November 11

TA: Brian Powers

1. Evaluate the following limits
(a) $\lim _{x \rightarrow e} \frac{\ln x-1}{x-e}$

SOLUTION: If we were to plug in e we see that this takes the form $\frac{0}{0}$, therefore we may use L'Hôpital's Rule

$$
\lim _{x \rightarrow e} \frac{\ln x-1}{x-e}=\lim _{x \rightarrow e} \frac{1 / x}{1}=\frac{1}{e}
$$

(b) $\lim _{u \rightarrow \pi / 4} \frac{\tan u-\cot u}{u-\pi / 4}$

SOLUTION: If we were to plug in $\pi / 4$ we would get the form $\frac{\infty}{\infty}$, so we may use L'Hôpital's Rule

$$
\lim _{u \rightarrow \pi / 4} \frac{\tan u-\cot u}{u-\pi / 4}=\lim _{u \rightarrow \pi / 4} \frac{\sec ^{2} u+\csc ^{2} u}{1}=4
$$

(c) $\lim _{x \rightarrow \infty} \frac{3 x^{4}-x^{2}}{6 x^{4}+12}$

SOLUTION: If we were to "plug in " ∞, we would get the form $\frac{\infty}{\infty}$, so we may use L'Hôpital's Rule

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{3 x^{4}-x^{2}}{6 x^{4}+12} & =\lim _{x \rightarrow \infty} \frac{12 x^{3}-2 x}{24 x^{3}} \quad \text { use L'Hôpital's Rule } \\
& =\lim _{x \rightarrow \infty} \frac{36 x^{2}-2}{72 x^{2}} \quad \text { use L'Hôpital's Rule again } \\
& =\lim _{x \rightarrow \infty} \frac{72 x}{144 x} \quad \text { use L'Hôpital's Rule again } \\
& =\frac{1}{2}
\end{aligned}
$$

(d) $\lim _{x \rightarrow \pi / 2} \frac{2 \tan x}{\sec ^{2} x}$

SOLUTION: If we were to plug in $\pi / 2$ we would have the form $\frac{\infty}{\infty}$, so we may use L'Hôpital's Rule.

$$
\lim _{x \rightarrow \pi / 2} \frac{2 \tan x}{\sec ^{2} x}=\lim _{x \rightarrow \pi / 2} \frac{2 \sec ^{2} x}{2 \sec x(\sec x \tan x}=\lim _{x \rightarrow \pi / 2} \frac{1}{\tan x}=0
$$

(e) $\lim _{x \rightarrow 0} x \csc x$

SOLUTION: If we plug 0 in, we get the form $0 \cdot \infty$, so we must first recast this as a fraction. We could use either of these facts:

$$
x=\frac{1}{1 / x}(\text { if } x \neq 0), \text { or } \csc x=\frac{1}{\sin x}
$$

We would prefer to keep x in the numerator, because its derivative is simply 1 , whereas the derivative of $1 / x$ in the denominator is $-1 / x^{2}$. So let's use the second substitution.

$$
\lim _{x \rightarrow 0} x \csc x=\lim _{x \rightarrow 0} \frac{x}{\sin x}
$$

Now we may use L'Hôpital's Rule.

$$
\lim _{x \rightarrow 0} \frac{x}{\sin x}=\lim _{x \rightarrow 0} \frac{1}{\cos x}=1
$$

(f) $\lim _{x \rightarrow \infty} x-\sqrt{x^{2}-1}$

SOLUTION: If we "plug in" ∞ we have the form $\infty-\infty$, we must first factor out something to try to put it in the form of $\infty \cdot 0$. If we factor out x^{2} from the expression under the square root we get

$$
\lim _{x \rightarrow \infty} x-\sqrt{x^{2}-1}=\lim _{x \rightarrow \infty} x-x \sqrt{1-1 / x^{2}}=\lim _{x \rightarrow \infty} x\left(1-\sqrt{1-1 / x^{2}}\right)
$$

If we make a substitution that $t=\frac{1}{x}$, and we note

$$
\lim _{x \rightarrow \infty} t=\lim _{x \rightarrow \infty} \frac{1}{x}=0
$$

So the original limit becomes

$$
\lim _{x \rightarrow \infty} x\left(1-\sqrt{1-1 / x^{2}}=\lim _{t \rightarrow 0} \frac{1-\sqrt{1-t^{2}}}{t}\right.
$$

which is of the form $\frac{0}{0}$, so we may use L'Hôpital's Rule.

$$
\lim _{t \rightarrow 0} \frac{1-\sqrt{1-t^{2}}}{t}=\lim _{t \rightarrow 0}-\frac{1}{2}\left(1-t^{2}\right)^{-1 / 2}(-2 t)=0
$$

(g) $\lim _{x \rightarrow 0^{+}} x^{2 x}$

SOLUTION: To handle limits of the form $f(x)^{g(x)}$, we first find L, the limit of the logarithm.

