, 3] into 3 sub-intervals: [0, 1], [1, 2], [2, 3].
Let’s organize the info in a table:

x 0 1 2
f(x) 1 1 7

Since the width of each sub-interval is 1, we simply have L3 = 1 + 1 + 7 = 9.

2. Use M4 in order to estimate the integral
∫ π
0

sinxdx.
M4 is the midpoint-Riemann sum, splitting [0, π] into 4 sub-intervals: [0, π

4
], [π

4
, π
2
],

[π
2
, 3π

4
], [3π

4
, π]. We must evaluate sin x at the midpoint of each interval. Let’s

organize the info in a table:

x π
8

3π
8

5π
8

7π
8

f(x) .3827 .9239 .9239 .3827

Since the width of each sub-interval is π
4
, we simply have M4 = π

4
(.3827 + .9239 +

.9239 + .3827) = 2.0524.

3. Compute the integral
∫ 1

−1 sin5 x+ 3dx.
We can first split the integral into two parts:∫ 1

−1
sin5 xdx+

∫ 1

−1
3dx

The first integral is of an odd function from −a to a so it is equal to zero. The
second integral is of a constant function, so we measure the area of the rectangle
with a height of 3 and a base length of 1− (−1) = 2, so we have 3 · 2 = 6.

4. Compute the integral
∫ 3

−3 x
7ex

2
dx.

We can check to see if this is an odd function or not by plugging in −x in.

(−x)7e(−x)
2

= −x7ex2

So yes, this is an odd function, and since it is integrated over the interval [−1, 1],
the integral is zero.

5. The function f defined on [0, 6] has a graph which is a broken line with vertices

(0, 0), (2, 2), (4, 2) and (6, 0). Compute the integral
∫ 6

0
f(x)dx.

The function looks like this:



The integral can be calculated geometrically. This is a trapezoid with bases
b1 = 6, b2 = 2 and height h = 2. The area of a trapezoid is

A =
b1 + b2

2
· h =

6 + 2

2
· 2 = 8

6. Show the integral
∫ 2

0
x3dx cannot exceed 16.

Since x3 is increasing on the interval [0, 2], a right Riemann sum would OVER-
estimate. Let’s calculate R1, which is simply 2 · f(2) = 2 · 8 = 16. This is an
over-estimate, so the integral cannot exceed 16.
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1. Use R4 in order to estimate
∫ 2

0
x2 − x+ 1dx

R4 is the right-Riemann sum, splitting [0, 2] into 4 sub-intervals: [0, .5], [.5, 1], [1, 1.5], [1.5, 2.
Let’s organize the info in a table:

x .5 1 1.5 2
f(x) .25− .5 + 1 = .75 1 2.25− 1.5 + 1 = 1.75 3

Since the width of each sub-interval is .5, we simply have

R4 = .5(.75 + 1 + 1.75 + 3) = .5(6.5) = 3.25

2. Compute the integral
∫ 2

−2 sin3 x+ 1dx.
We can first split the integral into two parts:∫ 2

−2
sin3 xdx+

∫ 2

−2
1dx

The first integral is of an odd function from −a to a so it is equal to zero. The
second integral is of a constant function, so we measure the area of the rectangle
with a height of 1 and a base length of 2− (−2) = 4, so we have 1 · 4 = 4.

3. Compute the integral
∫ 1

−1 x
5ex

4
dx.

We can check to see if this is an odd function or not by plugging in −x in.

(−x)5e(−x)
4

= −x5ex4

So yes, this is an odd function, and since it is integrated over the interval [−1, 1],
the integral is zero.

4. The function f defined on [0, 5] has a graph which is a broken line with vertices
(0, 1), (1, 1), (3,−1) and (5,−1). Compute the following integrals∫ 1

0

f(x)dx

∫ 3

1

f(x)dx

∫ 4

2

f(x)dx

∫ 5

3

f(x)dx

∫ 5

0

f(x)dx



The function looks like this:

The integral over any interval is the net area, so we can calculate them by adding
up the positive or negative triangular or square areas.∫ 1

