## October 7

TA: Brian Powers

We may use the following derivative rules now:

$$
\frac{d}{d x} b^{x}=b^{x} \ln (b) \quad \frac{d}{d x} \ln x=\frac{1}{x} \quad \frac{d}{d x} \ln |u(x)|=\frac{u^{\prime}(x)}{u(x)} \quad \frac{d}{d x} \log _{b} x=\frac{1}{x \ln b}
$$

And the technique of logarithmic differentiation: take a $\log$ of both sides of the equation, then take the derivative using implicit differentaition to solve for $f^{\prime}(x)$.

1. Find the following derivatives
(a) $\frac{d}{d x}\left(x^{2} \ln x\right)$
(b) $\frac{d}{d x} x^{3} 3^{x}$
(c) $\frac{d}{d x}(\ln |\sin x|)$
(d) $\frac{d}{d x} \ln \left(10^{x}\right)$
(e) $\frac{d}{d x}(\ln (\ln x))$
2. Find the derivatives
(a) $s(t)=\cos \left(2^{t}\right)$
(b) $f(x)=\ln \left[\left(x^{3}+1\right)^{\pi}\right]$
3. Evaluate the derivative of $h(x)=x^{\sqrt{x}}$ at $x=4$.
4. Find the horizontal tangent line equation for $y=x^{\ln x}$
5. Use logarithmic differentiation to find the derivative of

$$
f(x)=\frac{x^{8} \cos ^{3} x}{\sqrt{x-1}}
$$

6. Find the derivative $y^{\prime}$ of

$$
y=\left(x^{2}+1\right)^{x}
$$

using two methods:
(1) Use the fact that

$$
b^{x}=e^{x \ln b}
$$

(2) Use logarithmic differentiation.