$$
L=\lim _{x \rightarrow 0^{+}} 2 x \ln x
$$

We can write $x=\frac{1}{1 / x}$ to recast this as a fraction.

$$
L=\lim _{x \rightarrow 0^{+}} 2 x \ln x=\lim _{x \rightarrow 0^{+}} \frac{\ln x}{1 / x}
$$

This is of the form $\frac{\infty}{\infty}$, so we may use L'Hôpital's Rule.

$$
\lim _{x \rightarrow 0^{+}} \frac{\ln x}{1 / x}=\lim _{x \rightarrow 0^{+}} \frac{1 / x}{-1 / x^{2}}=\lim _{x \rightarrow 0^{+}}-x=0
$$

Since $L=0$, the original limit is $e^{L}=1$.
(h) $\lim _{x \rightarrow 0}(1+4 x)^{3 / x}$

SOLUTION: Again we must take the limit of the \log and find L.

$$
L=\lim _{x \rightarrow 0} \frac{3 \ln (1+4 x)}{x}
$$

Which is of the form $\frac{0}{0}$, so we may use L'Hôpital's Rule.

$$
\lim _{x \rightarrow 0} \frac{3 \ln (1+4 x)}{x}=\lim _{x \rightarrow 0} \frac{12}{1+4 x}=12
$$

The the original limit is $e^{1} 2$.
(i) $\lim _{\theta \rightarrow \pi / 2^{-}}(\tan \theta)^{\cos \theta}$

SOLUTION: Again we must take the limit of the log.

$$
L=\lim _{\theta \rightarrow \pi / 2^{-}} \cos \theta \ln (\tan \theta)
$$

This takes the form of $0 \cdot \infty$, we we recast it as a fraction.

$$
\lim _{\theta \rightarrow \pi / 2^{-}} \cos \theta \ln (\tan \theta)=\lim _{\theta \rightarrow \pi / 2^{-}} \frac{\ln (\tan \theta)}{\sec \theta}
$$

This takes the form $\frac{\infty}{\infty}$, so we may use L'Hôpital's Rule.

$$
\lim _{\theta \rightarrow \pi / 2^{-}} \frac{\ln (\tan \theta)}{\sec \theta}=\lim _{\theta \rightarrow \pi / 2^{-}} \frac{\sec ^{2} \theta}{\tan \theta \cdot \sec \theta \tan \theta}=\lim _{\theta \rightarrow \pi / 2^{-}} \frac{\sec \theta}{\tan ^{2} \theta}=\lim _{\theta \rightarrow \pi / 2^{-}} \frac{\cos \theta}{\sin ^{2} \theta}=0
$$

So the original limit is $e^{0}=1$
2. Compare the growth rates of the following functions
(a) $x^{10} ; e^{0.01 x}$

SOLUTION: To compare the growth rates, we evaluate the following limit

$$
\lim _{x \rightarrow \infty} \frac{x^{10}}{e^{0.01 x}}
$$

By applying L'Hôpital's Rule 10 times we finally get

$$
\lim _{x \rightarrow \infty} \frac{x^{10}}{e^{0.01 x}}=\lim _{x \rightarrow \infty} \frac{10!}{(0.01)^{1} 0 e^{0.01 x}}=0
$$

So the exponential function has a greater growth rate.
(b) $\ln \sqrt{x} ; \ln ^{2} x$

SOLUTION: To compare growth rates, we evaluate the following limit

$$
\lim _{x \rightarrow \infty} \frac{\ln \sqrt{x}}{\ln ^{2} x}
$$

Before using L'Hôpital's Rule, let's use log properties to re-write the numerator

$$
\lim _{x \rightarrow \infty} \frac{\ln \sqrt{x}}{\ln ^{2} x}=\lim _{x \rightarrow \infty} \frac{\frac{1}{2} \ln x}{\ln x \cdot \ln x}=\lim _{x \rightarrow \infty} \frac{1}{2 \ln x}=0
$$

So $\ln ^{2} x$ has a greater growth rate.
3. Evaluate this limit, which appeared in L'Hôpital's book.

$$
\lim _{x \rightarrow a} \frac{\sqrt{2 a^{3} x-x^{4}}-a \sqrt[3]{a^{2} x}}{a-\sqrt[4]{a x^{3}}}
$$

SOLUTION: If we plug in a, we get the form $\frac{0}{0}$, so we apply the rule.