0

f(x)dx = 1

∫ 3

1

f(x)dx = .5 +−.5 = 0∫ 4

2

f(x)dx = −.5 +−1 = −1.5∫ 5

3

f(x)dx = −1 +−1 = −2∫ 5

0

f(x)dx = 1 + .5 +−.5 +−1 +−1 = −1

5. Show the integral
∫ π
0

sinxdx cannot exceed 4.
The maximum and minimum values of sinx on the interval [0, π] occurs at a
critical point or at one of the endpoints. (sinx)′ = cosx = 0 has only one solution
on this interval, x = π/2. Since sin(π/2) = 1 and sin(0) = sin(π) = 0, we can say
for sure that 0 ≤ sinx ≤ 1 on this interval. So∫ π

0

sinxdx ≤ π · 1 = π ≤ 4

This is why the integral cannot exceed 4.
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1. Use the Newton-Leibniz formula to compute
∫ π
0

sinxdx.
Since (− cosx)′ = sinx, by the FTC,∫ π

0

sinxdx = (− cos(π))− (− cos 0) = (−− 1)− (−1) = 2



2. Use the Newton-Leibniz formula to compute
∫ ln 2

0
exdx.

Since (ex)′ = ex, by the FTC,∫ ln 2

0

exdx = e(ln 2) − e0 = 2− 1 = 1

3. Use the Newton-Leibniz formula to compute
∫ 1

0
3x2dx.

Since (x3)′ = 3x2, by the FTC,∫ 1

0

3x2dx = (1)3 − (0)3 = 1

4. Compute the indefinite integral
∫

3xdx.

Since (x2)′ = 2x, that means
(
3
2
x2
)′

= 3x, so∫
3xdx =

3

2
x2 + C

5. Compute the indefinite integral
∫
e2xdx.

Since (e2x)′ = 2e2x, that means
(
1
2
e2x
)′

= e2x. Therefore,∫
e2xdx =

1

2
e2x + C

6. Compute the indefinite integral
∫ √

xdx.
Since

√
x = x1/2, and (x3/2)′ = 3

2
x1/2, (2

3
x3/2 = x1/2. Therefore,∫ √

xdx =
2

3
x3/2 + C
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1. Use the Newton-Leibniz formula to compute
∫ π
π/2

cosxdx.

Since (sin x)′ = cosx,∫ π

π/2

cosxdx = sin(π)− sin(π/2) = 0− 1 = −1

2. Use the Newton-Leibniz formula to compute
∫ ln 3

0
e2xdx and express your answer

in the form
a

b
where a and b are integer numbers.

since (e2x)′ = 2e2x, (1
2
e2x = e2x, so∫ ln 3

0

e2xdx =
1

2
e2(ln 3) − 1

2
e2(0) =

eln 9

2
− 1

2
=

9

2
− 1

2
=

8

2
= 4



3. Use the Newton-Leibniz formula to compute
∫ 1

0
4x3 − xdx.

Since (x4)′ = 4x3 and (x2)′ = 2x, therefore (x4 − 1
2
x2)′ = 4x3 − x. Thus∫ 1

0

4x3 − xdx =

(
(1)4 − 1

2
(1)2

)
−
(

(0)4 − 1

2
(0)2

)
= 1− 1

2
=

1

2

4. Compute the indefinite integral
∫

sin(3x)dx.

Since (cos(3x))′ = −3 sin(3x),
(
−1

3
cos(3x)

)′
= sin(3x). Therefore,∫

sin(3x)dx = −1

3
cos(3x) + C

5. Compute the indefinite integral
∫
xe5x

2
dx.

Since (e5x
2
)′ = e5x

2
(10x) = 10xe5x

2
, ( 1

10
e5x

2
)′ = xe5x

2
. Therefore,∫

xe5x
2

dx =
1

10
e5x

2

+ C

6. Compute the indefinite integral
∫

3
√
xdx.

First write 3
√
x = x1/3. Since (x4/3)′ = 3

4
x1/3, (3

4
x4/3)′ = x1/3. Therefore,∫

3
√
xdx =

3

4
x4/3 + C
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1. Find d
dx

∫ x
1

ln(t2 + 1)dt
Let f(t) = ln(t2 + 1). If F (t) =

∫
f(t)dt, then∫ x

1

ln(t2 + 1)dt = F (x)− F (1)

The derivative, with respect to x is simply f(x), or ln(x2 + 1).

2. Find d
dx

∫ x
0
et

3
dt

Let f(t) = et
3
. If F (t) =

∫
f(t)dt, then

d

dx

∫ x

0

et
3

dt = F (x) = F (0)

So the derivative with respect to x is simply f(x), or ex
3
.



