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Facts we can use

lim
x→∞

1

x
= 0, lim

x→−∞

1

x
= 0.

By limit laws we then have

lim
x→∞

c

xn
= 0

for any constant c and for any positive exponent n (whether it is an integer or a fraction). This is very
handy!

3.1 Examples

Example 3.1 Evaluate the following limits:

1. limx→∞(3 + 10
x2 )

2. limx→∞
3+2x+4x2

x2

3. limx→∞
cos(x5)√

x

4. limx→−∞(5 + 100
x + sin4(x5)

x2 )

5. limx→−∞(3x7 + x2)

1.

lim
x→∞

(3 +
10

x2
) = lim

x→∞
3 + lim

x→∞

10

x2
(Sum Law)

= 3 + 0 (as x→∞,
1

x
→ 0)

= 3

2.

lim
x→∞

3 + 2x + 4x2

x2
= lim

x→∞

3

x2
+ lim

x→∞

2�x

x�2
+ lim

x→∞

4��x2

��x2
(Sum Law)

= lim
x→∞

3

x2
+ lim

x→∞

2

x
+ lim

x→∞

4

1
(Cancelling common factors)

= 0 + 0 + 4

= 4

3. We know that
−1 ≤ cos(x) ≤ 1,
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no matter what we take the cosine of. So it is also true if we replace x with x5.

−1 ≤ cos(x5) ≤ 1

If we divide by
√
x we get

−1√
x
≤ cos(x5)√

x
≤ 1√

x
.

(The direction of the inequality does not change since
√
x ≥ 0, and we are taking the limit as x→∞.) We

already know that the limits of both upper and lower bounding functions as x→∞ is 0, so by the squeeze
theorem,

lim
x→∞

cos(x5)√
x

= 0.

4.

lim
x→−∞

(
5 +

100

x
+

sin4(x5)

x2

)
= lim

x→−∞
5 + lim

x→−∞

100

x
+ lim

x→−∞

sin4(x5)

x2
(Sum law)

= 5 + 0 + 0 ( lim
x→−∞

sin4(x5)

x2
= 0 by the squeeze theorem)

= 5

5. When we take the limit at infinity of a polynomial, we have a theorem that says it is equal to the limit
of just the term with the highest power. So

lim
x→−∞

(3x7 + x2) = lim
x→−∞

3x7 = −∞,

negative because as x → −∞, x takes only negative values, and raising it to an odd power preserves the
sign, so 3x7 is still negative.

Example 3.2 Find horizontal asymptotes or slant asymptotes if they exist.

1. f(x) = 4x2−7
8x2+5x+2

2. f(x) = 40x5+x2

16x4−2x

3. f(x) = 3x2−2x+7
2x−5

For the horizontal asymptotes are limx→∞ f(x) and limx→−∞ f(x). So these must be evaluated.

We have theorem 2.7 which tells us how to handle the limits at infinity of a rational function (a polynomial
divided by another polynomial)

1. Because the exponent of the leading terms of the numerator and denominator are both 2 (they are the
same exponent), the limits at infinity are the ratio of the coefficients, 4

8 = 1
2 . So y = 1

2 is the horizontal
asymptote.

2. Because the exponent of the leading term of the numerator is greater than the largest exponent in the
denominator, then neither limits (at ∞ or −∞) exist. There is no horizontal asymptote. BUT because the
highest power in the numerator is 1 more than the denominator, there is a slant asymptote. We find that
by doing polynomial division (or synthetic division).

5x
16x4 − 2x 40x5 0x4 0x3 1x2 0x 0

−40x5 0x4 0x3 +10x2 0x
0 0 0 11x2 0x 0
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So

40x5 + x2

16x4 − 2x
= 5x +

11x2

16x4 − 2x
.

As x→∞, the fraction portion goes to zero and the behavior is dominated by 5x - this is the slant asymptote:
y = 5x (it is the same as x→ −∞.

3. Again, we use division to determine the slant asymptote.

3
2x

11
4

2x− 5 3x2 −2x +7
−3x2 + 15

2 x
11
2 x 7
− 11

2 x 55
4
88
4

So

3x2 − 2x + 7

2x− 5
=

3

2
x +

11

4
+

88/4

2x− 5
.

As before, the behavior as x→∞ or −∞ has the last term go to zero, so our slant asymptote is y = 3
2x+ 11

4 .

Example 3.3 True or false:

1. A graph of a function never crosses one of its horizontal asymptotes.

2. A graph of a function can have at most 2 horizontal asymptotes.

1. FALSE. The definition of a horizontal asymptote is only the long term behavior of a function as x→∞
or when x → −∞. It says nothing about crossing over this “dotted line”. In fact, f(x) = sin(x)

x is a good
example of a function that has a horizontal asymptote of y = 0 that is crossed infinitely many times.

