September 2

TA: Brian Powers

1.1 Limits of Special Functions

1. Constant Functions: if $f(x)=c$, then $\lim _{x \rightarrow a} f(x)=c$
2. Linear, Polynomial, Sine, Cosine: $\lim _{x \rightarrow a} f(x)=f(a)$
3. Rational Functions: Factor, Cancel, Hope (that when you plug in a you're not dividing by zero). If you're not, then $\lim _{x \rightarrow a} f(x)=L$ for the value the reduced function at a. If you are dividing by zero, it may be that the limit does not exist (is $-\infty$ or ∞).

1.2 Techniques

Plug In Method: for nicely behaved functions as above.
Rational Functions: factor the numerator and denominator. Cancel common factors. If you are still dividing by zero when plugging in a, then the limit does not exist.
Conjugate Method: If the denominator is of the form $a-b$ then multiplying the numerator and denominator by $a+b$ may do the trick.
Combine Fractions Method: If the numerator has a nasty sum of fractions in it, then by adding the fractions by getting common denominators may lead you to a simplification of the function.

1.3 Limit Laws

Provided $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ exist,

$$
\begin{aligned}
\text { Sum Law } & \lim _{x \rightarrow a}[f(x)+g(x)]=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x) \\
\text { Difference Law } & \lim _{x \rightarrow a}[f(x)-g(x)]=\lim _{x \rightarrow a} f(x)-\lim _{x \rightarrow a} g(x) \\
\text { Scalar Multple Law } & \lim _{x \rightarrow a}[c f(x)]=c \lim _{x \rightarrow a} f(x) \text { for any constant } c \\
\text { Product Law } & \lim _{x \rightarrow a}[f(x) \cdot g(x)]=\left[\lim _{x \rightarrow a} f(x)\right] \cdot\left[\lim _{x \rightarrow a} g(x)\right] \\
\text { Quotient Law } & \lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)} \text { so long as } \lim _{x \rightarrow a} g(x) \neq 0 \\
\text { Power Law } & \lim _{x \rightarrow a}\left[f(x)^{n}\right]=\left[\lim _{x \rightarrow a} f(x)\right]^{n} \\
\text { Fractional Powers Law } & \lim _{x \rightarrow a}\left[f(x)^{m / n}\right]=\left[\lim _{x \rightarrow a} f(x)\right]^{m / n}
\end{aligned}
$$

1.4 Examples

Example 1.1 If $\lim _{x \rightarrow 1} f(x)=8, \lim _{x \rightarrow 1} g(x)=3, \lim _{x \rightarrow 1} h(x)=2$, evaluate:

1. $\lim _{x \rightarrow 1} f(x) h(x)$
2. $\lim _{x \rightarrow 1} \frac{f(x)}{g(x)-h(x)}$
3. $\lim _{x \rightarrow 1} \sqrt[3]{f(x) g(x)+3}$

$$
\begin{aligned}
\lim _{x \rightarrow 1} f(x) h(x) & =\lim _{x \rightarrow 1} f(x) \cdot \lim _{x \rightarrow 1} h(x) \text { by the Product Law } \\
& =8 \cdot 2 \\
& =16
\end{aligned}
$$

$$
\begin{aligned}
\lim _{x \rightarrow 1} \frac{f(x)}{g(x)-h(x)} & =\frac{\lim _{x \rightarrow 1} f(x)}{\lim _{x \rightarrow 1}[g(x)-h(x)]} \text { by the Quotient Law } \\
& =\frac{\lim _{x \rightarrow 1} f(x)}{\lim _{x \rightarrow 1} g(x)-\lim _{x \rightarrow 1} h(x)} \text { by the Subtraction Law } \\
& =\frac{8}{3-2} \\
& =8
\end{aligned}
$$

$\lim _{x \rightarrow 1} \sqrt[3]{f(x) g(x)+3}=\sqrt[3]{\lim _{x \rightarrow 1}[f(x) g(x)+3]}$ by the Fractional Power Law $=\sqrt[3]{\lim _{x \rightarrow 1}[f(x) g(x)]+\lim _{x \rightarrow 1} 3}$ by the Sum Law $=\sqrt[3]{\lim _{x \rightarrow 1} f(x) \cdot \lim _{x \rightarrow 1} g(x)+\lim _{x \rightarrow 1} 3}$ by the Product Law $=\sqrt[3]{8 \cdot 3+3}$ by substitution and limit of constant function
$=\sqrt[3]{27}$

$$
=3
$$

Example 1.2 True or False: if $g(a)=0$, then $\lim _{x \rightarrow a} \frac{f(a)}{g(a)}$ does not exist
FALSE: Just because $g(a)=0$ does not mean $\lim _{x \rightarrow a} g(x)=0$. As a counter-example, consider

$$
g(x)=\left\{\begin{array}{l}
1 \text { if } x \neq a \\
0 \text { if } x=a
\end{array}\right.
$$

$g(a)=0$, but $\lim _{x \rightarrow a} g(x)=1$.
Example 1.3 True or False: If $\lim _{x \rightarrow a} f(x)=L$ and $\lim _{x \rightarrow a} g(x)=L$ for some number L, then $f(a)=$ $g(a)$.

