September 23

TA: Brian Powers

1. Evaluate the following limits using the facts that:

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=1 \quad \text { and } \quad \lim _{x \rightarrow 0} \frac{\cos x-1}{x}=0
$$

(a) $\lim _{x \rightarrow 0} \frac{\tan 5 x}{x}$
(b) $\lim _{x \rightarrow-3} \frac{\sin (x+3)}{x^{2}+8 x+15}$
2. Evaluate the derivatives $d y / d x$
(a) $y=\frac{\cos x}{\sin x+1}$
(b) $y=\csc x$ using the quotient rule
(c) $y=\frac{\cot x}{1+\csc x}$
(d) $y=\frac{x \cos x}{1+x^{3}}$
3. Evaluate the following limit or state it does not exist.

$$
\lim _{x \rightarrow 0} \frac{\sin a x}{\sin b x}, \text { where } a \text { and } b \text { are constants with } b \neq 0
$$

4. Find the following derivatives using the product rule

$$
\frac{d}{d x}\left(\sin ^{2} x\right) \quad \frac{d}{d x}\left(\sin ^{3} x\right) \quad \frac{d}{d x}\left(\sin ^{4} x\right)
$$

Make a conjecture about $\frac{d}{d x}\left(\sin ^{n} x\right)$. See if you can prove it by induction!
5. Use the fact that $\cos (x+h)=\cos (x) \cos (h)-\sin (x) \sin (h)$ to prove that $\frac{d}{d x} \cos x=-\sin x$ using the limit definition.

