October 9

TA: Brian Powers

We may use the following derivative rules now:

$$
\begin{gathered}
\frac{d}{d x} \sin ^{-1} x=\frac{1}{\sqrt{1-x^{2}}} \quad \frac{d}{d x} \cos ^{-1} x=-\frac{1}{\sqrt{1-x^{2}}}, \text { for }-1 \leq x \leq 1 \\
\frac{d}{d x} \tan ^{-1} x=\frac{1}{1+x^{2}} \quad \frac{d}{d x} \cot ^{-1} x=-\frac{1}{1+x^{2}} \\
\frac{d}{d x} \sec ^{-1} x=\frac{1}{|x| \sqrt{x^{2}-1}} \quad \frac{d}{d x} \csc ^{-1} x=-\frac{1}{|x| \sqrt{x^{2}-1}}, \text { for }|x|>1
\end{gathered}
$$

Also to find the derivative of an inverse function $f^{-1}(y)$ at $y=y_{0}$, if $y_{0}=f\left(x_{0}\right)$ and $f^{\prime}\left(x_{0}\right) \neq 0$ then

$$
\left(f^{-1}\right)^{\prime}\left(y_{0}\right)=\frac{1}{f^{\prime}\left(x_{0}\right)}
$$

1. Evaluate the following derivatives:
(a) $f(x)=\sin ^{-1}(2 x)$

SOLUTION:

$$
f^{\prime}(x)=\frac{1}{\sqrt{1-(2 x)^{2}}}(2)
$$

(b) $f(x)=\cos \left(\sin ^{-1}(2 x)\right)$

SOLUTION:

$$
f^{\prime}(x)=-\sin \left(\sin ^{-1}(2 x)\right) \frac{1}{\sqrt{1-(2 x)^{2}}}(2)=\frac{-4 x}{\sqrt{1-(2 x)^{2}}}
$$

(c) $f(x)=\tan ^{-1}(1 / x)$

SOLUTION:

$$
f^{\prime}(x)=\frac{1}{1+(1 / x)^{2}}\left(-x^{-2}\right)=-\frac{1}{x^{2}+1}
$$

(d) $f(x)=\csc ^{-1}\left(\tan \left(e^{x}\right)\right)$

SOLUTION:

$$
f^{\prime}(x)=-\frac{1}{\left|\left(\tan \left(e^{x}\right)\right)\right| \sqrt{\left(\tan \left(e^{x}\right)\right)^{2}-1}}\left(\sec ^{2}\left(e^{x}\right)\right)\left(e^{x}\right)
$$

(e) $f(x)=1 / \tan ^{-1}\left(x^{2}+4\right)$

SOLUTION:

$$
f^{\prime}(x)=-1\left(\tan ^{-1}\left(x^{2}+4\right)\right)^{-2} \frac{1}{1+\left(x^{2}+4\right)^{2}}(2 x)
$$

2. Find the equation of the tangent line at the given point
(a) $f(x)=\tan ^{-1}(2 x) ;\left(\frac{1}{2}, \frac{\pi}{4}\right)$

SOLUTION:

$$
f^{\prime}(x)=\frac{1}{1+(2 x)^{2}}(2)
$$

So $f^{\prime}\left(\frac{1}{2}\right)=\frac{1}{1+1}(2)=1$. So the equation of the tangent line is simply

$$
y-\frac{\pi}{4}=x-\frac{1}{2}
$$

(b) $f(x)=\sec ^{-1}\left(e^{x}\right) ;\left(\ln 2, \frac{\pi}{3}\right)$

SOLUTION:

$$
f^{\prime}(x)=\frac{1}{\left|e^{x}\right| \sqrt{\left(e^{x}\right)^{2}-1}}\left(e^{x}\right)
$$

So $f^{\prime}(\ln 2)=\frac{1}{2 \sqrt{4-1}}(2)=\frac{1}{\sqrt{3}}$. The equation of the tangent line is

$$
y-\frac{\pi}{3}=\frac{1}{\sqrt{3}}(x-\ln 2)
$$

3. Find the derivative of $f^{-1}(x)$ at the given point.
(a) $f(x)=3 x+4 ;(16,4)$

SOLUTION: The corresponding point in $f(x)$ is $(4,16)$, where the slope is $f^{\prime}(4)=3$. So at $(16,4)$, the inverse function has a slope of $1 / 3$. The equation for the tangent line is

$$
y-4=\frac{1}{3}(x-16)
$$

(b) $f(x)=x^{2}-2 x-3$ for $x \leq 1 ;(12,-3)$

SOLUTION: The corresponding point in $f(x)$ is $(-3,12) . f^{\prime}(x)=2 x-2$, so $f^{\prime}(-3)=-8$.
Therefore the slope of the tangent line at $(12,-3)$ on f^{-1} is $1 / 8$. The equation for this line is

$$
y+3=\frac{1}{8}(x-12)
$$

4. Use trig properties to prove the following identity. For what values of x is it true?

$$
\cos \left(2 \sin ^{-1} x\right)=1-2 x^{2}
$$

(Hint: $\cos 2 \theta=1-2 \sin ^{2} \theta$)

SOLUTION:

$$
\begin{array}{rlr}
\cos \left(2 \sin ^{-1} x\right) & =1-2 \sin ^{2}\left(\sin ^{-1} x\right) & \text { because } \cos 2 \theta=1-2 \sin ^{2} \theta \\
& =1-2\left(\sin \left(\sin ^{-1} x\right)\right)^{2} & \text { rewriting slightly } \\
& =1-2 x^{2} & \text { because } \sin \left(\sin ^{-1} x\right)=x
\end{array}
$$

But this only holds for $-1 \leq x \leq 1$.
5. Consider $f(x)=\sin \left(2 \sin ^{-1} x\right)$.
(a) What is the domain of f ? Find the derivative $f^{\prime}(x)$.

SOLUTION: The domain is $-1 \leq x \leq 1$. By the chain rule,

$$
f^{\prime}(x)=\cos \left(2 \sin ^{-1} x\right) \frac{2}{\sqrt{1-x^{2}}}
$$

(b) Find the equation of the tangent line to the graph when $x=\frac{1}{2}$.

SOLUTION: Plugging in $x=1 / 2$, we have

$$
f^{\prime}(1 / 2)=\cos \left(2 \sin ^{-1}\left(\frac{1}{2}\right)\right) \frac{2}{\sqrt{1-\frac{1}{4}}}=\cos \left(2 \frac{\pi}{3}\right) \frac{4}{\sqrt{3}}=\frac{-1}{2} \frac{4}{\sqrt{3}}=\frac{-2}{\sqrt{3}}
$$

(c) Use $\sin 2 \theta=2 \sin \theta \cos \theta$ and $1=\cos ^{2} \theta+\sin ^{2} \theta$ to show $f(x)=2 x \sqrt{1-x^{2}}$. SOLUTION:

$$
\begin{array}{rlr}
f(x) & =\sin \left(2 \sin ^{-1} x\right) & \\
& =2 \sin \left(\sin ^{-1} x\right) \cos \left(\sin ^{-1} x\right) & \text { by trig identity } \\
& =2 x \sqrt{1-\sin ^{2}\left(\sin ^{-1} x\right)} & \text { because } \cos \theta=\sqrt{1-\sin ^{2} \theta} \text { for }-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2} \\
& =2 x \sqrt{1-\left(\sin \left(\sin ^{-1} x\right)^{2}\right.} & \\
& =2 x \sqrt{1-x^{2}} & \text { rewriting slightly }
\end{array}
$$

