October 2

TA: Brian Powers

1. Find $\frac{d y}{d x}$ using implicit differentiation
(a) $\sin (x y)=x+y$

SOLUTION:

$$
\begin{aligned}
\cos (x y)\left(y+x y^{\prime}\right) & =1+y^{\prime} \\
\cos (x y) y+\cos (x y) x y^{\prime} & =1+y^{\prime} \\
y^{\prime} x \cos (x y)-y^{\prime} & =1-y \cos (x y) \\
y^{\prime}(x \cos (x y)-1) & =1-y \cos (x y) \\
y^{\prime} & =\frac{1-y \cos (x y)}{x \cos (x y)-1}
\end{aligned}
$$

take derivative of both sides
distribute the left side collect all terms with y^{\prime} as a factor factor out y^{\prime} solve for y^{\prime}
(b) $\cos \left(y^{2}\right)+x=e^{y}$

SOLUTION:

$$
\begin{aligned}
-\sin \left(y^{2}\right) 2 y y^{\prime}+1 & =e^{y}\left(y^{\prime}\right) \\
y^{\prime}\left(-2 y \sin \left(y^{2}\right)\right)-y^{\prime} e^{y} & =-1 \\
y^{\prime}\left(-2 y \sin \left(y^{2}\right)-e^{y}\right) & =-1 \\
y^{\prime} & =\frac{-1}{-2 y \sin \left(y^{2}\right)-e^{y}} \\
y^{\prime} & =\frac{1}{2 y \sin \left(y^{2}\right)+e^{y}}
\end{aligned}
$$

take derivative of both sides, use chain rule collect terms with y^{\prime} as a factor factor out y^{\prime} solve for y^{\prime} simplify
(c) $y=\frac{x+1}{y-1}$

SOLUTION:

$$
\begin{aligned}
y^{\prime} & =\frac{(1)(y-1)-(x+1)\left(y^{\prime}\right)}{(y-1)^{2}} & \text { take derivative of both sides, quotient rule } \\
y^{\prime} & =\frac{y-1}{(y-1)^{2}}-y^{\prime} \frac{x+1}{(y-1)^{2}} & \text { split the fraction } \\
y^{\prime}+y^{\prime} \frac{x+1}{(y-1)^{2}} & =\frac{y-1}{(y-1)^{2}} & \text { collect } y^{\prime} \text { terms } \\
y^{\prime}\left(1+\frac{x+1}{(y-1)^{2}}\right) & =\frac{1}{y-1} & \text { factor the } y^{\prime} \text { and simplify RHS } \\
y^{\prime} & =\frac{1}{y-1}\left(1+\frac{x+1}{(y-1)^{2}}\right)^{-1} & \text { solve for } y^{\prime}
\end{aligned}
$$ This can be simplified, but that is not necessary.

2. Find the slope at the given point.
(a) $\sqrt[3]{x}+\sqrt[3]{y^{4}}=2 ;(1,1)$

SOLUTION: First we must find the derivative

$$
\begin{aligned}
x^{1 / 3}+y^{4 / 3} & =2 & \text { rewrite as exponents } \\
\frac{1}{3} x^{-2 / 3}+\frac{4}{3} y^{1 / 3} y^{\prime} & =0 & \text { take derivative of both sides } \\
y^{\prime} \frac{4 y^{1 / 3}}{3} & =-\frac{1}{3} x^{-2 / 3} & y^{\prime} \text { term alone } \\
y^{\prime} & =-\frac{x^{-2 / 3}}{4 y^{1 / 3}} & \text { solve for } y^{\prime}
\end{aligned}
$$

We plug in the point $(1,1)$:

$$
\left.y^{\prime}\right|_{(1,1)}=-\frac{(1)^{-2 / 3}}{4(1)^{1 / 3}}=-\frac{1}{4}
$$

