November 4

TA: Brian Powers

1. Use linear approximation to first find the derivative at $x=a$, then estimate f at the given point.
(a) $f(x)=12-x^{2} ; \quad a=2, f(2.1)$
(b) $f(x)=\ln (1+x) ; \quad a=0, f(0.1)$
(c) $f(x)=(8+x)^{-1 / 3} ; \quad a=0, f(-0.1)$
2. Approximate the change in volume of a sphere when its radius changes from $r=5$ to $r=5.1$.
3. Find the differential $d y=f^{\prime}(x) d x$ for
(a) $f(x)=3 x^{2}-4 x$
(b) $f(x)=\sin ^{2} x$
4. Write a linear approximation equation L of f at a. Do linear approximations for x near a over-estimate or under-estimate? (Hint: Look at concavity)
(a) $f(x)=\frac{2}{x} ; a=1$
(b) $f(x)=\sqrt{2} \cos x ; a=\frac{\pi}{4}$