FALSE: Again, the value of the function at a does not have to be the limit as $x \rightarrow a$. Simply consider $f(x)=1$ and $g(x)$ as defined above. As $x \rightarrow a$ both functions have the limit 1 , but the functions do not take the same value when $x=a$.

Example 1.4 Evaluate:

1. $\lim _{h \rightarrow 0} \frac{100}{(10 h-1)^{11}+2}$
2. $\lim _{x \rightarrow c} \frac{x^{2}-2 c x+x^{2}}{x-c}$
3. $\lim _{x \rightarrow 1} \frac{x-1}{\sqrt{4 x+5}-3}$
4. $\lim _{x \rightarrow 2}(5 x-6)^{3 / 2}$
5. $\lim _{h \rightarrow 0} \frac{(5+h)^{2}-25}{h}$

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{100}{(10 h-1)^{11}+2} & =\frac{100}{(10 \cdot 0-1)^{11}+2} \\
& =\frac{100}{-1+2} \\
& =100 \\
\lim _{x \rightarrow c} \frac{x^{2}-2 c x+x^{2}}{x-c} & =\lim _{x \rightarrow c} \frac{(x-c)(x-c)}{x-c} \\
& =\lim _{x \rightarrow c} \frac{(x-c)}{1} \\
& =\frac{c-c}{1} \\
& =0
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow 1} \frac{x-1}{\sqrt{4 x+5}-3}=\lim _{x \rightarrow 1} \frac{x-1}{\sqrt{4 x+5}-3} \frac{(\sqrt{4 x+5}+3)}{(\sqrt{4 x+5}+3)} \\
&=\lim _{x \rightarrow 1} \frac{(x-1)(\sqrt{4 x+5}+3)}{(4 x+5)-(9)} \\
&=\lim _{x \rightarrow 1} \frac{(x-1)(\sqrt{4 x+5}+3)}{4 x-4} \\
&=\lim _{x \rightarrow 1} \frac{(x-1)(\sqrt{4 x+5}+3)}{4(x-1)} \\
&=\frac{\sqrt{4 \cdot 1+5}+3}{4} \\
&=\frac{6}{4} \\
&=\frac{3}{2} \\
& \begin{aligned}
\lim _{x \rightarrow 2}(5 x-6)^{3 / 2} & =(5 \cdot 2-6)^{3 / 2} \\
& =4^{3 / 2} \\
& =8
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{(5+h)^{2}-25}{h} & =\lim _{h \rightarrow 0} \frac{\left(25+10 h+h^{2}\right)-25}{h} \\
& =\lim _{h \rightarrow 0} \frac{10 h+h^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{h(10+h)}{\not h} \\
& =\lim _{h \rightarrow 0} 10+h \\
& =10
\end{aligned}
$$

Example 1.5 Find two functions f and g so that $\lim _{x \rightarrow 1} f(x)=0$ and $\lim _{x \rightarrow 1} f(x) g(x)=5$.

Certainly if $\lim _{x \rightarrow 1} g(x)$ exists and equals L for some finite number L, then the product law would have $\lim _{x \rightarrow 1} f(x) g(x)=0$. So we can only consider functions g that do not have a limit as $x \rightarrow 1$. But somehow f and g must cancel each other out when multiplied to give us the limit of 5 . One such possiblity is:

$$
f(x)=x-1 \text { and } g(x)=\frac{5}{x-1}
$$

Example 1.6 Show that $-|x| \leq x \sin \frac{1}{x} \leq|x|$ for $x \neq 0$. Use the Squeeze Theorem to show $\lim _{x \rightarrow 0} x \sin \frac{1}{x}=$ 0 .

For $x \neq 0$ we know that

$$
\begin{equation*}
-1 \leq \sin \frac{1}{x} \leq 1 \tag{1.1}
\end{equation*}
$$

If $x>0$, then by multiplying through by x we get

$$
-x \leq x \sin \frac{1}{x} \leq x
$$

And because $x>0, x=|x|$, so by substitution

$$
-|x| \leq x \sin \frac{1}{x} \leq|x|
$$

Now consider if $x<0$. When we multiply through inequalities (1.1) by x we get

$$
-x \geq x \sin \frac{1}{x} \geq x
$$

the direction of inequality changes because x is negative. And because $x<0$, we have $|x|=-x$ so

$$
|x| \geq x \sin \frac{1}{x} \geq-|x|
$$

It is now fairly straightforward to verify that $\lim _{x \rightarrow 0}-|x|=\lim _{x \rightarrow 0}|x|=0$. The squeeze theorem then gives us the conclusion that $\lim _{x \rightarrow 0} x \sin \frac{1}{x}=0$.