(b) $(x+y)^{2 / 3}=y,(4,4)$

$$
\begin{array}{rlrl}
\frac{2}{3}(x+y)^{-1 / 3}\left(1+y^{\prime}\right) & =y^{\prime} & \text { take derivative of both sides } \\
\frac{2}{3}(4+4)^{-1 / 3}\left(1+y^{\prime}\right) & =y^{\prime} & & \text { Plug in the point }(4,4) \\
\frac{1}{3}\left(1+y^{\prime}\right) & =y^{\prime} & & \text { clean up the fraction } \\
\frac{1}{3} & =y^{\prime}-\frac{1}{3} y^{\prime} & & y^{\prime} \text { terms to one side } \\
\frac{1}{3} & =\frac{2}{3} y^{\prime} & & \\
\frac{1}{2} & =y^{\prime} & &
\end{array}
$$

3. Find the equations of each tangent line for $x=1$ for the following curve

$$
x+y^{3}-y=1
$$

SOLUTION: First we need to determine what possible y values there are for $x=1$.

$$
\begin{aligned}
(1)+y^{3}-y & =1 \\
y\left(y^{2}-1\right) & =0 \\
y(y-1)(y+1) & =0
\end{aligned}
$$

So the points are $(1,0),(1,-1)$, and $(1,1)$. Now we use implicit differentiation to find y^{\prime}.

$$
\begin{array}{rlr}
1+3 y^{2} y^{\prime}-y^{\prime} & =0 \\
y^{\prime}\left(3 y^{2}-1\right) & =-1 \quad \text { derivative } \\
y^{\prime} & =\frac{-1}{3 y^{2}-1}
\end{array}
$$

Plug in the y values and we get the slopes $y^{\prime}=1,-1 / 2$, and $-1 / 2$ respectively. So the three tangent lines are given by

$$
y=1(x-1), \quad y+1=-\frac{1}{2}(x-1), \text { and } \quad y-1=-\frac{1}{2}(x-1)
$$

4. (a) At what point does $x+y^{3}-y=1$ have a vertical tangent line? (b) Does it have any horizontal tangent lines?
SOLUTION: A vertical tangent line occurs when y^{\prime} is undefined because the curve is continuous. From the derivative this is clearly when $3 y^{2}-1=0$ or when $y^{2}=1 / 3$, i.e. $y= \pm \sqrt{1 / 3}$. We must find the corresponding x values. We may solve for x with

$$
x=1+y-y^{3}
$$

So the corresponding x values are

$$
1+\sqrt{\frac{1}{3}}-\sqrt[3]{\frac{1}{3}} \quad \text { and } \quad 1-\sqrt{\frac{1}{3}}+\sqrt[3]{\frac{1}{3}}
$$

Thus the points where the tangent line is vertical are

$$
\left(1+\sqrt{\frac{1}{3}}-\sqrt[3]{\frac{1}{3}}, \sqrt{\frac{1}{3}}\right) \text { and }\left(1-\sqrt{\frac{1}{3}}+\sqrt[3]{\frac{1}{3}},-\sqrt{\frac{1}{3}}\right)
$$

The derivative y^{\prime} cannot be made zero, though, no matter what value of y is chosen, so there are no points where we have a horizontal tangent line.
5. If you slice a sphere the small piece is a spherical cap. Its volume is given by

$$
V=\frac{1}{3} \pi h^{2}(3 r-h)
$$

where r is the radius of the sphere and h is the cap thickness.
(a) Find $\frac{d r}{d h}$ for a spherical cap of volume $\frac{5 \pi}{3}$.
(b) Evaluate the derivative $\frac{d r}{d h}$ when $r=2$ and $h=1$.

SOLUTION: If we hold the volume of the cap fixed at $5 \pi / 3$, then the equation is

$$
\frac{5 \pi}{3}=\frac{1}{3} \pi h^{2}(3 r-h)
$$

Which simplifies to

$$
5=3 r h^{2}-h^{3}
$$

We take the derivative of both sides to solve for $r^{\prime}=\frac{d r}{d h}$

$$
0=3 r^{\prime} h^{2}+6 r h-3 h^{2}
$$

We solve for r^{\prime} and get

$$
r^{\prime}=\frac{3 h^{2}-6 r h}{3 h^{2}}=\frac{h-2 r}{h}
$$

For part (b), we plug in $r=2, h=1$ and get

$$
r^{\prime}=\frac{(1)-2(2)}{(1)}=-3
$$

