October 14

TA: Brian Powers

1. On the following graph to determine at what x values on the interval $[a, b]$ local and absolute extreme values occur.

2. Sketch the graph of a function on the interval [0,4] with the following properties:
$f^{\prime}(x)=0$ for $x=1,2$, and $3 ; f$ has an absolute minimum at $x=1 ; f$ has no local extremum at $x=2$; and f has an absolute maximum at $x=3$.
3. Find the critical points of the following functions on the domain given, and try to classify each as a local minimum, maximum or neither.
(a) $f(x)=3 x^{2}-4 x+2$ on $(-\infty, \infty)$
(b) $f(x)=\left(e^{x}+e^{-x}\right) / 2$ on $(-\infty, \infty)$
(c) $f(x)=\sin x \cos x$ on $[0,2 \pi]$
4. Find the critical points of f on the given interval and determine the absolute extreme values of f if they exist.
(a) $f(x)=x\left(x^{2}+1\right)^{-2}$ on $[-2,2]$
(b) $f(x)=\sin (3 x)$ on $[-\pi / 4, \pi / 3]$
(c) $f(x)=x \ln (x / 5)$ on $[0.1,5]$
5. Find the local and extreme values of $f(x)=|x-3|+|x+2|$ on $[-4,4]$.
6. You are running along the shore from point P towards point Q which is 50 m away. 50 m from Q perpendicular to the shore, there is a drowning swimmer. You can run at $4 \mathrm{~m} / \mathrm{s}$ and swim at $2 \mathrm{~m} / \mathrm{s}$. At what point x meters from Q should you jump into the water to swim if you want to minimize the time to get to the swimmer?