3. Find the integral
∫

(5x− 1)6dx
Let u = 5x− 1. Then du = 5dx, or dx = 1

5
du. The integral becomes∫

1

5
u6du =

1

5

1

7
u7 + C =

1

35
u7 + C

Substituting the x expression back in, we get

1

25
(5x− 1)7 + C

4. Find the integral
∫

cos3 xdx
Taking the integral of cosine or sine to an odd power uses a clever trick. We use
the trig identity that cos2 x = 1− sin2 x first. The integral becomes∫

cosx(1− sin2 x)dx

We now use the substitution that u = sinx and du = cosxdx. The substituted
integral is ∫

1− u2du = u− 1

3
u3 + C

Substituting the x expression back in we get sinx− 1
3

sin3 x+ C.

5. Find the integral
∫

dx
1+e−x

If we first multiply the numerator and denominator by ex, we get∫
ex

ex + 1
dx

We now let u = ex + 1, and then du = exdx. The integral is now∫
1

u
du = ln |u|+ C

If we substitute the expression in x (which is always positive) our integral is

ln(ex + 1) + C

6. Find the integral
∫
x 3
√

3x+ 5dx
We make the substitution u = 3x+ 5, which means x = u−5

3
and dx = 1

3
du. The

substituted integral is∫
u− 5

3
u1/3

1

3
du =

1

9

∫
u4/3 − 5u1/3du

We can integrate this using the power rule. It is

1

9

[
3

7
u7/3 − 5

3

4
u4/3

]
+ C =

1

21
u7/3 − 5

12
u4/3 + C

Substituting the x expression in, we get

1

21
(3x+ 5)7/3 − 5

12
(3x+ 5)4/3 + C



7. Find the integral
∫
x3e−x

4
dx

Letting u = −x4, and du = −4x3dx, we get x3dx = −1
4
du, so the integral becomes∫

−1

4
eudu = −1

4
eu + C

Substituting x back in we get

−1

4
e−x

4

+ C
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1. Compute

∫
tan(3x)dx

First write tan as sin
cos

: ∫
sin(3x)

cos(3x)
dx

Now we can use a substitution. Let u = cos(3x), du = −3 sin(3x)dx, so sin(3x)dx =
−1

3
du. The integral becomes∫

−1

3

1

u
du = −1

3
ln |u|+ C = −1

3
ln |3x|+ C

2. Compute

∫
sin5 xdx

Taking the integral of cosine or sine to an odd power uses a clever trick. First
let’s write the factor of (sin2 x) explicitly:∫

(sin2 x)2 sinxdx

We next use the trig identity that sin2 x = 1− cos2 x first. The integral becomes∫
(1− cos2 x)2 sinxdx

We now use the substitution that u = cosx and du = − sinxdx. The substituted
integral is

−
∫

(1− u2)2du = −
∫

1− 2u2 + u4du = −(u− 2

3
u3 +

1

5
u5) + C

Substituting the x expression back in we get − cosx+ 2
3

cos3 x− 1
5

cos5 x+ C.

3. Compute

∫ 2

1

lnx

x
dx

Letting u = lnx, du = 1
x
dx, and converting the bounds of integration, we get∫ ln 2

ln 1

udu =
1

2
u2
∣∣∣∣ln 2

0

=
1

2

(
(ln 2)2

)



4. Compute

∫
x

5
√

3x− 1
dx

Letting u = 3x − 1, du = 3dx and solving for x we get x =
u+ 1

3
, we make the

substitution and get∫
u+ 1

3u1/5
1

3
du =

1

9

∫
u

u1/5
+

1

u1/5
du =

1

9

∫
u4/5 + u−1/5du

Integrating using the power rule we get

1

9

(
5

9
u9/5 +

5

4
u4/5

)
+ C

5. Compute

∫ 1

0

x2
4
√
x3 + 2dx

For this integral, we can use a substitution u = x3 + 2, so du = 3x2dx. Thus
x2dx = 1

3
du. The bounds of integration become u(1) = 13 + 2 = 3, u(0) =

03 + 2 = 2. The integral is now∫ 3

2

1

3
u1/4du =

1

3

4

5
u5/4

∣∣∣∣3
2

=
4

15

(
3

4
√

3− 2
4
√

2
)

6. Compute

∫
1

1 + e−2x
dx

For this integral it will be useful to multiply the numerator and denominator by
e2x. This gives us ∫

e2x

e2x + 1
dx

Now if we use a substitution u = e2x+1, this gives us du = 2e2xdx, so e2xdx = 1
2
du.

