October 9

TA: Brian Powers

We may use the following derivative rules now:

$$
\begin{gathered}
\frac{d}{d x} \sin ^{-1} x=\frac{1}{\sqrt{1-x^{2}}} \quad \frac{d}{d x} \cos ^{-1} x=-\frac{1}{\sqrt{1-x^{2}}}, \text { for }-1 \leq x \leq 1 \\
\frac{d}{d x} \tan ^{-1} x=\frac{1}{1+x^{2}} \quad \frac{d}{d x} \cot ^{-1} x=-\frac{1}{1+x^{2}} \\
\frac{d}{d x} \sec ^{-1} x=\frac{1}{|x| \sqrt{x^{2}-1}} \quad \frac{d}{d x} \csc ^{-1} x=-\frac{1}{|x| \sqrt{x^{2}-1}}, \text { for }|x|>1
\end{gathered}
$$

Also to find the derivative of an inverse function $f^{-1}(y)$ at $y=y_{0}$, if $y_{0}=f\left(x_{0}\right)$ and $f^{\prime}\left(x_{0}\right) \neq 0$ then

$$
\left(f^{-1}\right)^{\prime}\left(y_{0}\right)=\frac{1}{f^{\prime}\left(x_{0}\right)}
$$

1. Evaluate the following derivatives:
(a) $f(x)=\sin ^{-1}(2 x)$
(b) $f(x)=\cos \left(\sin ^{-1}(2 x)\right)$
(c) $f(x)=\tan ^{-1}(1 / x)$
(d) $f(x)=\csc ^{-1}\left(\tan \left(e^{x}\right)\right)$
(e) $f(x)=1 / \tan ^{-1}\left(x^{2}+4\right)$
2. Find the equation of the tangent line at the given point
(a) $f(x)=\tan ^{-1}(2 x) ;\left(\frac{1}{2}, \frac{\pi}{4}\right)$
(b) $f(x)=\sec ^{-1}\left(e^{x}\right) ;\left(\ln 2, \frac{\pi}{3}\right)$
3. Find the derivative of $f^{-1}(y)$ at the given point.
(a) $f(x)=3 x+4 ;(16,4)$
(b) $f(x)=x^{2}-2 x-3$ for $x \leq 1 ;(12,-3)$
4. Use trig properties to prove the following identity. For what values of x is it true?

$$
\cos \left(2 \sin ^{-1} x\right)=1-2 x^{2}
$$

(Hint: $\cos 2 \theta=1-2 \sin ^{2} \theta$)
5. Consider $f(x)=\sin \left(2 \sin ^{-1} x\right)$.
(a) What is the domain of f ? Find the derivative $f^{\prime}(x)$.
(b) Find the equation of the tangent line to the graph when $x=\frac{1}{2}$.
(c) Use $\sin 2 \theta=2 \sin \theta \cos \theta$ and $1=\cos ^{2} \theta+\sin ^{2} \theta$ to show $f(x)=2 x \sqrt{1-x^{2}}$.

