November 25

TA: Brian Powers

1. Use symmetry to evaluate these integrals
(a) $\int_{-\pi / 4}^{\pi / 4} \cos x d x$

SOLUTION: Since the cosine function is an evan function, and the interval is syummetric to the y-axis, it suffices to double the integral on $[0, \pi / 4]$.

$$
\int_{-\pi / 4}^{\pi / 4} \cos x d x=2 \int_{0}^{\pi / 4} \cos x d x=\left.2 \sin x\right|_{0} ^{\pi / 4}=2 \frac{\sqrt{2}}{2}-0=\sqrt{2}
$$

(b) $\int_{-10}^{10} \frac{x}{\sqrt{200-x^{2}}} d x$ SOLUTION: Since the numerator is an odd function and the denominator is an even function, this function is odd. Since the interval is symmetric to the y-axis, the definite integral will be zero.
(c) $\int_{0}^{2 \pi} \sin x d x$

SOLUTION: The function is an odd function, and since it is periodic, we may argue that

$$
\int_{0}^{2 \pi} \sin x d x=\int_{0}^{\pi} \sin x d x+\int_{\pi}^{2 \pi} \sin x d x=\int_{0}^{\pi} \sin x d x+\int_{-\pi}^{0} \sin x d x=\int_{-\pi}^{\pi} \sin x d x
$$

If we write it like this, the interval is symmetric to the y-axis, and we can justify that the definite integral will evaluate to zero.
2. Find the average value of the following functions on the interval given
(a) $f(x)=1 / x ;[1, e]$

SOLUTION: The average value of the function is found by evaluating

$$
\frac{1}{e-1} \int_{1}^{e} \frac{1}{x} d x=\frac{1}{e-1}[\ln x]_{1}^{e}=\frac{\ln e-\ln 1}{e-1}=\frac{1}{e-1}
$$

(b) $f(x)=x(1-x) ;[0,1]$

SOLUTION:

$$
\frac{1}{1-0} \int_{0}^{1}\left(x-x^{2}\right) d x=\frac{1}{1}\left[\frac{1}{2} x^{2}-\frac{1}{3} x^{3}\right]_{0}^{1}=\frac{1}{2}-\frac{1}{3}=\frac{1}{6}
$$

3. Find the appropriate point in the interval where the function equals its average value.
(a) $f(x)=e^{x} ;[0,2]$

SOLUTION: The everage value is

$$
\frac{1}{2} \int_{0}^{2} e^{x} d x=\frac{1}{2}\left[e^{x}\right]_{0}^{2}=\frac{e^{2}-1}{2}
$$

To find the point where the function equals this, just set the function equal and solve for x .

$$
\begin{aligned}
e^{x} & =\frac{e^{2}-1}{2} \\
x & =\ln \left(\frac{e^{2}-1}{2}\right)
\end{aligned}
$$

(b) $f(x)=1-|x| ;[-1,1]$

SOLUTION: The average value is found using symmetry

$$
\frac{1}{2} \int_{-1}^{1}(1-|x|) d x=\frac{1}{2} 2 \int_{0}^{1}(1-x) d x=\left[x-\frac{1}{2} x^{2}\right]_{0}^{1}=\frac{1}{2}
$$

. Setting the function equal we get:

$$
\begin{aligned}
1-|x| & =\frac{1}{2} \\
|x| & =\frac{1}{2} \\
x & = \pm \frac{1}{2}
\end{aligned}
$$

4. Show that the area of a segment of a parabola is $4 / 3$ that of the inscribed triangle of greatest area. Specificaly, show that the area bounded by $y=a^{2}-x^{2}$ and the x-axis is $4 / 3$ the area of the triangle with vertices at $(\pm a, 0)$ and $\left(0, a^{2}\right)$. Let $a>0$ be an arbitrary constant.
SOLUTION: The parabola will intersect the x-axis when $0=a^{2}-x^{2}$ or $x= \pm a$. The area under the parabola is

$$
\int_{-a}^{a}\left(a^{2}-x^{2}\right) d x=2 \int_{0}^{a}\left(a^{2}-x^{2}\right) d x=2\left[a^{2} x-\frac{1}{3} x^{3}\right]_{0}^{a}=2\left(a^{3}-\frac{1}{3} a^{3}\right)=\frac{4 a^{3}}{3}
$$

The area under a triangle as described (with base $2 a$ and height a^{2}) is

$$
\frac{1}{2} 2 a a^{2}=a^{3}
$$

We can see that the ratio of their areas is $\frac{4}{3}$.
5. Use a change of variables (substitution) to find the following integrals
(a) $\int 2 x\left(x^{2}-1\right)^{99} d x$

SOLUTION: Let $u=x^{2}-1, d u=2 x d x$ we have

$$
\begin{aligned}
\int 2 x\left(x^{2}-1\right)^{99} d x & =\int u^{99} d u \\
& =\frac{1}{100} u^{100}+C \\
& =\frac{1}{100}\left(x^{2}-1\right)^{100}+C
\end{aligned}
$$

