February 2,4,6
Instructor: Brian Powers

9.1 Random Variables

Definition 9.1. A random variable is a function that maps each outcome in the sample space to a real number.

Example 9.2. Here are some examples of random variables.

- Suppose you roll a die. Let X be the number of the die.
- Flip a coin 10 times. Let Y be the number of heads.
- Sample a random frog from the lake. Let W be its weight.
- Pick a person at random. Let $G=1$ if the person wears glasses, $G=0$ otherwise.

In cases where a random variable is categorical as in the last example, we may call this a dummy variable. And for review, we repeat the following definitions:

Definition 9.3. If a sample space contains a finite number of possibilities or countably infinite, then it is called a discrete sample space. If the sample space is uncountably infinite, it is called continuous.

Definition 9.4. A random variable is a discrete random variable if its set of possible outcomes is countable. If a random variable can take any value on a continuous interval, it is a continuous random variable.

Typically a discrete random variable is something that is counted, while a continuous random variable is measured.

9.2 Discrete Probability Distributions

Definition 9.5. A function $f(x)$ is a probability mass function ($\mathbf{p m f}$) of discrete random variable X which takes values x_{1}, x_{2}, \ldots, provided for each value x_{i},

- $f\left(x_{i}\right) \geq 0$
- $\sum_{i} f\left(x_{i}\right)=1$
- $P\left(X=x_{i}\right)=f\left(x_{i}\right)$

A probability mass function can often be well defined by a table or a formula.

Example 9.6. An urn has 7 red balls and 4 blue balls. You reach in and grab 3. Let X be the number of red balls in the selection. Find its pmf.

Example 9.7. You take a multiple choice quiz: 5 questions with 4 choices each. Let X be the number of questions you get right. find its pmf.

It is often convenient rather thank looking at $P(X=x)$ to look at $P(X \leq x)$.
Definition 9.8. The cumulative distribution function of discrete random variable X is denoted $F(x)$, where

$$
F(x)=P(X \leq x)=\sum_{t \leq x} f(t), \text { for } x \in \mathbb{R}
$$

The pmf may be well represented by a probability histogram, and the discrete cumulative distribution function may be graphically represented as well.

9.3 Continuous Probability Distributions

A continuous random variable has probability mass of 0 for any particular value the random variable can take. What is meaningful is the probability density for any particular value.
Definition 9.9. A function $f(x)$ is a probability density function (pdf) for a continuous random variable X taking values over \mathbb{R} provided:

- $f(x) \geq 0$ for all $x \in \mathbb{R}$
- $\int_{-\infty}^{\infty} f(x) d x=1$
- $P(a<X<b)=\int_{a}^{b} f(x) d x$

Notice that

$$
P(a \leq X \leq b)=P(a<X<b)+P(X=a)+P(X=b)=P(a<X<b)+0+0
$$

Example 9.10. Show that the following is a valid pdf:

$$
f(x)= \begin{cases}\frac{x^{2}}{3} & -1<x<2 \\ 0 & \text { elsewhere }\end{cases}
$$

And find $P(0<X \leq 1)$.
Definition 9.11. The cumulative distribution function (cdf) of a continuous random variable X is denoted $F(x)$ where

$$
F(x)=P(X \leq x)=\int_{-\infty}^{x} f(t) d t, \text { for } x \in \mathbb{R}
$$

By the Fundamental Theorem of Calculus, we may write

$$
P(a<X<b)=F(b)-F(a) \text { and } P(X>a)=1-F(a)
$$

Example 9.12. Find the cdf of the previous example, and use it to evaluate $P(.4<X<.9)$.
Example 9.13. Find the constant c which makes the following a valid pdf, then find the cdf and evaluate $P(X>4)$.

$$
f(x)= \begin{cases}c e^{-2 x} & x>0 \\ 0 & \text { otherwise }\end{cases}
$$

