February $9,11,13$

Instructor: Brian Powers

12.1 Expected Value

Definition 12.1. The mean of random variable X, denoted μ_{X} is the long-term average value of this random variable.

Example 12.2. Suppose you flip a fair coin 3 times and let X be the number of heads. What is the average number of heads (i.e. what is the mean number of heads)?

Definition 12.3. The mean or expected value of a random variable is defined as follows: For a discrete random variable X,

$$
\mu_{x}=E(X)=\sum_{x} x f(x)
$$

For a continuous random variable X,

$$
\mu_{x}=E(X)=\int_{-\infty}^{\infty} x f(x) d x
$$

Example 12.4. An urn has 15 marbles: 6 blue and 9 red. A sample of 3 marbles is taken. What is the expected number of red marbles?

Example 12.5. Let X be a random variable with pdf

$$
f(x)== \begin{cases}\frac{20000}{x^{3}} & x>100 \\ 0 & \text { elsewhere }\end{cases}
$$

Find $E(X)$.
Theorem 12.6. Let X be a random variable with pmf (or pdf) $f(x)$. The expected value of $g(X)$ is

$$
\begin{gathered}
\mu_{g(X)}=E(g(X))=\sum_{x} g(x) f(x) \quad \text { (discrete) } \\
\mu_{g(X)}=E(g(X))=\int_{-\infty}^{\infty} g(x) f(x) d x \quad \text { (continuous). }
\end{gathered}
$$

Example 12.7. Let X be a random variable with pdf

$$
f(x)= \begin{cases}\frac{x^{2}}{3} & -1<x<2 \\ 0 & \text { elsewhere }\end{cases}
$$

Find the expected value of $Y=3 X+2$ and $W=X^{2}$.

12.2 Variance and Covariance

Definition 12.8. Let X be a random variable with $\operatorname{pmf}(\mathrm{pdf}) f(x)$ and mean μ. The variance of X, denoted $\operatorname{Var}(X)$ or σ_{X}^{2} (or simply σ^{2}) is

$$
\begin{gathered}
\sigma^{2}=E\left[(X-\mu)^{2}\right]=\sum_{x}(x-\mu)^{2} f(x), \quad \text { (discrete) } \\
\sigma^{2}=E\left[(X-\mu)^{2}\right]=\int_{-\infty}^{\infty}(x-\mu)^{2} f(x) d x, \quad \text { (continuous). }
\end{gathered}
$$

$\sigma=\sqrt{\sigma^{2}}$ is called the standard deviation of X.
Example 12.9. Calculate the mean and variance of X and Y :

$$
\begin{array}{c|ccc}
x & 1 & 2 & 3 \\
\hline f_{X}(x) & 0.3 & 0.4 & 0.3
\end{array} \quad \begin{array}{c|ccccc}
y & 0 & 1 & 2 & 3 & 4 \\
\hline f_{Y}(y) & 0.2 & 0.1 & 0.3 & 0.3 & 0.1
\end{array}
$$

Theorem 12.10. The variance of random variable X is

$$
\sigma^{2}=E\left(X^{2}\right)-\mu^{2}
$$

This can be shown by just expanding $(X-\mu)^{2}$ in the original definition and working it out.
Theorem 12.11. Let X be a random variable with pmf (pdf) $f(x)$. Let $g(X)$ be a function of X.

$$
\begin{gathered}
\sigma_{g(X)}^{2}=E\left[\left(g(X)-\mu_{g(X)}\right)^{2}\right]=\sum_{x}\left(g(x)-\mu_{g(X)}\right)^{2} f(x), \quad \text { (discrete) } \\
\left.\sigma_{g(X)}^{2}=E\left[\left(g(X)-\mu_{g(X)}\right)^{2}\right]=\int_{-\infty}^{\infty}\left(g(x)-\mu_{g(X)}\right)^{2} f(x) d x, \quad \text { (discrete) }\right)
\end{gathered}
$$

Example 12.12. Let X have the mass function given below. Find the variance of $g(X)=2 X+3$

x	0	1	2	3
$f(x)$	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{2}$	$\frac{1}{8}$

Example 12.13. Let X be a continuous random variable with pdf $f(x)=2.5(x+2)$ with support $[0,1]$. Let $g(X)=2 X^{2}-3$. Find $\operatorname{Var}(g(X))$.

12.2.1 Calculator Tasks

- Mean of a discrete random variable
- Variance of a discrete random variable

12.3 Mean and Variance of Linear Combinations of Random Variables

12.3.1 Expected Value of Linear Combinations

Theorem 12.14. For constants a, b,

$$
E(a X+b)=a E(X)+b
$$

Corollary 12.15. For any constant b,

$$
E(b)=b
$$

Corollary 12.16. For any constant a,

$$
E(a X)=a E(X)
$$

Theorem 12.17. For any functions g and h,

$$
E[g(X)+h(X)]=E[g(X)]+E[h(X)] .
$$

Theorem 12.18. If X and Y are random variables,

$$
E(a X+b Y)=a E(X)+b E(Y)
$$

Corollary 12.19. If $X_{1}, X_{2}, \ldots, X_{n}$ are random variables with a_{1}, \ldots, a_{n} constants, then

$$
E\left(\sum_{i=1}^{n} a_{i} X_{i}\right)=\sum_{i=1}^{n} a_{i} E\left(X_{i}\right)
$$

12.3.2 Variance of Linear Combinations

Theorem 12.20. For any constants a, b,

$$
\operatorname{Var}(a X+b)=a^{2} \sigma^{2}
$$

Corollary 12.21. For any constant b,

$$
\operatorname{Var}(b)=0
$$

Theorem 12.22. If X and Y are independent random variables with variances σ_{X}^{2} and σ_{Y}^{2} respectively,

$$
\operatorname{Var}(a X+b Y)=a^{2} \sigma_{X}^{2}+b^{2} \sigma_{Y}^{2}
$$

Corollary 12.23. If $X_{1}, X_{2}, \ldots, X_{n}$ are independent random variables with a_{1}, \ldots, a_{n} constants, then

$$
\operatorname{Var}\left(\sum_{i=1}^{n} a_{i} X_{i}\right)=\sum_{i=1}^{n} a_{i}^{2} \sigma_{X_{i}}^{2}
$$