The integral after substitution is∫
1

2

1

u
du =

1

2
ln |u|+ C =

1

2
ln(e2x + 1)
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1. Compute

∫
x sinxdx

For this integral we use integration by parts. We choose u such that its derivative
is simpler and dv such that its anti-derivative is no worse; in other words, u = x
with du = dx and dv = sinxdx with v = − cosx. The integral after integration
by parts is

x(− cosx)−
∫

(− cosx)dx = −x cosx+

∫
cosxdx = −x cosx+ sinx+ C



2. Compute

∫
x ln2 xdx

If we were to choose u = x then dv = ln2 xdx, and its anti-derivative is very ugly.
Let’s instead choose u = ln2 x (with du = 2 ln x 1

x
dx) and dv = xdx which gives

v = 1
2
x2. Integration by parts gives us

(ln2 x)

(
1

2
x2
)
−
∫

1

2
x2 · 2 lnx

1

x
dx =

1

2
x2 ln2 x−

∫
x lnxdx

Now we once again do integration by parts, with u = ln x and dv = xdx. Thus
du = 1

x
dx and v = 1

2
x2. The integral becomes:

1

2
x2 ln2 x−

(
1

2
x2 lnx−

∫
1

2
x2

1

x
dx

)
=

1

2
x2 ln2 x− 1

2
x2 lnx+

1

2

∫
xdx

=
1

2
x2 ln2 x− 1

2
x2 lnx+

1

4
x2 + C

3. Compute

∫
x2exdx

We perform integration by parts with u = x2 and dv = exdx; thus du = 2xdx and
v = ex. Integration by parts gives us

x2ex −
∫

2xexdx

We need to perform integration by parts one more time, this time with u =
2x, du = 2dx. The choice of dv is the same. We get

= x2ex −
(

2xex −
∫

2exdx

)
which becomes

= x2ex − 2xex + 2ex + C = (x2 − 2x+ 2)ex + C

4. Compute

∫
e2x cosxdx

Here we will use integration by parts twice to finally recover the original integral,
then solve for the integral with algebra. Let u = e2x and dv = cos xdx (so
du = 2e2xdx, v = sinx). Integration by parts gives us

= e2x sinx−
∫

2e2x sinxdx

This time we choose u = 2e2x (du = 4w2x) and dv = sinxdx and v = − cosx.
Integration by parts gives

= e2x sinx−
(
−2e2x cosx−

∫
(− cosx)4e2xdx

)



which simplifies to

= e2x sinx+ 2e2x cosx−
∫

4e2x cosxdx

We equate this with the original integral∫
e2x cosxdx = e2x sinx+ 2e2x cosx−

∫
4e2x cosxdx

We collect the integral terms to one side

5

∫
e2x cosxdx = e2x sinx+ 2e2x cosx

We divide by 5 and then add the arbitrary constant

5

∫
e2x cosxdx =

e2x

5
(sinx+ cosx) + C

5. Compute

∫
sin(x1/3)dx

Before we jump into integration by parts, we need to first do a substitution. Let
t = x1/3. Thus t3 = x, so dx = 3t2dt. The integral becomes∫

3t2 sin tdt

We can now proceed with integration by parts. Let u = 3t2 and dv = sin tdt.
Thus, du = 6tdt and v = − cos t. Integration by parts gives us

= (3t2)(− cos t)−
∫

(− cos t)(6tdt) = −3t2 cos t+

∫
6t cos tdt

We perform integration by parts a second time, now u = 6t and dv = cos tdt.
Thus du = 6dt and v = sin t. We have

= −3t2 cos t+ (6t)(sin t)−
∫

(sin t)(6dt)

= −3t2 cos t+ 6t sin t−
∫

6 sin tdt

= −3t2 cos t+ 6t sin t+ 6 cos t+ C

= (6− 3t2) cos t+ 6t sin t+ C

We substitute t = x1/3 again to get

= (6− 3x2/3) cos(x1/3) + 6x1/3 sin(x1/3) + C


