## November 11

TA: Brian Powers

1. Evaluate the following limits

(a) 
$$\lim_{x\to e} \frac{\ln x - 1}{x - e}$$

(b) 
$$\lim_{u \to \pi/4} \frac{\tan u - \cot u}{u - \pi/4}$$
  
(c)  $\lim_{x \to \infty} \frac{3x^4 - x^2}{6x^4 + 12}$ 

(c) 
$$\lim_{x\to\infty} \frac{3x^4-x^2}{6x^4+12}$$

(d) 
$$\lim_{x\to\pi/2} \frac{2\tan x}{\sec^2 x}$$

(e) 
$$\lim_{x\to 0} x \csc x$$

(f) 
$$\lim_{x\to\infty} x - \sqrt{x^2 - 1}$$

(g) 
$$\lim_{x\to 0^+} x^{2x}$$

(h) 
$$\lim_{x\to 0} (1+4x)^{3/x}$$

(i) 
$$\lim_{\theta \to \pi/2^-} (\tan \theta)^{\cos \theta}$$

2. Compare the growth rates of the following functions

(a) 
$$x^{10}$$
;  $e^{0.01x}$ 

(b) 
$$\ln \sqrt{x}$$
;  $\ln^2 x$ 

3. Evaluate this limit, which appeared in L'Hôpital's book.

$$\lim_{x \to a} \frac{\sqrt{2a^3x - x^4 - a\sqrt[3]{a^2x}}}{a - \sqrt[4]{ax^3}}$$

4. Consider the following limit

$$\lim_{x \to \infty} \frac{\sqrt{ax+b}}{\sqrt{cx+d}}$$

where a, b, c, d are all positive real numbers. What happens when L'Hôpital's rule is used? How else can the limit be found?

5. Find all antiderivatives

(a) 
$$g(x) = 11x^10$$

(b) 
$$f(x) = -4\cos(4x)$$

(c) 
$$f(y) = \frac{-2}{y^3}$$

6. Solve the indefinite integrals

(a) 
$$\int (3x^5 - 5x^9) dx$$

(b) 
$$\int (\sec^2 -1) dx$$

(c) 
$$\int \frac{3}{4+v^2} dx$$

7. Solve for the antiderivative using the initial conditions

(a) 
$$f(t) = \sec^2 t, F(\pi/4) = 1$$

(b) 
$$g'(x) = 7x(x^6 - \frac{1}{7}), g(1) = 24$$

(c) 
$$F''(x) = \cos x, F'(0) = 3, F(\pi) = 4$$