(b) $\int x^{3}\left(x^{4}+16\right)^{6} d x$

SOLUTION: Let $u=x^{4}+16, d u=4 x^{3} d x$, so $x^{3} d x=\frac{1}{4} d u$. The substitution can be made

$$
\begin{aligned}
\int x^{3}\left(x^{4}+16\right)^{6} d x & =\int \frac{1}{4} u^{6} d u \\
& =\frac{7}{4} u^{7}+C \\
& =\frac{7}{4}\left(x^{4}+16\right)^{7}+C
\end{aligned}
$$

(c) $\int 2 x \sin \left(x^{2}\right) d x$

Let $u=x^{2}, d u=2 x d x$, we have
(d) $\int \frac{x^{2}}{(x+1)^{4}} d x$

SOLUTION: Letting $u=x+1, d u=d x$. This may not seem to make a big difference, but it will help. We need to use the substitution $x=u-1$.

$$
\begin{aligned}
\int \frac{x^{2}}{(x+1)^{4}} d x & =\int \frac{(u-1)^{2}}{u^{4}} d u \\
& =\int \frac{u^{2}-2 u+1}{u^{4}} d u \\
& =\int\left(\frac{u^{2}}{u^{4}}-2 \frac{u}{u^{4}}+\frac{1}{u^{4}}\right) d u \\
& =\int\left(u^{-2}-2 u^{-3}+u^{-4}\right) d u \\
& =-u^{-1}-\frac{2}{-2} u^{-2}+\frac{1}{-3} u^{-3}+C
\end{aligned}
$$

(e) $\int(x+1) \sqrt{3 x+2} d x$

SOLUTION: Let $u=3 x+2$, so $d u=3 d x$ or $d x=\frac{1}{3} d u$. We may re-write the u substitution $u+1=3 x+3$ or $x+1=\frac{1}{3}(u+1)$. Then we have all we need to make some substitutions.

$$
\begin{aligned}
\int(x+1) \sqrt{3 x+2} d x & =\int \frac{1}{3}(u+1) \sqrt{u} \frac{1}{3} d u \\
& =\frac{1}{9} \int\left(u^{3 / 2}+u^{1 / 2}\right) d u \\
& =\frac{1}{9}\left(\frac{2}{5} u^{5 / 2}+\frac{2}{3} u^{3 / 2}\right)+C \\
& =\frac{1}{9}\left(\frac{2}{5}(3 x+2)^{5 / 2}+\frac{2}{3}(3 x+2)^{3 / 2}\right)+C
\end{aligned}
$$

(f) $\int_{0}^{1} 2 x\left(4-x^{2}\right) d x$

SOLUTION: First, let $u=4-x^{2}$, so $d u=-2 x d x$, then $2 x d x=-d u$. Since this is a definite integral, we should convert the bounds from x values to u values using the u substitution rule. The lower bound becomes $4-0^{2}=4$, the upper bound becomes $4-1^{2}=3$

$$
\begin{aligned}
\int_{0}^{1} 2 x\left(4-x^{2}\right) d x & =\int_{4}^{3}-u d u \\
& =-\left[\frac{1}{2} u^{2}\right]_{4}^{3} \\
& =-\frac{1}{2}(9-16) \\
& =\frac{7}{2}
\end{aligned}
$$

(g) $\int_{0}^{\pi / 2} \sin ^{2} \theta \cos \theta d \theta$

SOLUTION: Here we let $u=\sin \theta$ so $d u=\cos \theta d \theta$. The lower bound maps to $\sin 0=0$, the
upper bound maps to $\sin (\pi / 2)=1$.

$$
\begin{aligned}
\int_{0}^{\pi / 2} \sin ^{2} \theta \cos \theta d \theta & =\int_{0}^{1} u^{2} d u \\
& =\left[\frac{1}{3} u^{3}\right]_{0}^{1} \\
& =\frac{1}{3}
\end{aligned}
$$

(h) $\int_{0}^{4} \frac{p}{\sqrt{9+p^{2}}} d p$

SOLUTION: Here if we let $u=9+p^{2}, d u=2 p d p$ so $p d p=\frac{1}{2} d u$. The lower bound is $9+0^{2}=9$, the upper bound is $9+4^{2}=25$.

$$
\begin{aligned}
\int_{0}^{4} \frac{p}{\sqrt{9+p^{2}}} d p & =\int_{9}^{25} \frac{1}{2} \frac{1}{\sqrt{u}} d u \\
& =\frac{1}{2} \int_{9}^{25} u^{-1 / 2} d u \\
& =\frac{1}{2}\left[2 u^{1 / 2}\right]_{9}^{25} \\
& =5-3 \\
& =2
\end{aligned}
$$

