Math 180: Calculus I

September 30

TA: Brian Powers

- 1. Find the derivative of the following using the chain rule.
 - (a) $y = \sin^5 x$
 - (b) $y = \tan(5x^2)$
 - (c) $y = \sin(4\cos x)$
 - (d) $y = (\sec x + \tan x)^4$
- 2. Consider the table

x	1	2	3	4	5
f'(x)	-6	-3	8	7	2
g(x)	4	1	5	2	3
g'(x)	9	$\overline{7}$	3	-1	-5

Let h(x) = f(g(x)), and k(x) = g(g(x)). Compute the following derivatives:

(a) h'(1)

- (b) k'(5)
- 3. Find the derivative using repeated applications of the chain rule:

(a)
$$y = \sin(\sin(e^x))$$

(b) $y = \sqrt{x + \sqrt{x + \sqrt{x}}}$
(c) $y = \left(\frac{x}{x+1}\right)^5$

4. Find the second derivative:

(a)
$$y = x \cos(x^2)$$

(b) $y = \sqrt{x^2 + 2}$

5. y''(t) + 2y'(t) + 5y(t) = 0 is a differential equation. Verify that a solution to the differential equation is

$$y(t) = e^{-t} (\sin(2t) - 2\cos(2t))$$

6. Derive a formula for $\frac{d^2}{dx^2}f(g(x))$ using the chain rule and product rule, and use this formula to calculate

$$\frac{d^2}{dx^2}\sin\left(x^4+5x^2+2\right).$$