$$
\begin{aligned}
\lim _{x \rightarrow a} \frac{\sqrt{2 a^{3} x-x^{4}}-a \sqrt[3]{a^{2} x}}{a-\sqrt[4]{a x^{3}}} & =\lim _{x \rightarrow a} \frac{\frac{1}{2}\left(2 a^{3} x-x^{4}\right)^{-1 / 2}\left(2 a^{3}-4 x^{3}\right)-\frac{a}{3}\left(a^{2} x\right)^{-2 / 3}\left(a^{2}\right)}{-\frac{1}{4}\left(a x^{3}\right)^{-37 / 4}\left(3 a x^{2}\right)} \\
& =\frac{\frac{1}{2}\left(2 a^{4}-a^{4}\right)^{-1 / 2}\left(2 a^{3}-4 a^{3}\right)-\frac{a^{3}}{3}\left(a^{3}\right)^{-2 / 3}}{-\frac{1}{4}\left(a^{4}\right)^{-3 / 4}\left(3 a^{3}\right)} \\
& =\frac{\frac{1}{2}\left(a^{-2}\left(-2 a^{3}\right)-\frac{a^{3}}{3} a^{-2}\right.}{-\frac{1}{4} a^{-3}\left(3 a^{3}\right)} \\
& =\frac{-a^{-6}-\frac{a^{-6}}{3}}{-\frac{3}{4}} \\
& =\frac{-\frac{4}{3} a^{-6}}{-\frac{3}{4}} \\
& =\frac{16}{9 a^{6}}
\end{aligned}
$$

4. Consider the following limit

$$
\lim _{x \rightarrow \infty} \frac{\sqrt{a x+b}}{\sqrt{c x+d}}
$$

where a, b, c, d are all positive real numbers. What happens when L'Hôpital's rule is used? How else can the limit be found?
SOLUTION: When L'Hôpital's rule is used, we just get

$$
\lim _{x \rightarrow \infty} \frac{\sqrt{c x+d}}{\sqrt{a x+b}}
$$

Which is basically where we started. But we forgot that this may be written

$$
\lim _{x \rightarrow \infty} \frac{\sqrt{a x+b}}{\sqrt{c x+d}}=\lim _{x \rightarrow \infty} \sqrt{\frac{a x+b}{c x+d}}=\sqrt{\lim _{x \rightarrow \infty} \frac{a x+b}{c x+d}}=\sqrt{\frac{a}{c}}
$$

5. Find all antiderivatives
(a) $g(x)=11 x^{10}$

SOLUTION: $G(x)=x^{11}$
(b) $f(x)=-4 \cos (4 x)$

SOLUTION: $F(x)=-\sin (4 x)$
(c) $f(y)=\frac{-2}{y^{3}}$

SOLUTION: $F(y)=\frac{1}{y^{2}}$
6. Solve the indefinite integrals
(a) $\int\left(3 x^{5}-5 x^{9}\right) d x$

SOLUTION: $\int\left(3 x^{5}-5 x^{9}\right) d x=\frac{3}{6} x^{6}-\frac{5}{10} x^{10}+C$
(b) $\int\left(\sec ^{2}-1\right) d x$

SOLUTION: $\int\left(\sec ^{2}-1\right) d x=\tan x-x+C$
(c) $\int \frac{3}{4+x^{2}} d x$

SOLUTION: We recognize the pattern of $\tan ^{-1}$, but it's not quite right. First we should factor out $\frac{3}{4}$

$$
\int \frac{3}{4+x^{2}} d x=\frac{3}{4} \int \frac{1}{1+x^{2} / 4} d x
$$

Now we can make a substitution, letting $u=x / 2$, so $d u=d x / 2$ which means $d x=2 d u$

$$
\frac{3}{4} \int \frac{1}{1+x^{2} / 4} d x=\frac{3}{4} \int \frac{2}{1+u^{2}} d u=\frac{3}{2} \tan ^{-1} u+C=\frac{3}{2} \tan ^{-1}\left(\frac{x}{2}\right)+C
$$

7. Solve for the antiderivative using the initial conditions
(a) $f(t)=\sec ^{2} t, F(\pi / 4)=1$

SOLUTION: $F(t)=\tan t+C$, so plugging in $\pi / 4$ we have $1=1+C$, so $C=0$. The final answer is $F(t)=\tan t$.
(b) $g^{\prime}(x)=7 x\left(x^{6}-\frac{1}{7}\right), g(1)=24$

SOLUTION: Rewrite $g^{\prime}(x)=7 x^{7}-x$. So $g(x)=\frac{7}{8} x^{8}-\frac{1}{2} x^{2}+C$. Plugging in 1 we have $24=\frac{7}{8}-\frac{1}{2}+C$ so $C=23.625$. Finally the answer is $g(x)=\frac{7}{8} x^{8}-\frac{1}{2} x^{2}+23.625$
(c) $F^{\prime \prime}(x)=\cos x, F^{\prime}(0)=3, F(\pi)=4$

SOLUTION: $F^{\prime}(x)=\sin x+C$, and plugging in 0 we get $3=C$. So we have $F^{\prime}(x)=\sin x+3$. Then $F(x)=-\cos x+3 x+K$, (so we aren't reusing letters). Using the initial condition, we get $4=1+3 \pi+K$, so $K=3-3 \pi$. Thus $F(x)=-\cos x+3 x+3-3 \pi$.

