October 30

TA: Brian Powers

1. Two nonnegative numbers x and y have a sume of 23 . What is the maximum possible product?

SOLUTION: We wish to maximize $p=x y$, but first we would like to express this as a function of a single variable. Since $x+y=23$, we may write $y=23-x$. So we wish to maximize

$$
p=x(23-x)=-x^{2}+23 x
$$

for $x \in[0,23]$, since both x and y must be nonnegative. $p^{\prime}=-2 x+23$ so we have $x=\frac{23}{2}$ is the only critical point. The product at the endpoints is 0 , and $\left(\frac{23}{2}\right)^{2}>0$ so this is the absolute maximum product possible.
2. A box's total dimensions (length + width + height) cannot exceed 108 in . If the box has a square base, what is the largest possible volume?
SOLUTION: We wish to maximize $v=l w h$. But first we want to express this as a single variable. Since the base is square, $l=w$. Also since the dimensions add up to $108, l+w+h=108$, which can be written $2 l+h=108$ since $l=w$. Then $h=108-2 l$. Finally we may state our optimization as follows: maximize:

$$
v=l^{2}(108-2 l)=-2 l^{3}+108 l^{2}
$$

Where $l \in[0,54]$, if the height is 108 inches, that is at least feasible, and a flat square 54×54 would also satisfy the requirements. The volume at the two endpoints is zero, so any critical point is a local maximum as long as its volume is >0 (which of course it has to be!). Taking a first derivative, we get $v^{\prime}=-6 l^{2}+216 l=6 l(-l+36)$, so $l=36$ is our critical point giving a $36 \times 36 \times 36$ cube, which maximizes volume.
3. A rain gutter is formed by taking a sheet of metal 9 in wide and bending it in thirds (making an isoceles trapezoid with an open top). What is the angle that maximizes cross-sectional area?
SOLUTION: The area of a trapezoid is $\frac{1}{2}\left(b_{1}+b_{2}\right) h . b_{1}=3$ which is given.

The upper base depends on the angle θ. Consider the small triangles that are formed, say they have a base of x and height h. They have $\sin \theta=h / 3$ and $\cos \theta=x / 3$. Thus $h=3 \sin \theta, x=3 \cos \theta$. Then $b_{2}=3+2(3 \cos \theta)$. Finally we have a formula for our area, we wish to maximize

$$
a=\frac{1}{2}(3+3+2(3 \cos \theta))(3 \sin \theta)=9 \sin \theta+9 \cos \theta \sin \theta
$$

and $\theta \in\left[0, \frac{\pi}{2}\right]$, since when $\theta>\frac{\pi}{2}, b_{2}<3$ and $h<3$ so this is certainly not optimal. First derivative $a^{\prime}=9 \cos \theta-9 \sin ^{2} \theta+9 \cos ^{2} \theta$, and set equal to zero we have

$$
0=\cos \theta+\cos ^{2} \theta-\sin ^{2} \theta
$$

Since $\sin ^{2} \theta=1-\cos ^{2} \theta$ from the Pythagorean Identity, we may let $u=\cos \theta$ and write

$$
0=u+u^{2}-\left(1-u^{2}\right)=2 u^{2}+u-1=(2 u-1)(u+1)
$$

So $u=\cos \theta=\frac{1}{2},-1$, but since $\theta \in\left[0, \frac{\pi}{2}\right]$, it is impossible for $\cos \theta=-1$, so the only critical point is when $\cos \theta=\frac{1}{2}$ Which means $\theta=\frac{\pi}{3}$. And because at $\theta=0$ and $\theta=\pi$ (the other critical point) the volume is zero, we must have $\theta=\frac{\pi}{3}$ is a local maximum. Or we can check:

$$
a(\pi / 3)=9 \frac{\sqrt{3}}{2}+9\left(\frac{1}{2}\right)\left(\frac{\sqrt{3}}{2}\right)=9 \frac{\sqrt{3}}{2}\left(1+\frac{1}{2}\right)=9 \frac{\sqrt{3}}{2} \frac{3}{2}=9\left(\sqrt{\frac{27}{16}}\right)>9
$$

4. A rectangle with its base on the x-axis has two of its vertices on the parabola $y=16-x^{2}$. What are the dimensions that maximize area, and what is the maximum area?
SOLUTION: The coordinates of the lower corners are $(x, 0)$ and $(-x, 0)$ and the coordinates of the upper corners are $\left(x, 16-x^{2}\right)$ and $\left(-x, 16-x^{2}\right)$. So the base is $2 x$ and height is $16-x^{2}$. So we wish to maximize

$$
a=2 x\left(16-x^{2}\right)=-2 x^{3}+32 x
$$

With $x \in[0,4]$. Why 4 as an upper bound? Because this is where the parabola intersects the x axis. The first derivative is $a^{\prime}=-6 x^{2}+32$. Setting this equal to zero we get $0=2\left(-3 x^{2}+16\right)$ so $x= \pm \sqrt{16 / 3}$ Of course, only the positive solution is a feasible critical point. And because the area at the endpoints $x=0$ and $x=4$ is zero, this critical point is a local maximum and gives the absolute maximum area of $a(\sqrt{16 / 3})=2 \sqrt{16 / 3}^{3}+32 \sqrt{16 / 3}$.
5. A piece of wire 60 in . long is cut. One part is bent to make a square, the other is used to make a circle. Where should it be cut to maximize the combined area? Minimize combined area?
SOLUTION: Say we cut the wire at x inches, using x inches for the squareand $60-x$ for the circle. Each side of the square will be $x / 4$ so its area is

$$
A_{S}=\frac{x^{2}}{16}
$$

The circle will have a circumfrence of $60-x$ and because $C=2 \pi r, r=(60-x) /(2 \pi)$. The area of the circle is

$$
A_{C}=\pi r^{2}=\pi\left(\frac{60-x}{2 \pi}\right)^{2}=\frac{(60-x)^{2}}{4 \pi}
$$

