Math 180: Calculus I

Fall 2014

October 9

TA: Brian Powers

We may use the following derivative rules now:

$$\frac{d}{dx}\sin^{-1}x = \frac{1}{\sqrt{1-x^2}} \quad \frac{d}{dx}\cos^{-1}x = -\frac{1}{\sqrt{1-x^2}}, \text{ for } -1 \le x \le 1$$

$$\frac{d}{dx}\tan^{-1}x = \frac{1}{1+x^2} \quad \frac{d}{dx}\cot^{-1}x = -\frac{1}{1+x^2}$$

$$\frac{d}{dx}\sec^{-1}x = \frac{1}{|x|\sqrt{x^2-1}} \quad \frac{d}{dx}\csc^{-1}x = -\frac{1}{|x|\sqrt{x^2-1}}, \text{ for } |x| > 1$$

Also to find the derivative of an inverse function $f^{-1}(y)$ at $y=y_0$, if $y_0=f(x_0)$ and $f'(x_0)\neq 0$ then

$$(f^{-1})'(y_0) = \frac{1}{f'(x_0)}.$$

- 1. Evaluate the following derivatives:
 - (a) $f(x) = \sin^{-1}(2x)$
 - (b) $f(x) = \cos(\sin^{-1}(2x))$
 - (c) $f(x) = \tan^{-1}(1/x)$
 - (d) $f(x) = \csc^{-1}(\tan(e^x))$
 - (e) $f(x) = 1/\tan^{-1}(x^2 + 4)$
- 2. Find the equation of the tangent line at the given point
 - (a) $f(x) = \tan^{-1}(2x); (\frac{1}{2}, \frac{\pi}{4})$
 - (b) $f(x) = \sec^{-1}(e^x); (\ln 2, \frac{\pi}{3})$
- 3. Find the derivative of $f^{-1}(y)$ at the given point.
 - (a) f(x) = 3x + 4; (16, 4)
 - (b) $f(x) = x^2 2x 3$ for $x \le 1$; (12, -3)
- 4. Use trig properties to prove the following identity. For what values of x is it true?

$$\cos(2\sin^{-1}x) = 1 - 2x^2$$

(Hint: $\cos 2\theta = 1 - 2\sin^2 \theta$)

- 5. Consider $f(x) = \sin(2\sin^{-1}x)$.
 - (a) What is the domain of f? Find the derivative f'(x).
 - (b) Find the equation of the tangent line to the graph when $x = \frac{1}{2}$.
 - (c) Use $\sin 2\theta = 2\sin\theta\cos\theta$ and $1 = \cos^2\theta + \sin^2\theta$ to show $f(x) = 2x\sqrt{1-x^2}$.