2. TRUE. When you think about the definition it is obvious - there can possibly be one asymptote as x goes
to ∞ and a second as x goes to −∞ and that’s it.

Example 3.4 Find vertical and horizontal asymptotes (and the left-hand/right-hand limits for any vertical
asymptotes)

1. f(x) =
√
|x| −

√
|x− 1|

2. f(x) = |1−x2|
x(x+1)

1. First of all, we get these vertical asymptotes when division by zero occurs (and a couple other situations)
but that doesn’t happen here. So there are no vertical asymptotes. for the limit as x → ∞ you may apply
some intuitive reasoning that for larger and larger values of x, the difference between these terms is going
to be smaller and smaller until it is zero. this is correct, but not very analytical. We can use the method of
conjugates to shine some light on the math.
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lim
x→∞

√
|x| −

√
|x− 1| = lim

x→∞

√
|x| −

√
|x− 1|

1

(√
|x|+

√
|x− 1|√

|x|+
√
|x− 1|

)

= lim
x→∞

|x| − |x− 1|√
|x|+

√
|x− 1|

= lim
x→∞

x− (x− 1)
√
x +
√
x− 1

(because x is positive and large)

= lim
x→∞

1
√
x +
√
x− 1

(
1/
√
x

1/
√
x

)
= lim

x→∞

1/
√
x

1 +
√

1− 1/x

=
0

1
√

1− 0

= 0

Now it is a lot clearer that the numerator approaches 0 while the denominator approaches 2. If we instead
take the limit as x→ −∞ you will see that we get

lim
x→−∞

√
|x| −

√
|x− 1| = lim

x→−∞

|x| − |x− 1|√
|x|+

√
|x− 1|

= lim
x→−∞

−x− (−x + 1)√
−x +

√
−x + 1

(because x is negative and large)

= lim
x→−∞

−1√
−x +

√
−x + 1

(
1/
√
−x

1/
√
−x

)
= lim

x→−∞

1/
√
−x

1 +
√

1 + 1/x

=
0

1
√

1− 0

= 0

The same limit. y = 0 is the horizontal asymptote.

2. This function has division by zero when x = 0 and x = −1.

lim
x→0+

|1− x2|
x(x + 1)

= lim
x→0+

1− x2

x(x + 1)
=∞

Because both factors in the denominator will be positive, and the numerator is close to 1.

lim
x→0−

|1− x2|
x(x + 1)

= lim
x→0−

1− x2

x(x + 1)
= −∞

Because the numerator will be close to 1, while the denominator has a negative factor and a positive one.
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Now turning to the behavior near x = −1:

lim
x→−1+

|1− x2|
x(x + 1)

= lim
x→−1+

1− x2

x(x + 1)
(because 1− x2 > 0 for x > −1 but close)

= lim
x→−1+

(1− x)����(1 + x)

x����(x + 1)
(by factoring)

= lim
x→−1+

1− x

x
(by cancelling)

= −2

lim
x→−1−

|1− x2|
x(x + 1)

= lim
x→−1−

x2 − 1

x(x + 1)
(because 1− x2 < 0 for x < −1)

= lim
x→−1−

(x− 1)����(x + 1)

x����(x + 1)
(by factoring)

= lim
x→−1−

x− 1

x
(by cancelling)

= −2

So we have a vertical asymptote at x = 0 but a removable discontinuity at x = −1. Now turning our
attention to the horizontal asymptotes.

lim
x→∞

|1− x2|
x(x + 1)

= lim
x→−1+

x2 − 1

x(x + 1)
(because 1− x2 < 0 for large x)

= lim
x→∞

(x− 1)����(x + 1)

x����(x + 1)
(by factoring)

= lim
x→∞

x− 1

x
(by cancelling)

= 1 (ratio of leading coefficients)

And we will find that this is the same limit when x→ −∞.

Example 3.5 The hyperbolic sine function is

sinh(x) =
ex − e−x

2
.

Find its limit as x→∞ and as x→ −∞.

This example is now rather straight forward after all of the previous ones. We should first realize that

lim
x→∞

ex =∞, lim
x→−∞

ex = 0, lim
x→∞

e−x = 0, and lim
x→−∞

e−x =∞.

lim
x→∞

ex − e−x

2
=∞

since the e−x term has a finite limit of zero while the other is infinite.

lim
x→−∞

ex − e−x

2
= −∞

since the ex term has a finite limit of zero while the other is infinite, and it is being subtracted.


