October 7

TA: Brian Powers

We may use the following derivative rules now:

$$
\frac{d}{d x} b^{x}=b^{x} \ln (b) \quad \frac{d}{d x} \ln x=\frac{1}{x} \quad \frac{d}{d x} \ln |u(x)|=\frac{u^{\prime}(x)}{u(x)} \quad \frac{d}{d x} \log _{b} x=\frac{1}{x \ln b}
$$

And the technique of logarithmic differentiation: take a log of both sides of the equation, then take the derivative using implicit differentaition to solve for $f^{\prime}(x)$.

1. Find the following derivatives
(a) $\frac{d}{d x}\left(x^{2} \ln x\right)$

SOLUTION:

$$
=2 x \ln x+x^{2} \frac{1}{x}
$$

(b) $\frac{d}{d x} x^{3} 3^{x}$

SOLUTION:

$$
=3 x^{2} 3^{x}+x^{3}\left(3^{x} \ln 3\right)
$$

(c) $\frac{d}{d x}(\ln |\sin x|)$

SOLUTION:

$$
=\frac{\cos x}{\sin x}=\cot x
$$

(d) $\frac{d}{d x} \ln \left(10^{x}\right)$

SOLUTION:

$$
=\frac{10^{x} \ln 10}{10^{x}}=\ln 10
$$

Or you may use hte fact that

$$
\ln \left(10^{x}\right)=x \ln 10
$$

and simply take that derivative $(\ln 10$ is just a constant).
(e) $\frac{d}{d x}(\ln (\ln x))$

SOLUTION:

$$
=\frac{1 / x}{\ln x}=\frac{1}{x \ln x}
$$

2. Find the derivatives
(a) $s(t)=\cos \left(2^{t}\right)$

SOLUTION:

$$
s^{\prime}(t)=-\sin \left(2^{t}\right)\left(2^{t} \ln t\right)
$$

(b) $f(x)=\ln \left[\left(x^{3}+1\right)^{\pi}\right]$

SOLUTION:

$$
f^{\prime}(x)=\frac{\pi\left(x^{3}+1\right)^{\pi-1}\left(3 x^{2}\right)}{\left(x^{3}+1\right)^{\pi}}
$$

3. Evaluate the derivative of $h(x)=x^{\sqrt{x}}$ at $x=4$.

SOLUTION: Using logarithmic differentiation, we take the natural log of both sides first

$$
\begin{array}{rlr}
\ln h(x) & =\ln \left(x^{\sqrt{x}}\right) & \\
\ln h(x) & =\sqrt{x} \ln x & \text { by log property } \\
\frac{h^{\prime}(x)}{h(x)} & =\frac{1}{2 \sqrt{x}} \ln x+\sqrt{x} \frac{1}{x} & \text { take derivative of both sides } \\
h^{\prime}(x) & =h(x)\left(\frac{\ln x}{2 \sqrt{x}}+\frac{1}{\sqrt{x}}\right) & \text { solve for } h^{\prime}(x) \\
h^{\prime}(x) & =x^{\sqrt{x}}\left(\frac{\ln x}{2 \sqrt{x}}+\frac{1}{\sqrt{x}}\right) & \\
h^{\prime}(4) & =4^{\sqrt{4}}\left(\frac{\ln 4}{2 \sqrt{4}}+\frac{1}{\sqrt{4}}\right) & \text { substitute in } h(x) \\
& =16\left(\frac{\ln 4}{4}+\frac{1}{2}\right) & \\
& =4 \ln 4+8 &
\end{array}
$$

4. Find the horizontal tangent line equation for $y=x^{\ln x}$

SOLUTION: Using logarithmic differentiation,

$$
\begin{array}{rlr}
\ln y & =\ln \left(x^{\ln x}\right) & \\
\ln y & =(\ln x)(\ln x)=(\ln x)^{2} & \text { by log property } \\
\frac{y^{\prime}}{y} & =2(\ln x) \frac{1}{x} & \text { take derivative of both sides } \\
y^{\prime} & =y \frac{2 \ln x}{x} & \text { solve for } y^{\prime} \\
y^{\prime} & =x^{\ln x} \frac{2 \ln x}{x} & \text { substitute in } y
\end{array}
$$

Because $x=0$ is not in the domain, the only way this derivative can be zero is for $\ln x=0$. This happens when $x=1$ (this is true for all logs, no matter what base). Plugging in 1 for x we get

$$
y=(1)^{\ln 1}=1^{0}=1
$$

So the equation of the horizontal tangent line is

$$
y=1
$$

5. Use logarithmic differentiation to find the derivative of

$$
f(x)=\frac{x^{8} \cos ^{3} x}{\sqrt{x-1}}
$$

SOLUTION:

$$
\begin{array}{rlr}
\ln f(x) & =\ln \left(\frac{x^{8} \cos ^{3} x}{\sqrt{x-1}}\right) & \text { take log of both sides } \\
\ln f(x) & =\ln \left(x^{8}\right)+\ln \left(\cos ^{3} x\right)-\ln (\sqrt{x-1}) & \text { by log properties } \\
\ln f(x) & =8 \ln x+3 \ln (\cos x)-\frac{1}{2} \ln (x-1) & \text { by log properties } \\
\frac{f^{\prime}(x)}{f(x)} & =\frac{8}{x}-3 \frac{\sin x}{\cos x}-\frac{1}{2} \frac{1}{x-1} & \text { take derivative of both sides } \\
& =\frac{8}{x}-3 \tan x+\frac{1}{2-2 x} & \text { solve for } f^{\prime}(x) \\
f^{\prime}(x) & =f(x)\left(\frac{8}{x}-3 \tan x+\frac{1}{2-2 x}\right) & \text { substitute back } f(x)
\end{array}
$$

6. Find the derivative y^{\prime} of

$$
y=\left(x^{2}+1\right)^{x}
$$

using two methods:
(1) Use the fact that

$$
b^{x}=e^{x \ln b}
$$

(2) Use logarithmic differentiation.

SOLUTION:

Method (1):

$$
y=e^{x \ln \left(x^{2}+1\right)}
$$

So

$$
y^{\prime}=e^{x \ln \left(x^{2}+1\right)}\left(\ln \left(x^{2}+1\right)+x \frac{2 x}{x^{2}+1}\right)=\left(x^{2}+1\right)^{x}\left(\ln \left(x^{2}+1\right)+\frac{2 x^{2}}{x^{2}+1}\right)
$$

Method (2):

$$
\begin{aligned}
\ln y & =\ln \left[\left(x^{2}+1\right)^{x}\right] \\
& =x \ln \left(x^{2}+1\right) \\
\frac{y^{\prime}}{y} & =\ln \left(x^{2}+1\right)+\frac{x}{x^{2}+1}(2 x) \\
y^{\prime} & =y\left(\ln \left(x^{2}+1\right)+\frac{2 x^{2}}{x^{2}+1}\right) \\
& =\left(x^{2}+1\right)^{x}\left(\ln \left(x^{2}+1\right)+\frac{2 x^{2}}{x^{2}+1}\right)
\end{aligned}
$$

