November 20

TA: Brian Powers

1. Evaluate the following definite integrals
(a) $\int_{0}^{2} 4 x^{3} d x$ SOLUTION:

$$
\int_{0}^{2} 4 x^{3} d x=\left.x^{4}\right|_{0} ^{2}=2^{4}-0=16
$$

(b) $\int_{0}^{\pi / 4} 2 \cos x d x$

SOLUTION:

$$
\int_{0}^{\pi / 4} 2 \cos x d x=\left.2 \sin x\right|_{0} ^{\pi / 4}=2 \sin \left(\frac{\pi}{4}\right)-2 \sin (0)=2 \frac{\sqrt{2}}{2}=\sqrt{2}
$$

(c) $\int_{-2}^{2}\left(x^{2}-4\right) d x$ SOLUTION:

$$
\int_{-2}^{2}\left(x^{2}-4\right) d x=\frac{1}{3} x^{3}-\left.4 x\right|_{-2} ^{2}=\frac{8}{3}-8-\left(\frac{-8}{3}+8\right)=-\frac{32}{3}
$$

(d) $\int_{0}^{1 / 2} \frac{d x}{\sqrt{1-x^{2}}}$

SOLUTION:

$$
\int_{0}^{1 / 2} \frac{d x}{\sqrt{1-x^{2}}}=\left.\sin ^{-1} x\right|_{0} ^{1 / 2}=\sin ^{-1}(1 / 2)-\sin ^{-1}(0)=\frac{\pi}{6}-0=\frac{\pi}{6}
$$

(e) $\int_{0}^{1} 10 e^{2 x} d x$

SOLUTION:

$$
\int_{0}^{1} 10 e^{2 x} d x=\left.\frac{10}{2} e^{2 x}\right|_{0} ^{1}=5 e^{2}-5 e^{0}=5 e^{2}-5
$$

(f) $\int_{1}^{3} \frac{3}{t} d t$

SOLUTION:

$$
\int_{1}^{3} \frac{3}{t} d t=3 \ln |t|_{1}^{3}=3 \ln 3-3 \ln 1=3 \ln 3
$$

2. Find the area of the region bounded by the x-axis, and $y=4-x^{2}$. The x intercepts are at $x= \pm 2$ so we want to evaluate the integral

$$
\int_{-2}^{2}\left(4-x^{2}\right) d x
$$

But this is just the negative of 1c, so this will come to $-\left(-\frac{32}{3}\right)=\frac{32}{3}$.
3. Simplify the following expressions using the FTC.
(a) $\frac{d}{d x} \int_{3}^{x}\left(t^{2}+t+1\right) d t$

SOLUTION:

$\frac{d}{d x} \int_{3}^{x}\left(t^{2}+t+1\right) d t=\frac{d}{d x}\left(\frac{1}{3} t^{3}+\frac{1}{2} t^{2}+\left.t\right|_{3} ^{x}\right)=\frac{d}{d x}\left(\frac{1}{3} x^{3}+\frac{1}{2} x^{2}+x-\left(\frac{27}{3}+\frac{9}{2}+3\right)\right)=x^{2}+x+1$
Although we could have jumped immediately to the final answer using the fundamental theorem of calculus.
(b) $\frac{d}{d x} \int_{x^{2}}^{10} \frac{d z}{z^{2}+1}$

$$
\begin{array}{rlr}
\frac{d}{d x} \int_{x^{2}}^{10} \frac{d z}{z^{2}+1} & =-\frac{d}{d x} \int_{10}^{x^{2}} \frac{d z}{z^{2}+1} \text { swapping the bounds changes the sign } \\
& =\frac{1}{\left(x^{2}\right)^{2}+1}(2 x) \quad \text { by the FTC }
\end{array}
$$

