November 4

TA: Brian Powers

1. Use linear approximation to first find the derivative at $x=a$, then estimate f at the given point.
(a) $f(x)=12-x^{2} ; \quad a=2, f(2.1)$

SOLUTION: $f^{\prime}(x)=-2 x$, and at $x=a, f(2)=12-4=8, f^{\prime}(2)=-4$. So a linear approximation is

$$
f(2.1) \approx f(2)+0.1 f^{\prime}(2)=8+0.1(-4)=8-.4=7.6
$$

(b) $f(x)=\ln (1+x) ; \quad a=0, f(0.1)$

SOLUTION: $f^{\prime}(x)=\frac{1}{1+x}$ and $f(0)=0, f^{\prime}(0)=1$. So the linear approximation is

$$
f(0.1) \approx f(0)+0.1 f^{\prime}(0)=0+0.1(1)=0.1
$$

(c) $f(x)=(8+x)^{-1 / 3} ; \quad a=0, f(-0.1)$

SOLUTION: $f^{\prime}(x)=-\frac{1}{3}(8+x)^{-4 / 3}, f(0)=\frac{1}{2}$ and $f^{\prime}(0)=-\frac{1}{3 \cdot 16}=-\frac{1}{48}$. So the linear approximation is

$$
f(-0.1) \approx f(0)-0.1 f^{\prime}(0)=\frac{1}{2}+0.1 \frac{1}{48}=\frac{241}{480}
$$

2. Approximate the change in volume of a sphere when its radius changes from $r=5$ to $r=5.1$. The volume of the sphere is $v(r)=\frac{4}{3} \pi r^{3} \cdot v^{\prime}(r)=4 \pi r^{2} \cdot v^{\prime}(5)=100 \pi$. So the approximation is

$$
v(5.1)-v(5) \approx 0.1(100 \pi)=10 \pi \text { units }^{3}
$$

3. Find the differential $d y=f^{\prime}(x) d x$ for
(a) $f(x)=3 x^{2}-4 x$

SOLUTION: $f^{\prime}(x)=6 x-4$, so $d y=(6 x-4) d x$.
(b) $f(x)=\sin ^{2} x$

SOLUTION: $f^{\prime}(x)=2 \cos x \sin x$, so $d y=(2 \cos x \sin x) d x$.
4. Write a linear approximation equation L of f at a. Do linear approximations for x near a over-estimate or under-estimate? (Hint: Look at concavity)
(a) $f(x)=\frac{2}{x} ; a=1$

SOLUTION: $f^{\prime}(x)=-\frac{2}{x^{2}}$ and $f^{\prime \prime}(x)=\frac{4}{x^{3}}$. At $x=1$, the linear approximation is

$$
f(x) \approx f(a)+f^{\prime}(a)(x-a)=-2+4(x-2)=4 x-4
$$

Because at $x=1$ the second derivative is positive, the curve is concave up, so the linear approximation is underestimating the true value.
(b) $f(x)=\sqrt{2} \cos x ; a=\frac{\pi}{4}$

SOLUTION: $f^{\prime}(x)=-\sqrt{2} \sin x, f^{\prime \prime}(x)=-\sqrt{2} \cos x$. So the linear approximation is

$$
f(x) \approx f(\pi / 4)+f^{\prime}(\pi / 4)(x-\pi / 4)=\sqrt{2} \frac{\sqrt{2}}{2}-\sqrt{2} \frac{\sqrt{2}}{2}\left(x-\frac{\pi}{4}\right)=-x+\frac{5 \pi}{4}
$$

Since the second derivative is negative at $x=\pi / 4$, the curve is concave down, and the linear approximation is over-estimating.

