October 28

TA: Brian Powers

When graphing functions, there is some basic analysis that will help you do it.

- Identify the domain or the interval in question
- identify if there is any helpful symmetry (e.g. even/odd function)
- Find critical points \& inflection points
- Find the extreme values of the function
- Identify any asymptotes, or the end behavir as $x \rightarrow \infty$ or $-\infty$.
- Find the x and y intercepts

1. Graph the following functions
(a) $f(x)=x^{3}-6 x^{2}+9 x$

SOLUTION: First there is no symmetry since it is not an even function or an odd function. The domain is $(-\infty, \infty)$. The y-intercept is $f(0)=0$, and the x intercepts are found by setting

$$
0=x^{3}-6 x^{2}+9 x=x\left(x^{2}-6 x+9\right)=x(x-3)(x-3)
$$

So it has x-intercepts at $x=0,3$.
The first derivative is $f^{\prime}(x)=3 x^{2}-12 x+9$, setting this equal to zero we get $0=3\left(x^{2}-4 x+3\right)=$ $3(x-3)(x-1)$, so we have critical points at $x=1,3$. Furthermore, a test of the sign of $f^{\prime}(x)$ on the intervals gives us that f is increasing on $(-\infty, 1),(3, \infty)$ and decreasing on $(1,3)$. The values of f at its critical points are $f(1)=1-6+9=4, f(3)=0$, as we already know. These are a local minimum and maximum respectively.
The second derivative is $f^{\prime \prime}(x)=6 x-12$ which has a single zero at $x=2$, which is an inflection point separating the interval of downward concavity $(-\infty, 2)$ from upward concavity $(2, \infty)$. Putting this all together, a picture starts to emerge.

(b) $f(x)=\frac{4 x+4}{x^{2}+3}$

SOLUTION: No symmetry to help us with this graph. We can find intercepts though: $f(0)=$ $4 / 3$ and if we set this equal to zero, we get $0=4 x+4$ so an x-intercept at $x=-1$. Since the denominator cannot ever be zero, we have no vertical asymptotes, and the domain is all real numbers.
Taking a first derivative, we get

$$
f^{\prime}(x)=\frac{4\left(x^{2}+3\right)-(4 x+4)(2 x)}{\left(x^{2}+3\right)^{2}}=\frac{4 x^{2}+12-8 x^{2}-8 x}{\left(x^{2}+3\right)^{2}}=\frac{-4\left(x^{2}+2 x-3\right)}{\left(x^{2}+3\right)^{2}}
$$

We get $f^{\prime}(x)=0$ at $x=-3,1$, which we get from the numerator. Since the denominator is always positive, we can get the intervals of increasing/decreasing from the numerator of f^{\prime} as well. Since it is a parabola opening downwards, it will have negative sign from $(-\infty,-3)$ and $(1, \infty)$ with positive sign on the interval $(-3,1)$. These are the intervals of decreasing and increasing respectively. So we have $x=-3$ is a local minimum, $x=1$ is a local maximum. Plugging these into f we get $f(-3)=(-8 / 12)=-3 / 4$ and $f(1)=8 / 4=2$.
Lastly, as the end behavior at negative and positive infinity is that the function goes to zero (because the denominator is a polynomial of higher degree). So we have a horizontal asymptote of $y=0$. The picture emerges...

(c) $f(x)=2-x^{2 / 3}+x^{4 / 3}$

SOLUTION: This function at least is an even function, so we have symmetry. $f(0)=2$, and are there any zeroes? Let $u=x^{2 / 3}, 0=2-u+u^{2}$. The quadratic formula gives

$$
u=\frac{1 \pm \sqrt{1-8}}{4}
$$

which has no real values. So this function does not have any zeroes, there are no x intercepts.

$$
f^{\prime}(x)=-\frac{2}{3} x^{-1 / 3}+\frac{4}{3} x^{1 / 3}
$$

When we set this equal to zero, we have

$$
\begin{aligned}
\frac{2}{3} x^{-1 / 3} & =\frac{4}{3} x^{1 / 3} \\
x^{-1} & =8 x
\end{aligned}
$$