(c) $\frac{d}{d x} \int_{e^{x}}^{e^{2 x}} \ln t^{2} d t$

$$
\begin{aligned}
& \text { SOLUTION: } \\
& \begin{array}{rlr}
\frac{d}{d x} \int_{e^{x}}^{e^{2 x}} \ln t^{2} d t & =\frac{d}{d x}\left(\int_{e^{x}}^{1} \ln t^{2} d t+\int_{1}^{e^{2 x}} \ln t^{2} d t\right) & \text { You may split the integral anywhere on the domain } \\
& =\frac{d}{d x} \int_{e^{x}}^{1} \ln t^{2} d t+\frac{d}{d x} \int_{1}^{e^{2 x}} \ln t^{2} d t & \text { swap bounds changes sign } \\
& =-\frac{d}{d x} \int_{1}^{e^{x}} \ln t^{2} d t+\frac{d}{d x} \int_{1}^{e^{2 x}} \ln t^{2} d t & \text { distribute differential operator } \\
& =-\ln \left(e^{x}\right)^{2}+\ln \left(e^{2 x}\right)^{2}
\end{array} \text { by FTC }
\end{aligned}
$$

4. Evaluate the following definite integrals
(a) $\frac{1}{2} \int_{0}^{\ln 2} e^{x} d x$

SOLUTION:

$$
\frac{1}{2} \int_{0}^{\ln 2} e^{x} d x=\left.\frac{1}{2} e^{x}\right|_{0} ^{\ln 2}=\frac{1}{2}\left(e^{\ln 2}-e^{0}\right)=\frac{1}{2}(2-1)=\frac{1}{2}
$$

(b) $\int_{\sqrt{2}}^{2} \frac{d x}{x \sqrt{x^{2}-1}}$

SOLUTION:

$$
\int_{\sqrt{2}}^{2} \frac{d x}{x \sqrt{x^{2}-1}}=\left.\sec ^{-1} x\right|_{\sqrt{2}} ^{2}=\sec ^{-1}(2)-\sec ^{-1}(\sqrt{2})=\frac{\pi}{3}-\frac{\pi}{4}=\frac{\pi}{12}
$$

5. What value of $b>-1$ maximizes the integral

$$
\int_{-1}^{b} x^{2}(3-x) d x
$$

SOLUTION: The integral, call it $A(b)$ is

$$
A(b)=\int_{-1}^{b} x^{2}(3-x) d x=\int_{-1}^{b}\left(3 x^{2}-x^{3}\right) d x=x^{3}-\left.\frac{x^{4}}{4}\right|_{-1} ^{b}=b^{3}-\frac{b^{2}}{4}-1-\frac{1}{4}
$$

The first derivative of this with respect to b is simply $A^{\prime}(b)=b^{2}(3-b)$, (we could have figured that out without doing any antiderivatives) which has zeroes at 0 and 3 . These are the critical points. We can plug in these into the function to find which maximizes the definite integral. We'll find that $A(3)=27-\frac{9}{4}-\frac{5}{4}=24$ is the maximum, so $b=3$ maximizes the integral.
6. Suppose f is a continuous function of t on $[0, \infty)$ and $A(x)$ is the net area of the region bounded by the graph of f and the t-axis on $[0, x]$. Show that the local maxima and minima of A occur at the zeroes of f. Verify this with $f(t)=t^{2}-10 t$.
SOLUTION: $A(x)=\int_{0}^{x} f(t) d t$. The derivative, $A^{\prime}(x)=\frac{d}{d x} \int_{0}^{x} f(t) d t=f(x)$ by the fundamental theorem of calculus. The critical points of A will be among the zeroes of f (since f is continuous, this means that the derivative of A is continuous, so it is defined everywhere, it has no cusps or corners). So Local minima and maxima of the area must be zeroes of f.
For example, let $A(x)=\int_{0}^{x}\left(t^{2}-10 t\right) d t=\frac{1}{3} x^{3}-5 x$. If we want to find the critical points of this function, we take its derivative. $A^{\prime}(x)=x^{2}-10 x=x(x-10)$. So its critical points are 0 and 10 which are a local minimum and maximum respectively.

