Math 180: Calculus I

Fall 2014

December 2

TA: Brian Powers

Final Exam Review Topics

I mai Enam Review Topico	
Here is the list of integral rules you should know.	
$\int (f(x) + g(x)) dx = \int f(x) dx + \int g(x) dx$	Addition Rule
$\int cf(x)dx = c \int f(x)dx$	Constant Scalar Rule
$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$	
$\int_{a}^{a} f(x)dx = 0$	
$\int_{b}^{a} f(x)dx = -\int_{a}^{b} f(x)dx$	
$\int_{a}^{b} f(x)dx = F(b) - F(a)$	Fundamental Theorem of Calculus
$\frac{d}{dx}\int_{a}^{x}f(t)dt = f(x)$	
$\frac{d}{dx} \int_{a}^{g(x)} f(t)dt = f(g(x))g'(x)$	
$\int k dx = kx + C$	
$\int x^n dx = \frac{1}{n+1}x^{n+1} + C$	if $n \neq -1$
$\int \frac{1}{x} dx = \ln x + C$	
$\int e^x dx = e^x + C$	
$\int b^x dx = \frac{1}{\ln b} b^x + C$	
$\int \cos x dx = \sin x + C$	Trig Functions
$\int \sin x dx = -\cos x + C$	
$\int \sec^2 x dx = \tan x + C$	
$\int \tan x \sec x dx = \sec x + C$	
$\int \csc^2 x dx = \cot x + C$	
$\int \cot x \csc x dx = \csc x + C$	
$\int \frac{1}{\sqrt{1-x^2}} dx = \sin^{-1} x + C$	Inverse Trig Functions
$\int \frac{1}{x^2 + 1} dx = \tan^{-1} x + C$	

And the things you should be able to do: Limits

- Take limits of complicated functions (including absolute values)
- Squeeze Theorem for Limits (and how to properly justify your use of it)
- Use L'Hôpital's Rule (Handle forms $\frac{0}{0},\frac{\infty}{\infty},0\cdot\infty,\infty-\infty,f(x)^{g(x)})$

Derivatives

- Evaluate derivative as a limit of difference quotient
- Take derivatives (Chain rule, product rule, quotient rule, trig functions, inverse trig functions, etc)
- Find equation of a tangent line
- Implicit Differentiation

Applications of Derivatives

- Optimization Problems
- Related rates
- Find absolute extrema on an interval
- Analyze a function (Find and classify critical points, intervals of increasing/decreasing, intervals of concavity, zeroes, asymptotes)
- Linear approximation (and state whether it is an under or over estimate) and do this with minimal guidance
- Use Intermediate Value Theorem
- use Mean Value Theorem and Rolle's theorem

Integrals

- Integrals (definite & indefinite, substitution rule, polynomials, trig functions, exponential functions)
- Use Fundamental Theorem of Calculus