October 14

TA: Brian Powers

1. On the following graph to determine at what x values on the interval $[a, b]$ local and absolute extreme values occur.

SOLUTION: Local minima at $x=q$. Local maxima at $x=p, r$. Absolute minimum at $x=b$. Absolute maximum at $x=p$.
2. Sketch the graph of a function on the interval $[0,4]$ with the following properties:
$f^{\prime}(x)=0$ for $x=1,2$, and $3 ; f$ has an absolute minimum at $x=1 ; f$ has no local extremum at $x=2$; and f has an absolute maximum at $x=3$.
SOLUTION: Of course there are any number of correct graphs, it doesn't even need to be continuous. But the graph could look like this.

It's important that $f(1)$ is the least value the function takes on the interval $[0,4]$ and $f(3)$ is the greatest value it takes on the interval. The curve must level off at $x=2$ momentarily.
3. Find the critical points of the following functions on the domain given, and try to classify each as a local minimum, maximum or neither.
(a) $f(x)=3 x^{2}-4 x+2$ on $(-\infty, \infty)$

SOLUTION: $f^{\prime}(x)=6 x-4$, so the only critical point is $x=2 / 3$, where the derivative is zero.

$$
f\left(\frac{2}{3}\right)=3\left(\frac{2}{3}\right)^{2}-4\left(\frac{2}{3}\right)+2=\frac{2}{3}
$$

Because this curve is a parabola which opens up, $\left(\frac{2}{3}, \frac{2}{3}\right)$ must be a local minimum.
(b) $f(x)=\left(e^{x}+e^{-x}\right) / 2$ on $(-\infty, \infty)$

SOLUTION: $f^{\prime}(x)=\left(e^{x}-e^{-x}\right) / 2$. Setting this equal to zero we get $x=0$ is the only critical value of x.

$$
f(0)=\frac{1+1}{2}=1
$$

Because the function tends to infinity both as $x \rightarrow \infty$ and $x \rightarrow-\infty,(0,1)$ is a local minimum.
(c) $f(x)=\sin x \cos x$ on $[0,2 \pi]$
$f^{\prime}(x)=\sin x(-\sin x)+\cos x \cos x$. Setting this equal to zero we get

$$
\cos ^{2} x=\sin ^{2} x
$$

or

$$
|\cos x|=|\sin x|
$$

This is true when $x=\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4}$. The endpoints, $x=0,2 \pi$ must be considered as well.

Point	Classification	Reason
$(0,0)$	neither	not a minimum or maximum value
$\left(\frac{\pi}{4}, \frac{1}{2}\right)$	local max	continuous function, derivative zero
$\left(\frac{3 \pi}{4},-\frac{1}{2}\right)$	local min	$"$
$\left(\frac{5 \pi}{4}, \frac{1}{2}\right)$	local max	$"$
$\left(\frac{7 \pi}{4},-\frac{1}{2}\right)$	local min	$"$
$(2 \pi, 0)$	neither	not a minimum or maximum value

4. Find the critical points of f on the given interval and determine the absolute extreme values of f if they exist.
(a) $f(x)=x\left(x^{2}+1\right)^{-2}$ on $[-2,2]$

SOLUTION: $f^{\prime}(x)=\left(x^{2}+1\right)^{-2}+-2 x\left(x^{2}+1\right)^{-3}(2 x)$. Setting this equal to zero we get

$$
0=\frac{1}{\left(x^{2}+1\right)^{2}}-\frac{4 x^{2}}{\left(x^{2}+1\right)^{3}}
$$

Multiplying by $\left(x^{2}+1\right)^{3}$ we get

$$
0=x^{2}+1-4 x^{2}
$$

Which is solved when $x= \pm \sqrt{1 / 3}$. We have to check these two x values as well as the endpoints.

$$
f(-2)=-2 / 5=-.4, f(-\sqrt{1 / 3})=-\frac{9}{16 \sqrt{3}} \approx-.325, f(\sqrt{1 / 3}) \approx .325, f(2)=.4
$$

