September 4

TA: Brian Powers

Examples

Example 2.1 Evaluate Limits

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{\frac{1}{5+h}-\frac{1}{5}}{h}=\lim _{h \rightarrow 0} \frac{\frac{(5)}{(5)} \frac{1}{5+h}-\frac{1}{5}\left(\frac{5+h)}{(5+h)}\right.}{h} \\
&=\lim _{h \rightarrow 0} \frac{\frac{5}{5(5+h)}-\frac{5+h}{5(5+h)}}{h} \\
&=\lim _{h \rightarrow 0} \frac{\frac{-h}{5(5+h)}}{h} \\
&=\lim _{h \rightarrow 0} \frac{-h h}{5(5+h)} \frac{1}{h} \\
&=-\frac{1}{25} \\
& \begin{aligned}
\lim _{x \rightarrow 4} \frac{3(x-4) \sqrt{x+5}}{3-\sqrt{x+5}} & =\lim _{x \rightarrow 4} \frac{3(x-4) \sqrt{x+5}(3+\sqrt{x+5})}{3-\sqrt{x+5}} \frac{(3+\sqrt{x+5})}{} \\
& =\lim _{x \rightarrow 4} \frac{3(x-4) \sqrt{x+5}(3+\sqrt{x+5})}{9-(x+5)} \\
& =\lim _{x \rightarrow 4} \frac{3(x-4) \sqrt{x+5(3+\sqrt{x+5})}}{4-x} \\
& =\lim _{x \rightarrow 4} \frac{-3(4-x) \sqrt{x+5}(3+\sqrt{x+5})}{4-x} \\
& =-3 \sqrt{4+5}(3+\sqrt{4+5}) \\
& =-54
\end{aligned}
\end{aligned}
$$

Example 2.2 Evaluate left and right-hand limits

$$
\lim _{x \rightarrow 3^{-}} \frac{1}{x-3}=-\infty
$$

because as $x \rightarrow 3$ from the left, $x<3$ so $x-3<0$, the function takes a negative value. However, since the denominator goes to zero, the fraction "goes to" $-\infty$.

$$
\lim _{x \rightarrow 3^{+}} \frac{1}{x-3}=-\infty
$$

because as $x \rightarrow 3$ from the right, $x>3$ so $x-3>0$, the function takes positive values.

Consider

$$
\lim _{x \rightarrow 4} \frac{x-5}{(x-4)^{2}}
$$

What we must notice is that the denominator is a squared number. It is never negative. The numerator is negative for $x<5$. So when x is close to 4 , the fraction takes a negative value (negative divided by a positive). And because the denominator tends to zero as x approaches 4 , we can say that the limit is ∞.

Example 2.4 Find vertical asymptotes of the following functions:

1. $f(\theta)=\tan \left(\frac{\pi \theta}{10}\right)$
2. $g(x)=\frac{1}{\sqrt{x} \sec (x)}$
3. $h(x)=e^{1 / x}$
4. $\tan (x)$ is undefined if $x=\frac{(2 k+1) \pi}{2}$ for any integer k. So $f(\theta)$ will have a vertical asymptote if

$$
\frac{\pi \theta}{10}=\frac{(2 k+1) \pi}{2}
$$

which is the same as $\theta=10 k+5$, for any integer k (e.g. when $\theta=5,15,-5,-15, \ldots$).
2. Recall that $\sec (x)=\frac{1}{\cos (x)}$. So we may re-write this as

$$
g(x)=\frac{\cos (x)}{\sqrt{(x)}} .
$$

The function is not defined for $x<0$ because it involves a \sqrt{x}. The denominator $=0$ only when $x=0$, and because the numerator is defined for all $x>0$ we only have a vertical asymptote when $x=0$.
3. The function $e^{y} \rightarrow \infty$ as $y \rightarrow \infty$. So $e^{1 / x}$ goes to infinty as $x \rightarrow 0^{+}$(because then $\frac{1}{x} \rightarrow \infty$). There will be asymptotic behavior from the right. From the left, however, as $x \rightarrow 0^{-}, \frac{1}{x} \rightarrow-\infty$ and $e^{1 / x} \rightarrow 0$. So we do have a vertical asymptote at $x=0$ but asymptotic behavior only on the right side of this asymptote.

Example 2.5 Consider the function $f(x)=x^{2 / 3}$. For $x=h$, find the slope of the line between $(0,0)$ and $\left(h, f(h)\right.$. Call this $m(h)$. Determine $\lim _{h \rightarrow 0} m(h)$.

First, by evaluating the function at $x=h$ we get

$$
(h, f(h))=\left(h, h^{2 / 3}\right)
$$

The slope formula gives:

$$
\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{h^{2 / 3}-0}{h-0}=\frac{h^{2 / 3}}{h}=h^{2 / 3} h^{-1}=h^{-1 / 3}=\frac{1}{\sqrt[3]{h}}
$$

By taking the right-hand and left-hand limits, we get:

$$
\lim _{h \rightarrow 0^{+}} \frac{1}{\sqrt[3]{h}}=+\infty
$$

since the function takes positive values for $h>0$. Similarly we get

$$
\lim _{h \rightarrow 0^{-}} \frac{1}{\sqrt[3]{h}}=-\infty
$$

Because the right and left-hand limits do not agree, the limit does not exist.

