November 4

TA: Brian Powers

- 1. Use linear approximation to first find the derivative at x = a, then estimate f at the given point.
 - (a) $f(x) = 12 x^2$; a = 2, f(2.1) **SOLUTION:** f'(x) = -2x, and at x = a, f(2) = 12 - 4 = 8, f'(2) = -4. So a linear approximation is $f(2.1) \approx f(2) + 0.1 f'(2) = 8 + 0.1(-4) = 8 - .4 = 7.6$
 - (b) $f(x) = \ln(1+x);$ a = 0, f(0.1)**SOLUTION:** $f'(x) = \frac{1}{1+x}$ and f(0) = 0, f'(0) = 1. So the linear approximation is

$$f(0.1) \approx f(0) + 0.1f'(0) = 0 + 0.1(1) = 0.1$$

- (c) $f(x) = (8+x)^{-1/3}$; a = 0, f(-0.1) **SOLUTION:** $f'(x) = -\frac{1}{3}(8+x)^{-4/3}$, $f(0) = \frac{1}{2}$ and $f'(0) = -\frac{1}{3\cdot 16} = -\frac{1}{48}$. So the linear approximation is $f(-0.1) \approx f(0) - 0.1f'(0) = \frac{1}{2} + 0.1\frac{1}{48} = \frac{241}{480}$
- 2. Approximate the change in volume of a sphere when its radius changes from r = 5 to r = 5.1. The volume of the sphere is $v(r) = \frac{4}{3}\pi r^3$. $v'(r) = 4\pi r^2$. $v'(5) = 100\pi$. So the approximation is

 $v(5.1) - v(5) \approx 0.1(100\pi) = 10\pi$ units³

- 3. Find the differential dy = f'(x)dx for
 - (a) f(x) = 3x² 4x
 SOLUTION: f'(x) = 6x 4, so dy = (6x 4)dx.
 (b) f(x) = sin² x
 SOLUTION: f'(x) = 2 cos x sin x, so dy = (2 cos x sin x)dx.
- 4. Write a linear approximation equation L of f at a. Do linear approximations for x near a over-estimate or under-estimate? (*Hint*: Look at concavity)
 - (a) $f(x) = \frac{2}{x}; a = 1$ **SOLUTION:** $f'(x) = -\frac{2}{x^2}$ and $f''(x) = \frac{4}{x^3}$. At x = 1, the linear approximation is $f(x) \approx f(a) + f'(a)(x-a) = -2 + 4(x-2) = 4x - 4$

Because at x = 1 the second derivative is positive, the curve is concave up, so the linear approximation is underestimating the true value.

(b) $f(x) = \sqrt{2} \cos x; a = \frac{\pi}{4}$ SOLUTION: $f'(x) = -\sqrt{2} \sin x, f''(x) = -\sqrt{2} \cos x$. So the linear approximation is

$$f(x) \approx f(\pi/4) + f'(\pi/4)(x - \pi/4) = \sqrt{2}\frac{\sqrt{2}}{2} - \sqrt{2}\frac{\sqrt{2}}{2}\left(x - \frac{\pi}{4}\right) = -x + \frac{5\pi}{4}$$

Since the second derivative is negative at $x = \pi/4$, the curve is concave down, and the linear approximation is over-estimating.