So the absolute extreme values of f are -.4 and .4 , which occur at the endpoints.
(b) $f(x)=\sin (3 x)$ on $[-\pi / 4, \pi / 3]$

SOLUTION: $f^{\prime}(x)=3 \cos (3 x)$, which is zero when $x=\ldots,-3 \pi / 6,-\pi / 6, \pi / 6,3 \pi / 6, \ldots$ but the only values on the given interval are $x=-\pi / 6, \pi / 6$. Checking these and th endpoints we have

$$
f(-\pi / 4)=-\sqrt{2} / 2, f(-\pi / 6)=-1, f(\pi / 6)=1, f(\pi / 3)=0
$$

So 1 and -1 are the absolute extreme values of f.
(c) $f(x)=x \ln (x / 5)$ on $[0.1,5]$

SOLUTION: $f^{\prime}(x)=\ln (x / 5)+x \frac{1}{x / 5}(1 / 5)=\ln (x / 5)+1$. Solving for x we get $x=5 e^{-1} \approx 1.84$, which is within the interval in question. We check this and the two endpoints:

$$
f(0.1) \approx-.621, f\left(5 e^{-1}\right)=-5 e^{-1} \approx-1.84, f(5)=0
$$

So the absolute extreme values of f on the given interval are $-5 e^{-1}$ and 0 .
5. Find the local and extreme values of $f(x)=|x-3|+|x+2|$ on $[-4,4]$.

SOLUTION: This can be written as a piecewise function, with breaks at $x=3$ and $x=-2$.

$$
f(x)= \begin{cases}x-3+x+2 & \text { if } x \geq 3 \\ 3-x+x+2 & \text { if }-2 \leq x<3 \\ 3-x-2-x & \text { if } x<2\end{cases}
$$

Which can be simplified to

$$
f(x)= \begin{cases}2 x-1 & \text { if } x \geq 3 \\ 5 & \text { if }-2 \leq x<3 \\ 1-2 x & \text { if } x<-2\end{cases}
$$

At the endpoints we have $f(-4)=9, f(4)=7$. So 9 is an absolute maximum of the function, 5 is a local and absolute minimum, and that is it.
6. You are running along the shore from point P towards point Q which is 50 m away. 50 m from Q perpendicular to the shore, there is a drowning swimmer. You can run at $4 \mathrm{~m} / \mathrm{s}$ and swim at $2 \mathrm{~m} / \mathrm{s}$. At what point x meters from Q should you jump into the water to swim if you want to minimize the time to get to the swimmer?

SOLUTION: First of all, the distance that you swim is found by the Pythagorean Theorem, $\sqrt{x^{2}+50^{2}}=$ $\sqrt{x^{2}+2500}$. To get seconds/meter, we take the reciprocals of th speeds. Thus the total time taken to get to the swimmer is

$$
f(x)=\frac{1}{4}(50-x)+\frac{1}{2} \sqrt{x^{2}+2500}=10.25-\frac{x}{4}+\frac{\left(x^{2}+2500\right)^{1 / 2}}{2}
$$

We take the derivative to find a minimum:

$$
f^{\prime}(x)=-\frac{1}{4}+\frac{1}{2} \frac{\left(x^{2}+2500\right)^{-1 / 2}}{2}(2 x)=-\frac{1}{4}+\frac{x}{2 \sqrt{x^{2}+2500}}
$$

Setting this equal to zero we get

$$
\frac{1}{4}=\frac{x}{2 \sqrt{x^{2}+2500}}
$$

or

$$
\sqrt{x^{2}+2500}=2 x
$$

We square both sides and get

$$
\begin{gathered}
\left(x^{2}+2500\right)=4 x^{2} \\
3 x^{2}=2500
\end{gathered}
$$

We get $x \approx 28.868$. Checking the function value at this and the endpoints $x=0$ and $x=50$ we get

$$
f(0) \approx 35.25, f(28.868) \approx 31.9, f(50)=35.56
$$

So clearly you should swim when $x=28.868$, or in other words after running for 21.132 m (hopefully you can do all of this calculus while in the running).