So $x=\frac{1}{\sqrt{8}}$ or $-\frac{1}{\sqrt{8}}$. Also $x=0$ is a critical point since the first derivative does not exist there. The first derivative goes to ∞ as $x \rightarrow \infty$ or $x \rightarrow-\infty$ since the first term goes to zero.
$f\left(8^{-1 / 2}\right)=2-8^{-1 / 3}+8^{-2 / 3}=2-\frac{1}{2}+\frac{1}{4}=1.75=f\left(-8^{-1 / 3}\right)$ (by symmetry). So we have $x= \pm 8^{-1 / 3}$ are local minima, $x=0$ is a local max, but also a cusp.

$$
f^{\prime \prime}(x)=\frac{2}{9} x^{-4 / 3}+\frac{4}{9} x^{-2 / 3}
$$

The second derivative is undefined at $x=0$ but because both terms are even powers of x, the sign is positive when $x>0$ or $x<0$. So the intervals of upward concavity are $(-\infty, 0),(0, \infty)$.

(d) $s(x)=e^{-x^{2}}$

SOLUTION: This function is an even function, so we have horizontal symmetry. The exponential function has no zeroes, but $f(0)=e^{0}=1$. Also we have a horizontal asymptote of $y=0$, since as $x \rightarrow \infty, f(x) \rightarrow 0$.

$$
f^{\prime}(x)=e^{-x^{2}}(-2 x)
$$

and the only critical point is $x=0$, which as we know is a local maximum (since $f(0)=1$ and the function goes to zero to the left and to the right).

$$
f^{\prime \prime}(x)=e^{-x^{2}}(-2)+e^{-x^{2}}(-2 x)(-2 x)=\left(4 x^{2}-2\right) e^{-x^{2}}
$$

So we have $f^{\prime \prime}(x)=0$ when $x= \pm \sqrt{1 / 2}$ Since $x=0$ is a local maximum, we know that the function is concave down on the interval $(-\sqrt{1 / 2}, \sqrt{1 / 2})$. By testing $x=2$ we have $f^{\prime \prime}(2)>0$ so the function is concave up on $(-\infty,-\sqrt{1 / 2}),(\sqrt{1 / 2}, \infty)$. This is enough to give us the picture.

2. Find a possible graph for $f(x)$ based on its derivative:

$$
f^{\prime}(x)=(x-1)(x+2)(x+4)
$$

From the first derivative we know we have critical points at $x=1,-2,-4$ and by a sign graph we have the intervals of increasing are $(-4,-2),(1, \infty)$ and decreasing on $(-\infty,-4),(-2,1)$.
To find the second derivative, let's multiply out the first derivative.

$$
\begin{aligned}
f^{\prime}(x) & =\left(x^{2}+x-2\right)(x+4) \\
& =\left(x^{3}+x^{2}-2 x\right)+\left(4 x^{2}+4 x-8\right) \\
& =x^{3}+5 x^{2}+2 x-8
\end{aligned}
$$

So $f^{\prime \prime}(x)=3 x^{2}+10 x+2$. Setting this equal to zero we have inflection points at

$$
x=\frac{-10 \pm \sqrt{100-(4)(3)(2)}}{6}=\frac{-10 \pm \sqrt{76}}{6}
$$

Since $\sqrt{76} \approx 9$, we have inflection points near $x=-19 / 6$ and $x=-1 / 6$. This should look like a W, something like this:

3. Sketch a graph of $f(x)=x^{3}-3 x^{2}-144 x-140$. What property makes it "easy" to graph?

SOLUTION: The textbook thinks this has a property that makes it "easy" to graph. The only thought I have is that it has an integer root which you can find by testing $0, \pm 1, \pm 2$. In fact, if you plug in $x=-1$ you get 0 , so you are able to factor out $(x+1)$. This is the foothold you need in order to get some other zeroes.
By synthetic division or polynomial division, we get

$$
f(x)=(x+1)\left(x^{2}-4 x-140\right)=(x+1)(x-14)(x+10)
$$

So I suppose having integer roots is a nice property. We also have $f(0)=-140$. Since all roots are of multiplicity 1 , we know that the graph crosses the x axis at $x=-10,-1,14$. Let's find the local extrema:

$$
f^{\prime}(x)=3 x^{2}-6 x-144
$$

set equal to zero gives $0=3(x-8)(x+6)$, we have critical points at $x=-6,8$ which must be local maximum and minimum respectively. Why?
The curve starts negative (plug in $x=-100$ for example). It is increasing, crosses the x axis at $x=-10$, then must stop increasing and decrease to cross the x axis at $x=1$. Then it must stop decreasing and increase, crossing again at $x=14$.
The graph will look like this:

