September 25

TA: Brian Powers

For position function $s=f(t)$, we have velocity at time t is $v(t)=f^{\prime}(t)$, speed at time t is $|v(t)|$, and acceleration at t is $a(t)=v^{\prime}(t)=f^{\prime \prime}(t)$. Average cost $\bar{C}(x)=C(x) / x$. Marginal cost is $C^{\prime}(x)$. For demand function $D=f(p)$, price elasticity is $E(p)=\frac{d D}{d p} \frac{p}{D}$. If $-\infty<E(p)<-1$ demand is elastic, when $-1<E(p)<0$ demand is inelastic.

1. Suppose a stone is thrown vertically upward from the edge of a cliff with initial velocity $64 \mathrm{ft} / \mathrm{s}$ from a height of 32 ft above the ground. The height h (in ft) of the stone above the ground t seconds after it is thrown is $h=-16 t^{2}+64 t+32$.
(a) Determine the velocity v of the stone after t seconds.

SOLUTION: $v(t)=h^{\prime}(t)=-32 t+64$
(b) When does the stone reach its highest point, and what is its height then?

SOLUTION: The highest point is when the velocity is zero. Set the velocity equal to zero and solve for t.

$$
0=-32 t+64 \quad \text { so } \quad t=2
$$

To find the height at time $t=2$, evaluate $h(2)$.

$$
h(2)=-16(2)^{2}+64(2)+32=96 \mathrm{ft} .
$$

(c) When does the stone strike the ground, and what is its velocity at that point?

SOLUTION: To find the point at which the stone strikes the ground, set the height equal to zero and solve for t.

$$
0=-16 t^{2}+64 t+32 \quad \Rightarrow \quad t=2 \pm \sqrt{6}
$$

Because $2-\sqrt{6}<0$, we can ignore that solution and only use $t=2+\sqrt{6}$ seconds. To find the velocity, we evaluate $v(2+\sqrt{6}$.

$$
v(2+\sqrt{6})=-32(2+\sqrt{6})+32=-32 \sqrt{6} \mathrm{ft} / \mathrm{sec} .
$$

(d) On what intervals is its speed increasing?

SOLUTION: It stands to reason that the speed is only increasing as the rock is falling, on the interval $(2,2+\sqrt{6})$. We can determine that analytically by finding the derivative of the speed, and see when its derivative is negative.

$$
\operatorname{speed}(t)=|v(t)|=\left\{\begin{array}{l}
-32 t+64 \text { if } 0<t \leq 2 \\
32 t-64 \text { if } 2<t<2+\sqrt{6}
\end{array}\right.
$$

And the first derivative is defined piecewise as well

$$
\text { speed }^{\prime}(t)=\left\{\begin{array}{l}
-32 \text { if } 0<t<2 \\
32 \text { if } 2<t<2+\sqrt{6}
\end{array}\right.
$$

So we have that the speed is increasing on the interval $(2,2+\sqrt{6})$, as we expected.
2. For the following (i) find the average cost and marginal cost functions, (ii) Determine the average and marginal cost when $x=a$, and interpret these values
(a) $C(x)=1000+0.1 x, 0 \leq x \leq 5000 ; a=2000$

SOLUTION:

$$
\bar{C}(x)=\frac{C(x)}{x}=\frac{1000}{x}+0.01, \quad C^{\prime}(x)=0.1
$$

So $\bar{C}(a)=\bar{C}(2000)=1000 / 2000+.01=.51, C^{\prime}(a)=C^{\prime}(2000)=0.01$. This means that when the quantity produced is 2000 , it costs $\$ 0.51$ per item, and the cost to produce one more item is \$0.01.
(b) $C(x)=-0.01 x^{2}+40 x+100,0 \leq x \leq 1500 ; a=1000$

SOLUTION:

$$
\bar{C}(x)=\frac{C(x)}{x}=-0.01 x+40+\frac{100}{x}, \quad C^{\prime}(x)=-0.02 x+40
$$

So $\bar{C}(a)=\bar{C}(1000)=-0.01(1000)+40+100 /(1000)=30.1$ and $C^{\prime}(a)=C^{\prime}(1000)=-0.02(1000)+$ $40=20$. This means that when the quantity produced is 1000 , it costs $\$ 30.1$ per item, and the cost to produce one more item is $\$ 20.00$.
3. Compute the elasticity for the exponential demand function $D(p)=a e^{-b p}$, where a and b are positive real numbers. For what prices is the demand elastic? Inelastic?
SOLUTION: Elasticity $E(p)=\frac{d D}{d p} \frac{p}{D} \mathrm{sp}$

$$
E(p)=\left(-b a e^{-b p}\right) \frac{p}{a e^{-b p}}=-b p
$$

So the price is elastic as long as $-b p<-1$, which is the same as $p>\frac{1}{b}$. It is inelastic if $-1<-b p<0$ or $0<p<\frac{1}{b}$.
4. Show that the demand function $D(p)=a / p^{b}$, where a and b are positive real numbers, has a constant elasticity for all positive prices.
SOLUTION: Again, we calculate elasticity, re-writing $D(p)=a p^{-b}$,

$$
E(p)=\left(-b a p^{-b-1}\right) \frac{p}{a p^{-b}}=\frac{-b a p^{-b}}{a p^{-b}}=-b
$$

So the elasticity is constant, irrespective of the price p.

