November 25

TA: Brian Powers

1. Use symmetry to evaluate these integrals
(a) $\int_{-\pi / 4}^{\pi / 4} \cos x d x$
(b) $\int_{-10}^{10} \frac{x}{\sqrt{200-x^{2}}} d x$
(c) $\int_{0}^{2 \pi} \sin x d x$
2. Find the average value of the following functions on the interval given
(a) $f(x)=1 / x ;[1, e]$
(b) $f(x)=x(1-x) ;[0,1]$
3. Find the appropriate point in the interval where the function equals its average value.
(a) $f(x)=e^{x} ;[0,2]$
(b) $f(x)=1-|x| ;[-1,1]$
4. Show that the area of a segment of a parabola is $4 / 3$ that of the inscribed triangle of greatest area. Specificaly, show that the area bounded by $y=a^{2}-x^{2}$ and the x-axis is $4 / 3$ the area of the triangle with vertices at $(\pm a, 0)$ and $\left(0, a^{2}\right)$. Let $a>0$ be an arbitrary constant.
5. Use a change of variables (substitution) to find the following integrals
(a) $\int 2 x\left(x^{2}-1\right)^{99} d x$
(b) $\int x^{3}\left(x^{4}+16\right)^{6} d x$
(c) $\int 2 x \sin \left(x^{2}\right) d x$
(d) $\int \frac{x^{2}}{(x+1)^{4}} d x$
(e) $\int(x+1) \sqrt{3 x+2} d x$
(f) $\int_{0}^{1} 2 x\left(4-x^{2}\right) d x$
(g) $\int_{0}^{\pi / 2} \sin ^{2} \theta \cos \theta d \theta$
(h) $\int_{0}^{4} \frac{p}{\sqrt{9+p^{2}}} d p$
