October 23

TA: Brian Powers

1. The hypotenuse of an isosceles right triangle is decreasing in length at a rate of $4 \mathrm{~m} / \mathrm{s}$.
(a) At what rate is the area of the triangle changing when the legs are 5 m long?

SOLUTION: First we should define the variables. Let x be the length of the legs, and h the length of the hypotenuse.

Since the legs of the isosceles right triangle are in ratio of $1: \sqrt{2}$ to the hypotenuse, the rate of change of the legs will be proportional, i.e. $x=h / \sqrt{2}$. Since $\frac{d h}{d t}=-4$,

$$
\frac{d x}{d t}=\frac{d h}{d t} \frac{1}{\sqrt{2}}=-\frac{4}{\sqrt{2}}=-2 \sqrt{2}
$$

Because the area $A=x^{2} / 2$,

$$
\frac{d A}{d t}=\frac{d A}{d x} \frac{d x}{d t}=x(-2 \sqrt{2}=-2 \sqrt{2} x \mathrm{~m} / \mathrm{s}
$$

When $x=5, d A / d t=-2 \sqrt{2} 5=-10 \sqrt{2} \mathrm{~m}^{2} / \mathrm{s}$.
(b) At what rate are the length of the legs of the triangle changing?

SOLUTION: The legs are decreasing at a constant rate of $2 \sqrt{2} \mathrm{~m} / \mathrm{s}$.
(c) At what rate is the area of the triangle changing when the area is $4 \mathrm{~m}^{2}$?

SOLUTION: The area is $4 \mathrm{~m}^{2}$ when $x^{2} / 2=4 \Rightarrow x^{2}=8$ so $x=2 \sqrt{2}$. At that time $d A / d t=$ $-(2 \sqrt{2})^{2}=-8 \mathrm{~m}^{2} / \mathrm{s}$.
2. A swimming pool is 50 m long and 20 m wide. Its depth decreases linearly along the length from 3 m to 1 m . It is initially empty and filled with water at $1 \mathrm{~m}^{3} / \mathrm{min}$.
(a) How fast is the water level rising 250 minutes after the filling begins?

SOLUTION: First of all, we need to talk about the dimensions of this. The inclined portion of the pool has height 2 m and length 50 m . As a height h is filled in, it will have a length b that is proportional to $50 / 2$, so $b=25 h$.

The volume when height $h \leq 2$ has been filled up is then $V(h)=20 \frac{1}{2}(25 h) h=250 h^{2}$. For $2<h \leq 3, V(h)=250(2)^{2}+20(50)(h-2)=1000 h-1000$.

$$
V(h)= \begin{cases}250 h^{2} & \text { if } h \leq 2 \\ 1000 h-1000 & \text { if } 2<h \leq 3\end{cases}
$$

After 250 minutes, the volume will be $250 \mathrm{~m}^{3}$, which means $h=1$. We have

$$
\frac{d V}{d t}=1, \frac{d V}{d t}=\frac{d V}{d h} \frac{d h}{d t}=2 \cdot 250 h \frac{d h}{d t}=500 \text { when } h=1
$$

Which means that

$$
1=500 \frac{d h}{d t}
$$

So $\frac{d h}{d t}=1 / 500 \mathrm{~m} / \mathrm{min}$, or $2 \mathrm{~mm} / \mathrm{min}$
(b) How long will it take to fill the pool?

SOLUTION: This is easier. We just have to calculate the total volume. The cross section of the pool has area $1 \cdot 50+\frac{1}{2} \cdot 50 \cdot 2=100 \mathrm{~m}^{2}$, so the volume is $100 \cdot 20=2000 \mathrm{~m}^{3}$, so it takes 2000 minutes to fill the pool.
3. An inverted conical water tank with height of 12 ft and radius of 6 ft is drained through a hole in the vertex at a rate of $2 \mathrm{ft}^{3} / \mathrm{sec}$. What is the rate of change of the water depth when the water depth is 3 ft ?
SOLUTION: Let h be the height of the water in the cone. Because the volume of water is a cone that is similar to the large cone, the radius is going to be $.5 h$.

So the volume of water is

$$
V(h)=\frac{1}{3} \pi(.5 h)^{2} h=\frac{\pi}{12} h^{3}
$$

Furthermore, we have

$$
-2=\frac{d V}{d t}=\frac{d V}{d h} \frac{d h}{d t}=\frac{\pi}{4} h^{2} \frac{d h}{d t}
$$

We can solve for $d h / d t=-8 /\left(\pi h^{2}\right)$, so when $h=3, d h / d t=-8 /(9 \pi) \mathrm{ft} / \mathrm{sec}$.
4. A hot-air balloon is 150 ft above the ground when a motorcycle (traveling in a straight line on a horizontal road) passes directly underneath it going $58.67 \mathrm{ft} / \mathrm{s}$. If the balloon rises vertically at a rate of $10 \mathrm{ft} / \mathrm{s}$, what is teh rate of change of the distance beween the motorcycle and the balloon 10 seconds later?
SOLUTION: Let h be the height of the ballon at time t, and b be the distance the motorcycle has traveled by time t. So

$$
h=150+10 t, b=58.67 t
$$

The distance between the balloon and the motorcycle is $d=\sqrt{h^{2}+b^{2}}$, so we can take the derivative

$$
\frac{d d}{d t}=\frac{1}{2}\left(h^{2}+b^{2}\right)^{-1 / 2}\left(2 h \frac{d h}{d t}+2 b \frac{d b}{d t}\right)=\frac{20 h+117.34 b}{2 \sqrt{h^{2}+b^{2}}}
$$

10 seconds later, $h=250, b=586.7$, so we can evaluate $d d / d t \approx 57.89 \mathrm{ft} / \mathrm{sec}$.
5. A boat leaves a port traveling due east at $12 \mathrm{mi} / \mathrm{hr}$ and at the same time another boat leaves traveling northeast at $15 \mathrm{mi} / \mathrm{hr}$. The angle θ of the line between the two boats is measureed from due north. What is the rate of change of this angle 30 minutes after they leave port? 2 hr after they leave port?

SOLUTION: The position of each boat can be calculated as an (x, y) coordinate with $(0,0)$ as the port they leave from. The first boat, heading east will be at $(12 t, 0)$ while the second boat will be at $(15 \sin (\pi / 4) t, 15 \sin (\pi / 4) t)=(7.5 \sqrt{2} t, 7.5 \sqrt{2} t)$.
The angle can be found by using an inverse trig function. For example, the inverse tangent. The opposite side of the angle will be ($12 t-7.5 \sqrt{2} t$) while the adjacent side will be $7.5 \sqrt{2} t$. So

$$
\theta=\tan ^{-1}\left(\frac{(12-7.5 \sqrt{2}) t}{7.5 \sqrt{2} t}\right)=\tan ^{-1}\left(\frac{12-7.5 \sqrt{2}}{7.5 \sqrt{2}}\right) \approx \tan ^{-1}(0.13137085) \approx 7.484^{\circ}
$$

Because the angle is constant, the rate of change is 0 always.

