October 16

TA: Brian Powers

1. Sketch a function that is continuous on $(-\infty, \infty)$ with the following conditions: $f^{\prime}(-1)$ is undefined; $f^{\prime}(x)>0$ on $(-\infty,-1) ; f^{\prime}(x)<0$ on $(-1, \infty)$.
2. On what intervals is $f(x)$ increasing / decreasing? On what intervals is the function concave up / concave down? Identify all critical points and inflection points. Use the second derivative test to classify critical points if possible.
(a) $f(x)=x^{4}-4 x^{3}$
(b) $f(x)=\cos ^{2} x$ on $[-\pi, \pi]$
(c) $f(x)=x^{2}-2 \ln x$
3. Explain why the following statements are true, or provide a counterexample.
(a) If $f^{\prime \prime}(a)=0$, then f has an inflection point at a.
(b) If $f(x)=g(x)+c$ for some constant c, then f and g increase and decrease on the same intervals.
(c) If f and g both increase on an interval, then the product $f g$ also increases on that interval.
4. Can a continuous function on $(-\infty, \infty)$ have exactly four zeros and two local extrema?
5. For a general parabola $f(x)=a x^{2}+b x+c$, for what values of a, b and c is the parabola concave up, and for what values is it concave down?