The combined area $A(x)=A_{S}+A_{C}$. To find critical points we check the first derivative:

$$
A^{\prime}(x)=\frac{2 x}{16}+\frac{2(60-x)(-1)}{4 \pi}=\frac{\pi x}{8 \pi}+\frac{4 x-240}{8 \pi}=\frac{(4+\pi) x-240}{8 \pi}
$$

So the critical point is $x=240 /(4+\pi) \approx 33.606$. The first derivative is negative for $x=0$ and positive for $x=60$, so this critical point must be a local minimum. So the maximum combined area must be at one of the endpoints. $A(60)=15^{2}=225$, while $A(0) \approx 286.479$.

To maximize combined area, use the entire wire for a circle. To minimize combined area, use 33.606 inches for the square.
6. Two right circular cones of height h and radius r are placed on either end of a cylinder of height h and radius r, making a doubly-pointed object. If the surface area is fixed at A, what dimensions h and r will maximize the total volume? (Hint: the volume of a cone is $v=\frac{1}{3} \pi r^{2} h$, lateral surface area $s=\pi r l$ where l is the length from the base to the vertex. For a cylinder $v=\pi r^{2} h$ and lateral surface
area $s=2 \pi h r$)
SOLUTION: The surface area of this object is

$$
A=2 \pi r l+2 \pi h r
$$

And because the cone is a right circular cone, $l=\sqrt{r^{2}+h^{2}}$ giving

$$
A=2 \pi r\left(\sqrt{r^{2}+h^{2}}+h\right)
$$

We may write: $\frac{A}{2 \pi r}=\sqrt{r^{2}+h^{2}}+h$. By squaring both sides we get

$$
\left(\frac{A}{2 \pi r}\right)^{2}=\left(r^{2}+h^{2}\right)+2 h \sqrt{r^{2}+h^{2}}+h^{2}
$$

and we may substitute $\sqrt{r^{2}+h^{2}}=\frac{A}{2 \pi r}-h$ into the equation to get

$$
\left(\frac{A}{2 \pi r}\right)^{2}=\left(r^{2}+h^{2}\right)+2 h\left(\frac{A}{2 \pi r}-h\right)+h^{2}=r^{2}+h \frac{A}{\pi r}
$$

Now we can solve for h, giving us

$$
h=\left(\frac{A^{2}}{4 \pi^{2} r^{2}}-r^{2}\right)\left(\frac{\pi r}{A}\right)=\frac{A}{4 \pi r}-\frac{\pi r^{3}}{A}
$$

Since $h \geq 0$,

$$
\begin{aligned}
0 & \leq \frac{A}{4 \pi r}-\frac{\pi r^{3}}{A} \\
\frac{\pi r^{3}}{A} & \leq \frac{A}{4 \pi r} \\
r^{4} & \leq \frac{A^{2}}{4 \pi^{2}} \\
r & \leq \sqrt{\frac{A}{2 \pi}}
\end{aligned}
$$

Meanwhile, the volume is

$$
\begin{aligned}
V=\pi r^{2} h+2 \frac{\pi}{3} r^{2} h=\frac{5 \pi}{3} r^{2} h & =\frac{5 \pi}{3} r^{2}\left(\frac{A}{4 \pi r}-\frac{\pi r^{3}}{A}\right)=\frac{5 A}{12} r-\frac{5 \pi^{2}}{3 A} r^{5} \\
V^{\prime}(r) & =\frac{5 A}{12}-\frac{25 \pi^{2}}{3 A} r^{4}
\end{aligned}
$$

Set equal to zero, we have only one critical point, $r=\sqrt{A} /(\sqrt[4]{20} \sqrt{\pi})$. The corresponding value of h is found by pluggint this in. After simplification, we have $h=\sqrt{A} \sqrt[4]{20} /(5 \sqrt{\pi})$. Because the volume is zero at both endpoints, these are the maximum dimensions.
7. An arbelos is formed by taking a semicircle and removing two tangent semicircles as so:

Say $A C=1$. At what position of B will the area of the arbelos be maximized? Show that the area of the arbelos is th same as a circle with diameter $B D$.
SOLUTION: Let the length from A to B be x. The area of a semicircle with diameter d is given by $A(d)=\frac{1}{2} \pi\left(\frac{d}{2}\right)^{2}=\pi d / 8$. So The area of the arbelos is

$$
A(x)=\frac{\pi}{8}-\frac{\pi x^{2}}{8}-\frac{\pi(1-x)^{2}}{8}=\frac{\pi}{8}\left(1-x^{2}-(1-x)^{2}\right)=\frac{\pi}{8}\left(-2 x^{2}+2 x\right)=\frac{\pi}{4} x(1-x)
$$

It can be easily shown that $x(1-x)$ is maximized when $x=\frac{1}{2}$.
The distance from B to the center of the larger circle is $\left|x-\frac{1}{2}\right|$. Since the radius of this circle is $1 / 2$, $B D$ is found by the pythagorean theorem: $B D=\sqrt{1 / 2-(x-1 / 2)^{2}}=\sqrt{x(1-x)}$. A circle with this diameter has area $\pi \frac{x(1-x)}{4}$, the exact same as the area of the arbelos.

