September 16

TA: Brian Powers

1. Use the definition of derivative to find the slope of the tangent line at P, and the equation of the tangent line.
(a) $f(x)=-3 x^{2}-5 x+1 \quad P(1,-7)$

SOLUTION:
For polynomials, multiply out the numerator and the factor out an h.

$$
\begin{aligned}
\lim _{h \rightarrow 0} f(1+h)-f(1) h & =\lim _{h \rightarrow 0} \frac{\left(-3(1+h)^{2}-5(1+h)+1\right)-(-7)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(-3\left(1+2 h+h^{2}\right)-5-5 h+1\right)+7}{h} \\
& =\lim _{h \rightarrow 0} \frac{-7-11 h-3 h^{2}+7}{h} \\
& =\lim _{h \rightarrow 0} \frac{(-11-3 h) h}{\not h} \\
& =-11
\end{aligned}
$$

The tangent line is $\left(y-y_{1}\right)=m\left(x-x_{1}\right)$ which is $y+7=-11(x-1)$.
(b) $g(x)=\frac{1}{3-2 x} \quad P\left(-1, \frac{1}{5}\right)$

SOLUTION:

For rational functions like this, we first add the fractions in the numerator by getting common denominators.

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{f(-1+h)-f(-1)}{h} & =\lim _{h \rightarrow 0} \frac{\frac{1}{3-2(-1+h)}-\frac{1}{5}}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{1}{5-2 h}-\frac{1}{5}\right) \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{5}{5(5-2 h)}-\frac{5-2 h}{5(5-2 h)}\right) \\
& =\lim _{h \rightarrow 0} \frac{1}{h h} \frac{2 h}{25-10 h} \\
& =\frac{2}{25}
\end{aligned}
$$

The tangent line is $y-\frac{1}{5}=\frac{2}{25}(x+1)$.
(c) $h(x)=\sqrt{x-1} \quad P(2,1)$

SOLUTION:

When dealing with roots, multiplying by the conjugate will usually work.

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h} & =\lim _{h \rightarrow 0} \frac{\sqrt{2+h-1}-1}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{1+h}-1}{h} \frac{(\sqrt{1+h}+1)}{(\sqrt{1+h}+1)} \\
& =\lim _{h \rightarrow 0} \frac{(1+h)-1}{h(\sqrt{1+h}+1)} \\
& =\lim _{h \rightarrow 0} \frac{h}{h(\sqrt{1+h}+1)} \\
& =\frac{1}{2}
\end{aligned}
$$

The tangent line is $y-1=\frac{1}{2}(x-2)$.
2. Show the statement is true or find a counterexample
(a) For linear functions, the slope of any secant line always equals the slope of any tangent line.

TRUE: A secant line drawn between any two points on the graph will have the same slope m as the linear function, which is the same as the slope of the tangent line the tangent line is in fact the same as the function itself.
(b) The slope of the secant line between P and Q is less than the slope of the tangent line at P.

FALSE: This is true for what are called concave functions, but there are many counter examples. $y=x^{2}$, with $P(0,0)$ and $Q(1,1)$ for example.
(c) If f is differentiable for all values of x, then f is continuous for all values of x.

TRUE: In order for a function to be differentiable at a point, it must be continuous at that point.
(d) It is possible for the domain of f to be (a, b), but the domain of f^{\prime} is $[a, b]$.

FALSE: The function as described is not continuous at a or b, so the function could not be differentiable there.
3. Sketch a function f such that: $f(1)=3, f^{\prime}(1)=-1, f(4)=2, f^{\prime}(4)=0$.

SOLUTION:

You want to start by plotting the points $(1,3)$ and $(4,2)$ and draw the tangent line going through those with the slope equal to the derivative, like so:

Now just draw any curve (piece-wise, continuous or whatever) that is differentiable AT THOSE TWO POINTS (at least), though it could be differentiable everywhere if you want.

4. Show using the definition of a derivative that $f(x)=|x+2|$ is not differentiable at $x=-2$.

SOLUTION: The If $f(x)$ was differentiable at $x=-2$ then we could calculate the following limit:

$$
\lim _{h \rightarrow 0} \frac{f(-2+h)-f(-2)}{h}=\lim _{h \rightarrow 0} \frac{|-2+h+2|-|-2+2|}{h}
$$

But simplifying we get

$$
\lim _{h \rightarrow 0} \frac{|h|}{h}
$$

which as we know does not exist! (To verify, the left hand limit is -1 , while the right hand limit is 1). So $f(x)$ is not differentiable at $x=-2$.
5. Calculate the following derivatives (no need to use the definition of a derivative).
(a) $f(x)=4 x^{2}+3 x-2$

SOLUTION: $f^{\prime}(x)=(2) 4 x^{2-1}+(1) 3 x^{1-1}-0=8 x+3$
(b) $g(x)=7$

SOLUTION: $g^{\prime}(x)=0$ because g is a constant function.
(c) $h(x)=a x+b$, where a and b are constants.

SOLUTION: $h^{\prime}(x)=(1) a x^{1-1}+0=a$
(d) $s(x)=\sqrt{x^{5}}$

SOLUTION: It's easier to write $s(x)=x^{5 / 2}$ and use the power rule.
$s^{\prime}(x)=\frac{5}{2} x^{5 / 2-2 / 2}=\frac{5}{2} x^{3 / 2}$
(e) $t(x)=9 \sqrt{x}+\frac{1}{3 x^{2}}$

SOLUTION: Again, it's easier to write $t(x)=9 x^{1 / 2}+\frac{1}{3} x^{-2}$ and use the power rule.
$t^{\prime}(x)=\frac{1}{2} 9 x^{1 / 2-2 / 2}+(-2) \frac{1}{3} x^{-2-1}=\frac{9}{2} x^{-1 / 2}-\frac{2}{3} x^{-3}$.
(f) $u(x)=7 e^{x}+x^{3}$

SOLUTION: $u^{\prime}(x)=7 e^{x}+3 x^{2}$ using the fact that the derivative of e^{x} is itself, and the power rule \& sum rule.
(g) $v(x)=\left(x^{2}+1\right)^{2}$ (no product rule or chain rule unless it's been covered in lecture)

SOLUTION: Just multiply it out and use the power rule. $v(x)=x^{4}+2 x^{2}+1$, so $v^{\prime}(x)=4 x^{3}+4 x$.
6. Find x values where the slope of $f(x)=2 x^{3}-3 x^{2}-12 x+4$ is zero.

SOLUTION:

First we must find the first derivative. Use the power rule.

$$
f^{\prime}(x)=(3) 2 x^{3-1}-(2) 3 x^{2-1}-(1) 12 x^{1-1}+0=6 x^{2}-6 x-12
$$

Now we set this equal to zero and solve for x.

$$
\begin{aligned}
0 & =6 x^{2}-6 x-12 \\
& =6\left(x^{2}-x-2\right) \\
& =6(x-2)(x+1)
\end{aligned}
$$

So the slope of the function is zero at $x=2$ and $x=-1$.

